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On solutions of linear equations with polynomial coefficients

Janusz Adamus and Hadi Seyedinejad (London, ON)

Abstract. We show that a linear functional equation with polynomial coefficients
need not admit an arc-analytic solution even if it admits a continuous semialgebraic one.
We also show that such an equation need not admit a Nash regulous solution even if it
admits an arc-analytic one.

1. Introduction. The present note is concerned with existence of so-
lutions to linear equations with polynomial coefficients in various classes of
semialgebraic functions in Rn. Recall that a set X in Rn is called semialge-
braic if it can be written as a finite union of sets of the form {x ∈ Rn : p(x) = 0,
q1(x) > 0, . . . , qr(x) > 0}, where r ∈ N and p, q1, . . . , qr are polynomial func-
tions. Given X ⊂ Rn, a semialgebraic function f : X → R is one whose
graph is a semialgebraic subset of Rn+1.

A continuous function f : Rn → R is said to be regulous if there exist
polynomial functions p and q such that the zero locus of q is nowhere dense
in Rn and f(x) = p(x)/q(x) whenever q(x) 6= 0. A real analytic semialgebraic
function on Rn is called Nash. A continuous function f : Rn → R is said to be
Nash regulous if there exist Nash functions g and h such that the zero locus of
h is nowhere dense in Rn and f(x) = g(x)/h(x) whenever h(x) 6= 0. Finally,
recall that a function f : X → R is called arc-analytic if it is analytic along
every arc, that is, f ◦ γ is analytic for every real analytic γ : (−1, 1) → X.
We shall denote the regulous, Nash regulous, and arc-analytic semialgebraic
functions on Rn by R0(Rn), N 0(Rn), and Aa(Rn), respectively. We have

(1.1) R0(Rn) ⊂ N 0(Rn) ⊂ Aa(Rn).

The first inclusion is trivial and the second one follows from [8, Prop. 3.1].
Both inclusions are strict.
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The above classes of semialgebraic functions have been extensively stud-
ied recently (see, e.g., [1, 2, 6, 8] and the references therein), in particular,
in the context of the following problem of Fefferman and Kollár [5].

Consider a linear equation

(1.2) f1ϕ1 + · · ·+ frϕr = g,

where g and the fj are continuous (real-valued) functions on Rn. Fefferman–
Kollár asked whether assuming that g and the fj have some regularity prop-
erties, one could find a solution (ϕ1, . . . , ϕr) to (1.2) with similar regularity
properties.

This is a difficult problem, even when the coefficients of (1.2) are poly-
nomial. One line of attack is to instead consider a somewhat easier question:

Problem 1.1. Suppose that (1.2) admits a solution (ϕ1, . . . , ϕr) within
some class of functions. Does there exist then a solution to (1.2) within a
strictly smaller class?

In the semialgebraic setting, the most general positive answer to this
problem is given by [5, Cor. 29(1)]: If f1, . . . , fr are polynomial, g is semial-
gebraic and (1.2) admits a continuous solution, then it admits a continuous
semialgebraic solution. In a similar vein, Kucharz and Kurdyka showed that,
in case n = 2, if f1, . . . , fr, g are regulous then (1.2) admits a continuous
solution if and only if it admits a regulous solution (cf. [9, Cor. 1.7]).

On the other hand, the above is known to fail for n ≥ 3. Namely, by
[7, Ex. 6], there exist f1, f2, g ∈ R[x, y, z] such that f1ϕ1 + f2ϕ2 = g admits
a continuous solution, but no regulous one. Nonetheless, the solution from
[7, Ex. 6] is Nash regulous, and in [8] Kucharz conjectured that existence of
a continuous solution to (1.2) should imply the existence of a Nash regulous
one, for any n ≥ 1, provided f1, . . . , fr, g are polynomial.

The main goal of this note is to prove that the latter is not the case. In Ex-
ample 3.1, we show that there exists a linear equation with polynomial coeffi-
cients which admits a continuous solution, but no arc-analytic one. By (1.1),
it follows that there is no Nash regulous solution either. Perhaps even more
interestingly, in Example 3.2 we exhibit a linear equation with polynomial
coefficients that does admit an arc-analytic solution and has no Nash regu-
lous solution nonetheless. Both our examples are modifications of [7, Ex. 6].

2. Toolbox. The following facts will be needed in Examples 3.1 and 3.2.

Proposition 2.1. Let f : Rn → R be a semialgebraic function. Then f
is arc-analytic if and only if there exists a mapping π : R̃ → Rn which is a
finite sequence of blowings-up with smooth algebraic centers, such that the
composite f ◦ π is a Nash function.

Proof. This is a special case of [3, Thm. 1.4].
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Functions satisfying the conclusion of Proposition 2.1 are called blow-
Nash.

Remark 2.2. A function f : R → R is arc-analytic if and only if it is
real analytic. This follows directly from the definition of arc-analytic func-
tions.

Recall that a Nash set (i.e., the zero set of a Nash function) in Rn is
said to be Nash irreducible if it cannot be realized as a union of two proper
Nash subsets. A set is called Nash constructible if it belongs to the Boolean
algebra generated by the Nash subsets in Rn.

Remark 2.3 (cf. [10, Ex. 2.3]). The graph Γf of f(x, y) =
√
x4 + y4 is

not Nash constructible in R3.

Indeed, let X := {(x, y, z) ∈ R3 : z2 = x4+y4}. We claim that X is Nash
irreducible. First, note that z2−x4−y4 is an irreducible element in the ring
of convergent power series over C. Hence, the set {z2 − x4 − y4 = 0} ⊂ C3

has an irreducible (complex analytic) germ at the origin, of (complex) di-
mension 2. On the other hand, the (real analytic) germ of X at the origin
is of (real) dimension 2. Hence, its complexification has to be given by pre-
cisely {z2 − x4 − y4 = 0}. It follows that the germ X0 is irreducible, and
there is thus no way to decompose X into proper analytic subsets. (See [4]
for details on real analytic germs and their complexifications.)

The irreducibility of X implies that X is the smallest Nash set in R3

containing Γf . Therefore, by [8, Prop. 2.1], if Γf were Nash constructible
then it would need to contain the smooth locus of X. This is not the case,
however, because X also contains the graph of g(x, y) = −

√
x4 + y4.

The following result is new, though it follows easily from [8].

Lemma 2.4. Let n ≥ 1 and let f, g ∈ Aa(Rn). If the zero locus of g is
nowhere dense in Rn and the function f/g extends continuously to Rn, then
this extension is in Aa(Rn).

Proof. By Proposition 2.1 above, there is a finite sequence π : R̃ → Rn

of blowings-up with smooth algebraic centers such that f ◦ π and g ◦ π are
Nash functions on the Nash manifold R̃. Continuity of f/g implies that

(f ◦ π)/(g ◦ π) : R̃ → R is a Nash regulous function. By [8, Prop. 3.1],
Nash regulous functions are arc-analytic, and hence there is a finite se-
quence σ : R̂ → R̃ of blowings-up with smooth algebraic centers such
that

(f/g) ◦ π ◦ σ =
f ◦ π
g ◦ π

◦ σ : R̂→ R

is Nash, by Proposition 2.1 again. Therefore, f/g is arc-analytic.
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3. Examples

Example 3.1. Consider the equation

(3.1) x3yϕ1 + (x3 − y3z)ϕ2 = x4.

We claim that

ϕ1(x, y, z) = z1/3, ϕ2(x, y, z) =
x3

x2 + xyz1/3 + y2z2/3

is a continuous solution to (3.1), but no semialgebraic arc-analytic solution
exists. The function ϕ1 is clearly continuous. To see that ϕ2 is continuous,
first note that the set

{(x, y, z) ∈ R3 : x2 + xyz1/3 + y2z2/3 = 0}
is the union of the y-axis and the z-axis. Therefore, x→ 0 whenever (x, y, z)
approaches the locus of indeterminacy of ϕ2. On the other hand, we have

x2 + xyz1/3 + y2z2/3 ≥ 1
2(x2 + y2z2/3),

which shows that
x2

x2 + xyz1/3 + y2z2/3

is bounded. Hence, ϕ2 can be continuously extended by zero to R3.
Suppose now that (3.1) has an arc-analytic solution (ψ1, ψ2). Set

S := {(x, y, z) ∈ R3 : x3 = y3z},
and note that y vanishes on S only when x does so. Therefore, x/y is a well
defined function on S \ {x = 0}, and thus, by (3.1), we obtain

ψ1|S\{x=0} =
x

y

∣∣∣∣
S\{x=0}

.

Observe that every point (0, 0, c) of the z-axis can be approached within
S \ {x = 0}, even by an analytic arc—indeed, for instance, by the arc
( 3
√
ct, t, c) for c 6= 0 and the arc (t2, t, t3) for c = 0. This allows us to write

lim
(x,y,z)→(0,0,c)

ψ1(x, y, z) = lim
(x,y,z)→(0,0,c)

x

y

∣∣∣∣
S\{x=0}

= c1/3.

Therefore, ψ1|z-axis = z1/3, by continuity. This contradicts the arc-analyticity
of ψ1, by Remark 2.2.

Example 3.2. Consider now the equation

(3.2) x4y2ϕ1 + (x4 − y4(z4 + w4))ϕ2 = x6.

We claim that

ϕ1 =
√
z4 + w4, ϕ2 =

x4

x2 + y2
√
z4 + w4
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is an arc-analytic solution to (3.2), but no Nash regulous solution exists. It is
easy to see that the function

√
z4 + w4 is blow-Nash, and hence arc-analytic,

by Proposition 2.1. Thus, by Lemma 2.4, to see that ϕ2 is arc-analytic, it
suffices to show that it extends continuously to R4. First, note that the set

{(x, y, z, w) ∈ R4 : x2 + y2
√
z4 + w4 = 0}

is the union of the y-axis and the (z, w)-plane. Therefore, x → 0 whenever
(x, y, z, w) approaches the locus of indeterminacy of ϕ2. On the other hand,
the function

x2

x2 + y2
√
z4 + w4

is clearly bounded. Hence, ϕ2 can be continuously extended by zero to R4.

Suppose now that (3.2) has a Nash regulous solution (ψ1, ψ2). Set

S := {(x, y, z, w) ∈ R4 : x4 = y4(z4 + w4)},
and note that y vanishes on S only when x does so. Therefore, (x/y)2 is a
well defined function on S \ {x = 0}, and thus, by (3.2), we obtain

ψ1|S\{x=0} =
x2

y2

∣∣∣∣
S\{x=0}

.

Note that the (z, w)-plane is contained in S, and every point (0, 0, c, d) of
the (z, w)-plane can be approached within S \ {x = 0}, even by an analytic

arc. Indeed, for instance, by the arc ( 4
√
c4 + d4 t, t, c, d) for c4 + d4 6= 0 and

the arc ( 4
√

2 t2, t, t, t) for c4 + d4 = 0. This allows us to write

lim
(x,y,z,w)→(0,0,c,d)

ψ1(x, y, z, w) = lim
(x,y,z,w)→(0,0,c,d)

x2

y2

∣∣∣∣
S\{x=0}

=
√
c4 + d4.

Therefore, ψ1|(z,w)-plane =
√
z4 + w4, by continuity. This is impossible for a

Nash regulous function though, because by [8, Cor. 3.2] the graph of a Nash
regulous function (and hence its intersection with any coordinate plane) is
a closed Nash constructible set. However, the graph of f(z, w) =

√
z4 + w4

is not Nash constructible, by Remark 2.3.
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[4] H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc.
Math. France 85 (1957), 77–99.

[5] C. Fefferman and J. Kollár, Continuous solutions of linear equations, in: From Fourier
Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math. 28,
Springer, New York, 2013, 233–282.

[6] G. Fichou, J. Huisman, F. Mangolte et J.-P. Monnier, Fonctions régulues, J. Reine
Angew. Math. 718 (2016), 103–151.

[7] J. Kollár and K. Nowak, Continuous rational functions on real and p-adic varieties,
Math. Z. 279 (2015), 85–97.

[8] W. Kucharz, Nash regulous functions, Ann. Polon. Math. 119 (2017), 275–289.
[9] W. Kucharz and K. Kurdyka, Linear equations on real algebraic surfaces, Manuscripta

Math. 154 (2017), 285–296.
[10] H. Seyedinejad, Decomposition of sets in real algebraic geometry, arXiv:1704.08965v1

(2017).

Janusz Adamus, Hadi Seyedinejad
Department of Mathematics
The University of Western Ontario
London, Ontario, Canada N6A 5B7
E-mail: jadamus@uwo.ca

sseyedin@uwo.ca

http://dx.doi.org/10.1007/BF01231509
http://dx.doi.org/10.24033/bsmf.1481
http://dx.doi.org/10.1007/978-1-4614-4075-8_10
http://dx.doi.org/10.1515/crelle-2014-0034
http://dx.doi.org/10.1007/s00209-014-1358-7
http://dx.doi.org/10.4064/ap170601-21-8
http://dx.doi.org/10.1007/s00229-017-0925-8
http://arxiv.org/abs/1704.08965v1

	1 Introduction
	2 Toolbox
	3 Examples
	References

