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a b s t r a c t

We prove a sharp Ore-type criterion for hamiltonicity of balanced bipartite digraphs:
for a ≥ 2, a bipartite digraph D with colour classes of cardinalities a is hamiltonian if
d+(u) + d−(v) ≥ a + 2 whenever u and v lie in opposite colour classes and uv ∉ A(D).

Crown Copyright© 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

The main purpose of this note is to give a sharp Ore-type sufficient condition for hamiltonicity of balanced bipartite
digraphs. A digraph D is a pair (V (D), A(D)), where V (D) is a finite set (of vertices) and A(D) is a set of ordered pairs of
elements of V (D), called arcs. For vertices u and v from V (D), we write uv ∈ A(D) to say that A(D) contains the ordered pair
(u, v). For a vertex v ∈ V (D), we denote by d+(v) (resp. d−(v)) the number of vertices u ∈ V (D) such that vu ∈ A(D) (resp.
uv ∈ A(D)). We call d+(v) and d−(v) the positive and negative half-degree of v, respectively. Further, δ+(D) (resp. δ−(D))
denotes the minimum of d+(v) (resp. d−(v)) as v runs over all vertices of D. A digraph D is bipartitewhen V (D) is a disjoint
union of sets X and Y (the colour classes) such that A(D) ∩ (X × X) = ∅ and A(D) ∩ (Y × Y ) = ∅. It is called balanced if
|X | = |Y |. See Section 1.1 for details on notation and terminology.

Definition 1.1. Consider a balanced bipartite digraph Dwith colour classes X and Y of cardinalities a. For k ≥ 0, we will say
that D satisfies condition A∗

k when

d+(u) + d−(v) ≥ a + k

for all u and v from opposite colour classes such that uv ∉ A(D).

Our main result is the following:

Theorem 1.2. Let D be a balanced bipartite digraph with colour classes X and Y of cardinalities a, where a ≥ 2. If D satisfies
condition A∗

2 , then D contains an oriented cycle of length 2a.
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There are numerous sufficient conditions for existence of cycles in digraphs (see [3]). In this note, we will be concerned
with the degree conditions. For general digraphs, the Dirac- and Ore-type conditions are due, respectively, to Nash-Williams
and Woodall.

Theorem 1.3 (Nash-Williams [7]). Let D be a digraph on n vertices, where n ≥ 3. If δ+(D) ≥ n/2 and δ−(D) ≥ n/2, then D
contains an oriented cycle of length n.

Theorem 1.4 (Woodall [8]). Let D be a digraph on n vertices, where n ≥ 3. If d+(x) + d−( y) ≥ n for every pair of distinct
vertices x, y ∈ V (D) satisfying xy ∉ A(D), then D contains an oriented cycle of length n.

In terms of the total degrees,we have the following result ofMeyniel (see [4] for a short proof). Here d(x) = d+(x)+d−(x).

Theorem 1.5 (Meyniel [6]). Let D be a digraph on n vertices (n ≥ 3) in which, for any two distinct vertices x and y, there is an
oriented path from x to y and from y to x. If d(x)+d( y) ≥ 2n−1 for any two vertices x and y such that xy ∉ A(D) and yx ∉ A(D),
then D contains an oriented cycle of length n.

Naturally, for bipartite digraphs one can expect degree bounds of roughly |D|/2 rather than |D|.

Theorem 1.6 (Amar and Manoussakis [1]). Let D be a bipartite digraph having colour classes X and Y such that |X | = a ≤ b =

|Y |. If δ+(D) ≥ (a + 2)/2 and δ−(D) ≥ (a + 2)/2, then D contains an oriented cycle of length 2a.

In case a = b, the above theorem gives a Dirac-type condition for hamiltonicity of a balanced bipartite digraph. In [1],
one also finds a characterization of all the bipartite digraphs that do not contain an oriented cycle of length 2a, but satisfy
δ+(D) ≥ (a + 1)/2 and δ−(D) ≥ (a + 1)/2.

As far as the Ore-type conditions for bipartite digraphs go, relatively little is known. The following result of [5] was the
main motivation for the present work. A bipartite digraph D, with colour classes X and Y such that |X | = a ≤ b = |Y |, is
said to satisfy condition Ak (k ≥ 0) when d+(u) + d−(v) ≥ a + k for all u and v such that uv ∉ A(D).

Theorem 1.7 (Manoussakis andMilis [5]). Let D be a bipartite digraph with colour classes X and Y such that |X | = a ≤ b = |Y |.
If D satisfies A2, then D contains an oriented cycle of length 2a.

The problemwith the above result is that condition A2 concerns all pairs of non-neighbouring vertices of D. In particular,
it concerns the pairs of vertices from the same colour class, which puts a very restrictive assumption onD. Tomake condition
A2 more meaningful, one thus needs to require that only the pairs of vertices from opposite colour classes be considered (as
in Definition 1.1 above).

We conjecture the following (and prove it for a = b in the next section).

Conjecture 1.8. Let D be a bipartite digraph with colour classes X and Y such that |X | = a ≤ b = |Y |. If

d+(u) + d−(v) >
a + b + 2

2
(1.1)

whenever u and v lie in opposite colour classes and uv ∉ A(D), then D contains an oriented cycle of length 2a.

Remark 1.9. We suspect that condition (1.1) is sharp, but we do not know how to generalise the following example of [1]
(Fig. 1) for arbitrarily large a. Here a = b = 3, and all the vertices have both positive and negative half-degree equal to 2.
Therefore, the sum of half-degrees of any pair of vertices is 4; i.e., equal to (a + b + 2)/2. However, no oriented cycle of
length 6 is contained in this digraph.

Fig. 1.

Remark 1.10. Note also that the bound (a + b + 2)/2 in (1.1) cannot be replaced, in general, by a bound of the type a + k,
for any k ∈ N. Indeed, for k ∈ N and any b ≥ a+ 2k+ 2, let D be the disjoint union of digraphs K ∗

1,k+2 and K ∗

a−1,b−k−2 (Fig. 2),
where K ∗

k,l denotes the complete bipartite digraph with colour classes of cardinalities k and l. Clearly D does not contain an
oriented cycle of length 2a, but the sum of half-degrees of non-neighbouring vertices from opposite colour classes is either
(a − 1) + (k + 2) = a + k + 1 or 1 + (b − k − 2) = b − k − 1, so in any case it is greater than or equal to a + k + 1.
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Fig. 2.

1.1. Notation and terminology

This paper is concerned with digraphs, in the sense of [3]. That is, the set A(D) of arcs of D consists only of ordered pairs
of vertices of D (i.e., D has no loops or multiple arcs). Given a digraph D, we denote by V (D) the set of its vertices, and the
number of vertices |V (D)| is the order of D. We write xy ∈ A(D) to say that an arc from a vertex x to a vertex y is contained
in D. If xy ∈ A(D), then x and y are called neighbours. For a set S ⊂ V (D), we denote by N+(S) the set of vertices dominated
by the vertices of S; i.e.,

N+(S) = {v ∈ V (D) : uv ∈ A(D) for some u ∈ S}.
Similarly, N−(S) denotes the set of vertices dominating the vertices of S; i.e.,

N−(S) = {v ∈ V (D) : vu ∈ A(D) for some u ∈ S}.
For S = {u}, we set d+(u) = |N+(u)| and d−(u) = |N−(u)|, which we call the positive and negative half-degree of u,
respectively.1 Further, δ+(D) and δ−(D) denote respectively the least positive and the least negative half-degrees of D. A
digraph obtained from D by removing the vertices of S and their incident arcs is denoted by D \ V (S).

For u ∈ V (D) and S ⊂ V (D), we set N+

S (u) (resp. N−

S (u)) to be the set of vertices of S dominated by (resp. dominating) u,
and denote its cardinality by d+

S (u) (resp. d−

S (u)).
An oriented cycle (resp. oriented path) on m vertices in D is denoted by Cm (resp. Pm). If the vertices are v1, . . . , vm,

we write Cm = [v1, . . . , vm] and Pm = (v1, . . . , vm). We will refer to them as simply cycles and paths (skipping the term
‘‘oriented’’), since their non-oriented counterparts are not considered in this note at all.

Let D be a bipartite digraph, with colour classes X and Y . We say that D is balanced if |X | = |Y |. Amatching from X to Y is
an independent set of arcs with origin in X and terminus in Y . If G is balanced, one says that such a matching is complete if it
consists of precisely |X | arcs. A path or cycle is said to be compatiblewith a matchingM from X to Y if its arcs are alternately
in M and in A(D) \ M .

2. Proof of the main result

In this section, we prove Theorem 1.2. For the rest of the paper,D denotes a balanced bipartite digraphwith colour classes
X and Y , where |X | = |Y | = a (hence |V (D)| = 2a). Recall condition A∗

k of Definition 1.1.

2.1. Lemmas

The proof of Theorem 1.2 is based on the following four simple lemmas and a remark.

Lemma 2.1. If D satisfies condition A∗

0 , then D contains a complete matching from X to Y .

Proof. By the König–Hall theorem (see, e.g., [2]), it suffices to show that |N+(S)| ≥ |S| for every set S ⊂ X . If N+(S) = Y ,
then there is nothing to show. Otherwise, we can choose vertices x ∈ S and y ∈ Y \ N+(S). Now xy ∉ A(D); therefore, by
assumption,

a ≤ d+(x) + d−( y) ≤ |N+(S)| + |X \ S| = |N+(S)| + a − |S|.

Hence |N+(S)| ≥ |S|, as required. �

Remark 2.2. SupposeD contains a completematchingM from X to Y , and let ( p1, . . . , ps) be a path inD compatible withM ,
and of maximal length among paths compatible with M . (We will say ‘‘maximal path compatible with M ’’ for short.) Denote
this path by P . It follows from maximality of P that p1 ∈ X and ps ∈ Y . Hence, in particular, s is even.

Indeed, if p1 ∈ Y , then p1 is dominated by a vertex x ∈ X \ V (P) such that xp1 ∈ M (by completeness of M). If x = ps,
then P is, in fact, a cycle and we can renumber its vertices so that p1 ∈ X (and hence ps ∈ Y ). Otherwise, (x, p1, . . . , ps) is
a path compatible with M of length greater than P; a contradiction. Similarly, if ps ∈ X (and psp1 ∉ M) then there exists
y ∈ Y \ V (P) such that psy ∈ M , again contradicting the maximality of P .

1 Also known in literature as the outdegree and indegree.
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Lemma 2.3. Assume that D satisfies condition A∗

1 , and the order of D is at least 4 (i.e., a ≥ 2). Choose M a complete matching
from X to Y and P a maximal path compatible with M. Write P = ( p1, . . . , ps). If psp1 ∈ A(D), then D contains an oriented cycle
C2a compatible with M.

Proof. We will show that s = 2a. For a proof by contradiction, suppose otherwise, so Y \ V (P) ≠ ∅.
If ypi ∈ A(D) for some y ∈ Y \ V (P) and pi ∈ V (P), then

( y, pi, pi+1, . . . , ps, p1, . . . , pi−1)

is a path compatible with M and longer than P; a contradiction. We can thus assume that no vertex of P is dominated by
a vertex from Y \ V (P). Hence d−( pi) ≤ |V (P)|/2 = s/2 for all pi ∈ V (P), and d+( y) ≤ |X \ V (P)| = a − s/2 for all
y ∈ Y \ V (P). Therefore, for any pi ∈ X ∩ V (P) and y ∈ Y \ V (P), we have

a + 1 ≤ d+( y) + d−( pi) ≤ (a − s/2) + s/2 = a.

The contradiction proves that Y \ V (P) = ∅, and hence s = 2a. �

Lemma 2.4. Assume that D satisfies condition A∗

k , where k ≥ 1, and the order of D is at least 4 (i.e., a ≥ 2). If M is a complete
matching from X to Y , then there exists l, l ≥ a + k, such that D contains an oriented cycle Cl compatible with M.

Proof. Let P be a maximal path compatible withM . Write P = ( p1, . . . , ps). If psp1 ∈ A(D), then, by Lemma 2.3, D contains
a cycle C2a compatible with M . Suppose then that psp1 ∉ A(D). Recall that p1 ∈ X and ps ∈ Y (Remark 2.2). By maximality
of P , vertex p1 is not dominated by any y ∈ Y \ V (P), and vertex ps does not dominate any x ∈ X \ V (P). Therefore, by
assumption,

a + k ≤ d+( ps) + d−( p1) = d+

V (P)( ps) + d−

V (P)( p1),

and hence d+

V (P)( ps) ≥ (a + k)/2 or else d−

V (P)( p1) ≥ (a + k)/2.
In the first case, let i0 = min{i: pspi ∈ A(D)}. Then [pi0 , pi0+1, . . . , ps] is a cycle in D compatible with M and of length at

least 2d+

V (P)( ps), which is greater than or equal to a+k. In the second case, let j0 = max{ j: pjp1 ∈ A(D)}. Then [p1, p2, . . . , pj0 ]
is a required cycle of length at least 2d−

V (P)( p1), which is greater than or equal to a + k. �

Lemma 2.5. Let M be a complete matching from X to Y in D. Let C be a maximal cycle in D compatible with M, and let
(u1, v1, . . . , up, vp) be a path in D \ V (C), denoted by P, compatible with M, where ui ∈ X and vi ∈ Y . If d−

V (C)(u1) > 0
and d+

V (C)(vp) > 0, then d+

V (C)(vp) + d−

V (C)(u1) ≤ m − p + 1, where m is half the length of C.

Proof. Write C = [x1, y1, . . . , xm, ym], with xν ∈ X and yν ∈ Y (1 ≤ ν ≤ m). By assumption, there exist yi and xj on C such
that yiu1 ∈ A(D) and vpxj ∈ A(D). Let (xi+1, yi+1, . . . , xj−1, yj−1) be the path, denoted by P ij, between yi and xj on C , traversed
according to the orientation of C; of order, say, 2l. Then l ≥ p, because otherwise the cycle [vp, xj, . . . , yi, u1, v1, . . . , up]

would be strictly longer than C .
We can choose the yi and xj so that u1 is not dominated by any yν ∈ V (P ij), and that vp does not dominate any xν ∈ V (P ij).

Note that for every pair of vertices ys, xs+1 from V (C) \ V (P ij) at most one of the arcs ysu1 and vpxs+1 belongs to A(D), for
else D would contain a cycle

[vp, xs+1, ys+1, . . . , xs, ys, u1, v1, . . . , up]

strictly longer than C . There is precisely m − l − 1 of such pairs. Accounting for the arcs yiu1 and vpxj, we get the required
estimate

d+

V (C)(vp) + d−

V (C)(u1) ≤ (m − l − 1) + 2 ≤ m − p + 1. �

2.2. Proof of Theorem 1.2

Assume then that D satisfies condition A∗

2 . ChooseM a complete matching from X to Y , and an oriented cycle C , of length
2m, compatible with M in such a way that C is of maximal length among all the oriented cycles in D compatible with some
complete matching from X to Y . Write C = [x1, y1, . . . , xm, ym], with xν ∈ X and yν ∈ Y , 1 ≤ ν ≤ m. By Lemma 2.4,
2m ≥ a + 2.

We want to show that m = a. Suppose otherwise. Then we can choose a path P , of order 2p, contained in D \ V (C),
compatible with M and of maximal length among such paths in D \ V (C). Write P = (u1, v1, . . . , up, vp), with uν ∈ X and
vν ∈ Y , 1 ≤ ν ≤ p (cf. Remark 2.2). Let R denote the remaining vertices of D; i.e., R = V (D) \ (V (C)∪ V (P)). Write |R| = 2r
for some r ≥ 0. Then

a = m + p + r and 2p + 2r = 2a − 2m ≤ a − 2.
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The remainder of the proof splits into several cases according to the properties of d−

V (C)(u1) and d+

V (C)(vp). Note that, by
maximality of P , we have d−

V (R)(u1) = 0 and d+

V (R)(vp) = 0.

Case A: d−

V (C)(u1) = 0.

Subcase A.1: d+

V (C)(vp) > 0.
Let then xi ∈ V (C) be such that vpxi ∈ A(D). It follows from maximality of C that d+

V (P)( yi−1) = 0. In particular,
yi−1u1 ∉ A(D), and hence d+( yi−1) + d−(u1) ≥ a + 2. Therefore

a + 2 ≤ d+( yi−1) + d−(u1) = (d+

V (C)( yi−1) + d+

V (R)( yi−1)) + d−

V (P)(u1)

≤ m + r + p = a;

a contradiction.
Subcase A.2: d+

V (C)(vp) = 0.
If vpu1 ∉ A(D), then, by assumption,

a + 2 ≤ d+(vp) + d−(u1) = d+

V (P)(vp) + d−

V (P)(u1) ≤ 2( p − 1) < a;

a contradiction. Therefore vpu1 ∈ A(D), and so P is, in fact, a cycle. Hence d−

V (R)(ui) = 0 and d+

V (R)(vj) = 0 for all ui, vj ∈ V (P),
by maximality of P .

Suppose now that d+

V (C)(vj) = 0 for all vj ∈ V (P). Then, for any such vj and xi ∈ V (C), we get

a + 2 ≤ d+(vj) + d−(xi) = d+

V (P)(vj) + (d−

V (C)(xi) + d−

V (R)(xi))

≤ p + m + r = a;

a contradiction. Therefore there exist xi ∈ V (C) and vj ∈ V (P) such that vjxi ∈ A(D). It follows, as in Subcase A.1, that
yi−1u1 ∉ A(D), and hence

a + 2 ≤ d+( yi−1) + d−(u1) = (d+

V (C)( yi−1) + d+

V (R)( yi−1)) + d−

V (P)(u1)

≤ m + r + p = a;

a contradiction.
Case B: d−

V (C)(u1) > 0.

Subcase B.1: d+

V (C)(vp) = 0.
Let then yi ∈ V (C) be such that yiu1 ∈ A(D). It follows from maximality of C that d−

V (P)(xi+1) = 0. In particular,
vpxi+1 ∉ A(D), and hence

a + 2 ≤ d+(vp) + d−(xi+1) = d+

V (P)(vp) + (d−

V (C)(xi+1) + d−

V (R)(xi+1))

≤ p + m + r = a;

a contradiction.
Subcase B.2: d+

V (C)(vp) > 0.
By Lemma 2.5, d+

V (C)(vp) + d−

V (C)(u1) ≤ m − p + 1. If vpu1 ∉ A(D), then

a + 2 ≤ d+(vp) + d−(u1) = (d+

V (C)(vp) + d−

V (C)(u1)) + (d+

V (P)(vp) + d−

V (P)(u1))

≤ (m − p + 1) + 2( p − 1) = m + p − 1 < a;

a contradiction. Therefore vpu1 ∈ A(D), and so P is, in fact, a cycle.
We shall show that R = ∅ in this case. Suppose otherwise, and let P ′ be a maximal path in R compatible with M . Write

P ′
= ( p1, . . . , pt). Then p1 ∈ R∩ X and pt ∈ R∩ Y (see Remark 2.2). Since P is a maximal cycle in D \ V (C) compatible with

M , then d−

V (P)( p1) = d+

V (P)( pt) = 0. Moreover, d+

V (C)( pt) + d−

V (C)( p1) ≤ m, because for every pair of vertices yi, xi+1 on C at
most one of the arcs yip1 and ptxi+1 exists (by maximality of C). Hence

d+( pt) + d−( p1) = (d+

V (C)( pt) + d−

V (C)( p1)) + (d+

V (R)( pt) + d−

V (R)( p1)) ≤ m + 2r,

and so

2a + 4 ≤ (d+( pt) + d−(u1)) + (d+(vp) + d−( p1))

≤ (m + 2r) + (d+

V (C)(vp) + d−

V (C)(u1)) + (d+

V (P)(vp) + d−

V (P)(u1))

≤ (m + 2r) + (m − p + 1) + 2p = 2m + 2r + p + 1 ≤ 2m + 2r + 2p = 2a;

a contradiction. We have thus shown that r = 0, and hence a = m + p.
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As in the proof of Lemma 2.5, there exist xj0 and yi0 on C such that yi0u1 ∈ A(D) and vpxj0 ∈ A(D). Let P i0j0 be the
path between yi0 and xj0 on C , traversed according to the orientation of C; of order, say, 2l. Write P i0j0 = (xi0+1,
yi0+1, . . . , xj0−1, yj0−1). Then l ≥ p, because otherwise the cycle [vp, xj0 , . . . , yi0 , u1, v1, . . . , up] would be strictly longer
than C . Further, we can choose the xj0 and yi0 so that

yνu1 ∉ A(D) for all yν ∈ P i0j0 and vpxν ∉ A(D) for all xν ∈ P i0j0 . (2.1)

As in the proof of Lemma 2.5, it follows that d+

V (C)(vp) + d−

V (C)(u1) ≤ m − l + 1, and hence

d+(vp) + d−(u1) = (d+

V (C)(vp) + d−

V (C)(u1)) + (d+

V (P)(vp) + d−

V (P)(u1))

≤ (m − l + 1) + 2p = a − l + p + 1. (2.2)

By (2.1), we have vpxi0+1 ∉ A(D) and yj0−1u1 ∉ A(D). Hence, and by (2.2),

2a + 4 ≤ (d+(vp) + d−(xi0+1)) + (d+( yj0−1) + d−(u1)) ≤ (d+( yj0−1) + d−(xi0+1)) + (a − l + p + 1),

and thus

d+( yj0−1) + d−(xi0+1) ≥ a + l − p + 3 = m + l + 3. (2.3)

Note that d+

V (P)( yj0−1) = d−

V (P)(xi0+1) = 0, which follows from the maximality of C and the fact that P is a cycle. Therefore
d+( yj0−1) = d+

V (C)( yj0−1) and d−(xi0+1) = d−

V (C)(xi0+1), and so, by (2.3), we get

d+

V (C)( yj0−1) + d−

V (C)(xi0+1) ≥ m + l + 3 > (m − l − 1) + 2l + 2. (2.4)

Since yj0−1 and xi0+1 have together at most 2l+ 2 neighbours in V (P i0j0) ∪ {yi0} ∪ {xj0}, then (2.4) implies that there exists a
pair of vertices ys, xs+1 in V (C) \ (V (P i0j0) ∪ {yi0} ∪ {xj0}) such that ysxi0+1 ∈ A(D) and yj0−1xs+1 ∈ A(D). But then D contains
a Hamiltonian cycle

[u1, . . . , vp, xj0 , . . . , ys, xi0+1, . . . , yj0−1, xs+1, . . . , yi0 ].

This contradiction completes the proof of the theorem. �

Remark 2.6. Note that the proof of Theorem 1.2, in fact, goes under considerably weaker assumptions. Namely, it suffices to
assume that the digraph D contains a complete matching from X to Y , and condition A∗

2 is satisfied for every pair of vertices
u and v such that u ∈ X, v ∈ Y and vu ∉ A(D). That is, we do not need to require any degree condition on pairs of vertices
u and v such that u ∈ X, v ∈ Y and uv ∉ A(D). Of course, symmetrically, it suffices to assume a complete matching from Y
to X and condition A∗

2 satisfied for every pair of vertices u and v such that u ∈ X , v ∈ Y and uv ∉ A(D).
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