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On solutions of linear equations with polynomial coefficients

JAaNUSz ApaMus and HADI SEYEDINEJAD (London, ON)

Abstract. We show that a linear functional equation with polynomial coefficients
need not admit an arc-analytic solution even if it admits a continuous semialgebraic one.
We also show that such an equation need not admit a Nash regulous solution even if it
admits an arc-analytic one.

1. Introduction. The present note is concerned with existence of so-
lutions to linear equations with polynomial coefficients in various classes of
semialgebraic functions in R™. Recall that a set X in R™ is called semialge-
braic if it can be written as a finite union of sets of the form {x € R™ : p(x) = 0,
q1(z) > 0,...,¢-(x) > 0}, where r € Nand p, qi1,. .., g are polynomial func-
tions. Given X C R", a semialgebraic function f : X — R is one whose
graph is a semialgebraic subset of R**1.

A continuous function f : R™ — R is said to be regulous if there exist
polynomial functions p and ¢ such that the zero locus of ¢ is nowhere dense
in R” and f(x) = p(x)/q(x) whenever g(z) # 0. A real analytic semialgebraic
function on R is called Nash. A continuous function f : R” — R is said to be
Nash regulous if there exist Nash functions g and h such that the zero locus of
h is nowhere dense in R™ and f(z) = g(x)/h(z) whenever h(z) # 0. Finally,
recall that a function f : X — R is called arc-analytic if it is analytic along
every arc, that is, f o~ is analytic for every real analytic v : (—1,1) — X.
We shall denote the regulous, Nash regulous, and arc-analytic semialgebraic
functions on R™ by R%(R"), N°(R"), and <7, (R"), respectively. We have

(1.1) RO(R™) € NO(R™) C o, (R").

The first inclusion is trivial and the second one follows from [8, Prop. 3.1].
Both inclusions are strict.
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The above classes of semialgebraic functions have been extensively stud-
ied recently (see, e.g., [1l, 2, [6, 8] and the references therein), in particular,
in the context of the following problem of Fefferman and Kolldr [5].

Consider a linear equation

(1.2) fior+-+ fror =9,

where g and the f; are continuous (real-valued) functions on R™. Fefferman—
Kollar asked whether assuming that g and the f; have some regularity prop-
erties, one could find a solution (¢1,...,®,) to with similar regularity
properties.

This is a difficult problem, even when the coefficients of are poly-
nomial. One line of attack is to instead consider a somewhat easier question:

PROBLEM 1.1. Suppose that (1.2) admits a solution (1, ..., e,) within
some class of functions. Does there exist then a solution to (1.2)) within a
strictly smaller class?

In the semialgebraic setting, the most general positive answer to this
problem is given by [B, Cor. 29(1)]: If fi,..., fr are polynomial, g is semial-
gebraic and admits a continuous solution, then it admits a continuous
semialgebraic solution. In a similar vein, Kucharz and Kurdyka showed that,
in case n = 2, if f1,..., fr, g are regulous then admits a continuous
solution if and only if it admits a regulous solution (cf. [9, Cor. 1.7]).

On the other hand, the above is known to fail for n > 3. Namely, by
[7, Ex. 6], there exist fi, fo, g € R[x,y, z] such that fi¢1 + fap2 = g admits
a continuous solution, but no regulous one. Nonetheless, the solution from
[7, Ex. 6] is Nash regulous, and in [§] Kucharz conjectured that existence of
a continuous solution to should imply the existence of a Nash regulous
one, for any n > 1, provided fi,..., fr, g are polynomial.

The main goal of this note is to prove that the latter is not the case. In Ex-
ample[3.1] we show that there exists a linear equation with polynomial coeffi-
cients which admits a continuous solution, but no arc-analytic one. By ,
it follows that there is no Nash regulous solution either. Perhaps even more
interestingly, in Example we exhibit a linear equation with polynomial
coefficients that does admit an arc-analytic solution and has no Nash regu-
lous solution nonetheless. Both our examples are modifications of [7, Ex. 6].

2. Toolbox. The following facts will be needed in Examples[3.1]and [3.2]

PROPOSITION 2.1. Let f:R"™ — R be a semialgebraic function. Then f
1s arc-analytic if and only if there exists a mapping 7 : R — R"™ which is a
finite sequence of blowings-up with smooth algebraic centers, such that the
composite f om is a Nash function.

Proof. This is a special case of [3, Thm. 1.4]. =
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Functions satisfying the conclusion of Proposition are called blow-
Nash.

REMARK 2.2. A function f : R — R is arc-analytic if and only if it is
real analytic. This follows directly from the definition of arc-analytic func-
tions.

Recall that a Nash set (i.e., the zero set of a Nash function) in R™ is
said to be Nash irreducible if it cannot be realized as a union of two proper
Nash subsets. A set is called Nash constructible if it belongs to the Boolean
algebra generated by the Nash subsets in R™.

REMARK 2.3 (cf. [10, Ex. 2.3]). The graph I} of f(z,y) = \/a2* +y? is
not Nash constructible in R3.

Indeed, let X := {(z,y,2) € R?: 22 = 2% +9*}. We claim that X is Nash
irreducible. First, note that 22 —2* —y* is an irreducible element in the ring
of convergent power series over C. Hence, the set {22 —2* —y* =0} c C3
has an irreducible (complex analytic) germ at the origin, of (complex) di-
mension 2. On the other hand, the (real analytic) germ of X at the origin
is of (real) dimension 2. Hence, its complexification has to be given by pre-
cisely {22 — 2% — y* = 0}. Tt follows that the germ Xj is irreducible, and
there is thus no way to decompose X into proper analytic subsets. (See [4]
for details on real analytic germs and their complexifications.)

The irreducibility of X implies that X is the smallest Nash set in R3
containing Iy. Therefore, by [8, Prop. 2.1], if I} were Nash constructible
then it would need to contain the smooth locus of X. This is not the case,
however, because X also contains the graph of g(x,y) = —/x* + y*.

The following result is new, though it follows easily from [g].

LEMMA 2.4. Let n > 1 and let f,g € o7,(R™). If the zero locus of g is
nowhere dense in R™ and the function f/g extends continuously to R"™, then
this extension is in o, (R™).

Proof. By Proposition above, there is a finite sequence 7 : R — R"
of blowings-up with smooth algebraic centers such that fom and go 7 are
Nash functions on the Nash manifold R. Continuity of f/g implies that
(fom)/(gom) : R — R is a Nash regulous function. By [8, Prop. 3.1],
Nash regulous functions are arc-analytic, and hence there is a finite se-
quence o : R — R of blowings-up with smooth algebraic centers such

that

(f/g)omoo = gzﬂoazﬁ—ﬂR
T

is Nash, by Proposition again. Therefore, f/g is arc-analytic. =
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3. Examples
ExAMPLE 3.1. Consider the equation
(3.1) ypr + (22 — y32) o = 2.
We claim that
/3. a’

902('1'71/72) = $2+$y21/3+y222/3

is a continuous solution to (3.1]), but no semialgebraic arc-analytic solution

exists. The function ¢y is clearly continuous. To see that o is continuous,
first note that the set

{($7yaz) S RS : .ZL'Q —|—{L’yzl/3 +y222/3 — 0}

901(1'73/,2) =z

is the union of the y-axis and the z-axis. Therefore, z — 0 whenever (x,y, 2)
approaches the locus of indeterminacy of 3. On the other hand, we have
22 4 :nyzl/g + y2z2/3 > %(xQ + y222/3),

which shows that

I2

2 + xyzl/?) + y2Z2/3

is bounded. Hence, (5 can be continuously extended by zero to R3.
Suppose now that (3.1) has an arc-analytic solution (11,2). Set

S ={(x,y,2) € R3: 23 = y3z},

and note that y vanishes on S only when x does so. Therefore, z/y is a well
defined function on S\ {z = 0}, and thus, by (3.1]), we obtain

x
V1ls\fz=0y = — -
Yls\{z=0}
Observe that every point (0,0,c¢) of the z-axis can be approached within
S\ {z = 0}, even by an analytic arc—indeed, for instance, by the arc
(Yet,t,c) for ¢ # 0 and the arc (¢2,¢,t3) for ¢ = 0. This allows us to write
lim P (x,y,2) = lim — = /3,
(ff,yvz)ﬁ(oﬁ»c) ( ) (x,y,z)%(0,0,C) y S\{x:[)}

Therefore, Y| ,-axis = 21/ 3 by continuity. This contradicts the arc-analyticity
of 11, by Remark .
ExaMPLE 3.2. Consider now the equation
(3.2) zh2 o1 + (2t — yt (2t + wh))py = 8.
We claim that

p1 =Vt

4

x
2:
v x2+y2«’z4—|—w4
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is an arc-analytic solution to no Nash regulous solution exists. It is
easy to see that the function v/z* + w? is blow-Nash, and hence arc-analytic,
by Proposition Thus, by Lemma [2.4] to see that 9 is arc-analytic, it
suffices to show that it extends continuously to R*. First, note that the set

{(ﬂf,y,z,w) S R* : $2 —|—y2\/m — 0}
is the union of the y-axis and the (z,w)-plane. Therefore, x — 0 whenever

(z,y,z,w) approaches the locus of indeterminacy of p2. On the other hand,

the function )

T
22 + V2t 4wt
is clearly bounded. Hence, @5 can be continuously extended by zero to R*.
Suppose now that (3.2) has a Nash regulous solution (11, 9). Set

S = {(z,y,z,w) e R : 2t =y (z* + wh)},
and note that y vanishes on S only when z does so. Therefore, (z/y)? is a

well defined function on S\ {x = 0}, and thus, by (3.2)), we obtain

$2

v 5\ fo=0}

Note that the (z,w)-plane is contained in S, and every point (0,0, ¢,d) of
the (z,w)-plane can be approached within S\ {z = 0}, even by an analytic
arc. Indeed, for instance, by the arc (v/cl+ d4t,t,c,d) for ¢* + d* # 0 and
the arc (v2t2,t,t,t) for ¢* + d* = 0. This allows us to write

332

V1l g\ {a=0} =

=Vt +dt
S\{z=0}
Therefore, 1]z w)-plane = V 2% + w*, by continuity. This is impossible for a
Nash regulous function though, because by [8, Cor. 3.2] the graph of a Nash
regulous function (and hence its intersection with any coordinate plane) is
a closed Nash constructible set. However, the graph of f(z,w) = vz* + w?*
is not Nash constructible, by Remark [2.3] O

lim T, Y, 2, W) = lim —
0000 VAU = 00t
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