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GLOBALLY SUBANALYTIC ARC-SYMMETRIC SETS

JANUSZ ADAMUS

Abstract. We show that a globally subanalytic set can be realized as the
image of a semianalytic set by a finite composite of global blowings-up. As
an application, we prove that a globally subanalytic arc-symmetric set of pure
dimension is the image under such a composite of a real analytic manifold
of the same dimension, and derive basic geometric properties of the class of
globally subanalytic arc-symmetric sets. As another application, we show that
globally subanalytic arc-analytic functions are blow-analytic in the sense of
Kuo.

1. Introduction

The purpose of this article is to initiate a systematic study of a certain important
class of subanalytic sets, which are closed under analytic continuation. Let us begin
by recalling some basic notions. A set X ⊂ Rn is called semianalytic, when every
point x ∈ Rn has an open neighbourhood U such that X ∩ U is a finite union of
sets of the form

{y ∈ U : f(y) = 0, g1(y) > 0, . . . , gk(y) > 0} ,
where f, g1, . . . , gk are real analytic functions on U . A set Y ⊂ Rn is called sub-
analytic, when for every point x ∈ Rn there are an open neighbourhood U and a
bounded semianalytic set X ⊂ Rn+m, for some m, such that Y ∩U = π(X), where
π : Rn+m → Rn is the coordinate projection.

For any n ∈ Z+, let vn : Rn → Rn denote the semialgebraic map

(x1, . . . , xn) 7→
(

x1√
1 + x21

, . . . ,
xn√
1 + x2n

)
.

We say that a set E ⊂ Rn is globally subanalytic if its image vn(E) is subanalytic
in Rn. Since vn is an analytic isomorphism onto the bounded open set (−1, 1)n,
it follows that globally subanalytic sets are subanalytic. The importance of the
class of globally subanalytic sets stems from the fact that they form an o-minimal
structure (see Section 2 for details).

Finally, a set E ⊂ Rn is called arc-symmetric, when for every real analytic arc
γ : (−1, 1) → Rn with Int(γ−1(E)) 6= ∅, one has γ((−1, 1)) ⊂ E.

Throughout this paper we shall denote by AR(Rn) the class of globally sub-
analytic arc-symmetric subsets of Rn. This class includes, in particular, the arc-
symmetric semialgebraic subsets of Rn (introduced by Kurdyka [12]). Our main
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2 JANUSZ ADAMUS

goal here is to show that certain fundamental analytic and geometric properties of
the latter class can be generalized to AR(Rn). This is the content of Sections 4
and 5 of the paper. In fact, as shown in Section 5, many of the arguments of [12]
can be easily generalized to the globally subanalytic setting, thanks to a special
representation of globally subanalytic sets developed in Section 4.

Our Theorem 4.1 gives a positive answer, for globally subanalytic sets, to a
long standing question in real analytic geometry. Namely, it shows that a globally
subanalytic set can be realized as the image of a semianalytic set by a finite com-
posite of global blowings-up. This result, in turn, relies on reduction of maximum
fibre dimension of a generically finite complex analytic map around a compact set,
proved in Section 3. This is a rather delicate point, because as shown by examples
of Bierstone and Parusiński [6], in general, an analytic map does not admit such a
reduction without the compactness assumption.

In the final section of the paper, we consider the class of functions that are
analytic along each analytic arc and have globally subanalytic graphs. Theorem 6.2
gives a positive answer to another long standing question, showing that every such
function is blow-analytic in the sense of Kuo [11]. Finally, in Theorem 6.3, we
recover – in the globally subanalytic setting – a fundamental observation of Kurdyka
that arc-symmetric sets are zero-sets of arc-analytic functions modulo a subset of
strictly smaller dimension.

2. Preliminaries

Given the local nature of their definitions, the notions of semianalytic and sub-
analytic sets can be easily generalized to the setting of real analytic manifolds.
We refer the reader to [3] for the basic properties of semianalytic and subanalytic
sets (and an extensive bibliography of the subject). Here, let us only recall the
statement of the following fundamental result of Hironaka.

Theorem 2.1 (Uniformization theorem). Let M be a real analytic manifold and let
E be a closed subanalytic subset of M . Then, there exists a real analytic manifold
N , of dimension dimN = dimE, and a proper real analytic mapping ϕ : N →M ,
such that ϕ(N) = E.

As mentioned in the Introduction, the globally subanalytic sets form an o-
minimal structure (Sn)n∈N. This means, by definition, that for every n ∈ N, Sn

is a boolean algebra of subsets of Rn, X ∈ Sn implies X × R,R × X ∈ Sn+1,
{(x1, . . . , xn) : x1 = xn} ∈ Sn, X ∈ Sn+1 implies π(X) ∈ Sn, where π : Rn+1 → Rn

is the coordinate projection, the set {(x, y) ∈ R2 : x < y} is in S2, and the only
elements of S1 are the finite unions of open intervals and singletons. O-minimality
is responsible for several finiteness properties that we use in Section 5. For details
on o-minimal structures, see [7].

Our proof of Theorem 4.1 involves associating a morphism of complex analytic
spaces to a given real analytic map. A natural setting for this construction is that
of complex analytic spaces equipped with antiinvolutions. Our main reference here
is [9]. Very briefly, an antiinvolution on a complex analytic space (X,OX) is a
morphism σ : (X,OR

X) → (X,OR

X), such that σ2 = id and σ induces a morphism of

R-ringed spaces (X,OX) → (X,OX), where (X,OR

X) is the underlying real analytic

space of (X,OX) and OX is the sheaf of antiholomorphic sections.
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Given a complex analytic space (X,OX) with an antiinvolution σ, the topological
space Xσ = {x ∈ X : σ(x) = x} with the natural structure sheaf OXσ forms an
R-ringed space called the fixed part space of (X, σ). By [9, Thm. II.4.10], (Xσ,OXσ)
is a real analytic space and a closed subspace of (X,OR

X).

Conversely, let (X,OX) denote a real analytic space, and let (X̃,OX̃) be its

complexification. By [9, Thm. III.3.10], there exists a Stein open neighbourhood Ỹ

of X in X̃ and an antiinvolution σ on (Ỹ ,OX̃ |Ỹ ) (induced by the autoconjugation

of X̃), whose fixed part space is (X,OX).

3. Reduction of maximum fibre dimension of a generically finite

complex analytic map around a compact set

In this section, we prove the key technical ingredient of our global smoothing
result, Theorem 3.1 below. Our proof was inspired by [13, Cor. 1.2].

Let ϕ : X → Y be a morphism of complex analytic spaces, where Y is non-
singular of dimension n. Let σX and σY be antiinvolutions ofX and Y , respectively,
which are compatible with ϕ (i.e., σY ◦ϕ = ϕ◦σX). Let XσX , Y σY denote the fixed
parts of (X, σX) and (Y, σY ), respectively, and assume that they are non-empty.

Let K be a compact subanalytic subset of Y σY of positive (real) dimension d,
and let U be a relatively compact open neighbourhood of K in Y σY . Let L =
XσX ∩ ϕ−1(K) be the fixed part of ϕ−1(K), and suppose that dimR L = dimRK
and ϕ|L : L → K is a proper mapping. It follows that the generic fibre dimension
of ϕ|L is zero. Let k ∈ N denote the maximum fibre dimension of ϕ|L, and suppose
that k > 0.

Theorem 3.1. Under the above assumptions, there are a relatively compact open
neighbourhood V of U in Y , a relatively compact open neighbourhood W of L in X,
for which ϕ(W ) ⊂ V and the maximum fibre dimension of ϕ|W is k, and a finite
composite of blowings-up of coherent ideal sheaves π : V ′ → V , such that V ′ is
non-singular, π is an isomorphism over the complement of a subanalytic set Σ with
dim(Σ∩K) < d, and the strict transform ϕ′ : W ′ → V ′ of ϕ|W has maximum fibre
dimension strictly less than k.

Proof. By Zariski upper semicontinuity of fibre dimension (Cartan-Remmert The-
orem), there is a relatively compact open neighbourhood W of L in X , such that
the maximum fibre dimension of ϕ|W : W → Y is equal to k. Let Zk(W ) = {ξ ∈
W : fbdξϕ = k} denote the locus of maximum fibre dimension. Then, Zk(W ) is a
complex analytic subset of W and the fibre dimension of ϕ is constant on Zk(W ).

Suppose for a moment that Zk(W ) is irreducible. By the Remmert Rank Theo-
rem, for every η ∈ K ∩ ϕ(Zk(W )) and for every ξ ∈ (ϕ|L)−1(η) ∩Zk(W ), there are
an open neighbourhood W η,ξ of ξ in Zk(W ) and an open neighbourhood V η,ξ of η
in Y , such that ϕ(W η,ξ) ∩ V η,ξ is a complex analytic subset of V η,ξ (of dimension
dimξ Zk(W )− k). By compactness of the fibre (ϕ|L)−1(η), there are finitely many
ξ1, . . . , ξs ∈ ϕ−1(η) such that W η,ξ1 ∪ · · · ∪ W η,ξs is an open neighbourhood of
(ϕ|L)−1(η)∩Zk(W ) in Zk(W ). Set V η = V η,ξ1 ∩ · · · ∩ V η,ξs . Then, after shrinking
W if needed, ϕ(Zk(W )) ∩ V η = ϕ(W η,ξ1 ∪ · · · ∪W η,ξs) ∩ V η is a complex analytic
subset of V η.

Next, consider an arbitrary η ∈ K\ϕ(Zk(W )). Since the compact sets L∩Zk(W )
and (ϕ|L)−1(η) are disjoint, there are an open neighbourhood V η of η in Y and
an open neighbourhood W η of L in W such that V η ∩ ϕ(Zk(W ) ∩ W η) = ∅,
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and so ϕ(Zk(W ) ∩W η) ∩ V η is analytic in V η. Finally, by compactness of L, for
every η ∈ U \ K, there are an open neighbourhood V η of η in Y and an open
neighbourhood W η of L in W such that V η ∩ ϕ(W η) = ∅.

Now, by compactness of U , there are finitely many η1, . . . , ηs ∈ U such that U
is contained in (the relatively compact) V := V η1 ∪ · · · ∪ V ηs . Replacing W with
the intersection of the correspondingW η1 , . . . ,W ηs , we obtain that ϕ(W ) ⊂ V and
Z = ϕ(Zk(W )) is a complex analytic subset of V . Since the generic fibre dimension
of ϕ|L is zero, it follows that dimR(Z ∩K) < d.

In the general case, by relative compactness of W , the analytic set Zk(W ) has
finitely many irreducible components, say Z1

k , . . . , Z
r
k. ShrinkingW and V if needed,

by the above argument, we may thus assume that each Zj := ϕ(Zj
k) is a complex

analytic subset of V . Set Z := Z1 ∪ · · · ∪ Zr, and suppose it is defined in V by a
coherent ideal sheaf I.

By [9, Thm. IV.1.4], L has in X a fundamental system of Stein σX -invariant open
neighbourhoods, and so we may assume that W ⊂ Cm for some m ∈ N. Then, by
identifying W with the graph of ϕ, we may further assume that W ⊂ V ×Cm and
ϕ :W → V is the coordinate projection.

Since k is the maximum fibre dimension of ϕ on W , there exists for every ξ ∈W
an open neighbourhood W ξ and a generic linear projection pξ : Cm → Ck such
that the mapping (ϕ, pξ) :W ξ → V ξ ×Ωξ is finite, where V ξ (resp. Ωξ) is an open
neighbourhood of ϕ(ξ) in V (resp. of pξ(ξ) in Ck). By compactness of L, one can
choose an open polydisc Λ in Cm and a single linear projection p : Cm → Ck such
that L ⊂ W ∩ Λ and p = pξ for all ξ ∈ W ∩ Λ. Then, by the Remmert Proper

Mapping Theorem, W̃ := (ϕ, p)(W ∩ Λ) is an analytic subset of V × Ω, where
Ω = p(Λ).

Let q : V × Ω → V be the projection. We have, for any ξ ∈W ,

(3.1) ϕ(ξ) ∈ Z ⇐⇒
(
q|

W̃

)−1
(ϕ(ξ)) = Ω ,

and hence

(3.2) W̃ ⊃ Z × {τ}, for any τ ∈ Ω .

Now, for ξ ∈ W , let (η, τ) ∈ V × Ω denote the image of ξ by (ϕ, p) and let
Jξ denote the ideal in OV,η generated by (germs at η of) all the Fβ(y) over all

F =
∑

β∈Nk

Fβ(y)(t− τ)β , (y, t) ∈ V ×Ω, whose germs F(η,τ) vanish on W̃(η,τ). Note

that Fβ(y) = 0 for all Fβ as above if and only if q−1(y) = Ω. By (3.1), the latter

implies that y ∈ Z, and hence by Nullstellensatz, Iη ⊂
√
J ξ.

By compactness of L, we can choose finitely many ξ1, . . . , ξs ∈ L ∩ Zk(W ) such
that

⋃s
j=1W

ξj is an open neighbourhood of L∩Zk(W ) in W . By (3.2) and coher-

ence of the full sheaf of ideals I
W̃

in O(V × Ω), Jξj extends along Z × {τj} to a

coherent ideal Jj over Z, such that (Jj)ϕ(ξ) = Jξ for every ξ ∈ Z×{τj}. Extending
OV /Jj by zero outside of Z, we obtain that Jj is a coherent ideal sheaf in O(V ).

Since
√
(Jj)η ⊃ Iη, for all η ∈ V , it follows by compactness of L that there is an

exponent pj ∈ N such that Ipj ⊂ Jj over some relatively compact neighbourhood
of U in V .
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Let now JZ :=

s∏

j=1

Jj and let π′ : V ′ → V be the blowing-up of the ideal JZ .

Note that Ip1+···+ps ⊂ JZ , whence I ⊂
√
JZ and π′ is an isomorphism over V \Z.

Consider the fibre product diagram

W̃ ×V V ′ −−−−→ W̃
y

yq|
W̃

V ′ π′

−−−−→ V

and let W̃ ′ ⊂ W̃ ×V V
′ denote the strict transform of W̃ by π′. Fix j ∈ {1, . . . , s},

let η = ϕ(ξj) and let η′ be an arbitrary point in π′−1(η) ∩ V ′. Let ξ′ = (ξj , η
′) ∈

W̃ ′. The ideal (π′∗JZ)η′ being invertible, so is (π′∗Jj)η′ . Therefore, (π′∗Jj)η′ is
generated by a single element Fβ0

◦ π′, where by construction, Fβ0
is a coefficient

in some F (y, t) =
∑

β Fβ(y)(t− τj)
β with F (y, t) ∈ I

W̃
(V ξj × Ωξj ). Now, for y′ in

an open neighbourhood V η′

of η′,

F (π′(y′), t) =
∑

β

Fβ(π
′(y′))(t− τj)

β = Fβ0
(π′(y′)) · F ′(y′, t) ,

where

F ′(y′, t) =
∑

β

F ′
β(y

′)(t− τj)
β , and F ′

β =
Fβ ◦ π′

Fβ0
◦ π′

.

One can readily see that W̃ ′ ∩ (V η′ × Ωξj ) ⊂ F ′−1(0) and F ′ doesn’t vanish iden-

tically on any fibre of the projection V η′ × Ωξj → V η′

. Let ϕ′ : W ′ → V ′ be
the strict transform of ϕ by π′, and let δ : W ′ → W be the canonical projection.
From the above and since the union of all the V η′

contains the strict transform
of V ξj , it follows that the fibre dimension of ϕ′ on the strict transform of W ξj is
strictly less than k. Since j was arbitrary and the strict transforms of W ξj cover
δ−1(L ∩ Zk(W )) ∩W ′, it follows that the maximum fibre dimension of the whole
ϕ′ is strictly less than k in a neighbourhood of δ−1(L) ∩W ′.

Finally, if V ′ were singular, we define π := π′ ◦ π′′, where π′′ : V ′′ → V ′ is
a resolution of singularities of (a relatively compact open neighbourhood of the
strict transform of U in) V ′. After shrinking the strict transform W ′′ of W ′ by
π′′, if needed, the strict transform ϕ′′ : W ′′ → V ′′ of ϕ′ by π′′ has the required
properties. �

4. Global smoothing of a globally subanalytic arc-symmetric set

As an immediate application of Theorem 3.1, we show that a globally subanalytic
set can be realized as the image under a global modification of a semianalytic set,
which admits analytic Zariski closure of the same dimension. As an intermediate
step we prove the following.

Theorem 4.1. Let E be a compact subanalytic subset of a real analytic manifold
M . Assume dimE = d > 0. Let U be a relatively compact open subanalytic
neighbourhood of E in M . Then, there are a closed subanalytic subset Σ of U of
dimension less than d, an analytic manifold M ′, a smooth real analytic subset Z
of M ′ of dimension d, a compact semianalytic subset T of Z of dimension d, and
a proper analytic mapping π : M ′ → U , such that π is a composite of finitely
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many (restrictions of) blowings-up of coherent ideals, π is an isomorphism outside
π−1(Σ), and π−1(E) = T .

Proof. Given a subanalytic E ⊂ M as above, there are, by Theorem 2.1, a real
analytic manifold N , of dimension dimN = d = dimE, and a proper real analytic
mapping ψ : N → M , such that ψ(N) = E. Let X , Y , ϕ denote the complexi-
fications of N , M , and ψ, respectively. Let σX , σY denote the antiinvolutions of
X and Y given by the autoconjugations. Then, σY ◦ ϕ = ϕ ◦ σX , and N = XσX ,
M = Y σY are the fixed parts of (X, σX) and (Y, σY ).

By repetitive use of Theorem 3.1, we obtain a relatively compact open neigh-
bourhood V of U in Y , an open neighbourhood W of N in X , complex analytic
spaces W ′′ and V ′′, a complex analytic map ϕ′′ : W ′′ → V ′′, and a finite com-
posite of blowings-up of coherent ideal sheaves π′′ : V ′′ → V , all such that V ′′ is
non-singular, π′′ is an isomorphism over the complement of a subanalytic set Σ
with dim(Σ ∩ E) < d, ϕ′′ is the strict transform of ϕ|W : W → V by π′′, and the
non-empty fibres of ϕ′′ are zero-dimensional.

Let E′′ be the real part of V ′′ ∩ π′′−1(E) and let N ′′ be the real part of W ′′ ∩
π′′−1(N). Then, E′′ is a compact subanalytic subset of the real part of V ′′, N ′′ is
a real analytic subspace of the real part of W ′′, and E′′ = ϕ′′(N ′′). Note that E′′

is, in fact, semianalytic, as the image of a finite morphism of real analytic spaces
([10, Lem. 7.3.6]).

By the Remmert Rank Theorem, every ξ ∈ W ′′ has an open neighbourhood,
whose image by ϕ′′ is an analytic subset of an open neighbourhood of ϕ′′(ξ). By
relative compactness of U ′′ := π′′−1(U) ∩ V ′′, as in the first part of the proof of
Theorem 3.1, we may assume that Z ′′ := ϕ′′(W ′′) is a complex analytic subset of V ′′

(after shrinking V ′′ around U ′′ and W ′′ around N ′′ if needed). Clearly, E′′ ⊂ Z ′′,
and dimRE

′′ = dimRN
′′ = dimCW

′′ = dimC Z
′′.

By resolution of singularities (e.g., [5, Thm. 1.6]), there is a finite composite of
blowings-up with smooth centers π′ : V ′ → V ′′ resolving the singularities of Z ′′ in
V ′′. Moreover, π′ can be chosen such that it commutes with the autoconjugations
([10, pp. 4.24-4.28]). Let M ′ be the real part of V ′, Z the real part of the strict
transform Z ′ of Z ′′, let T := Z ∩ π′−1(E′′), and let π :M ′ → U be the real part of
π′′ ◦ π′. Then, M ′, Z, T , and π have all the required properties. �

We are now ready to prove our global smoothing of pure-dimensional globally
subanalytic arc-symmetric sets.

Corollary 4.2. Suppose E ∈ AR(Rn) is of dimension d > 0. Then, there exist a
proper modification σ : M ′ → Rn of Rn in a closed subanalytic set Σ of dimension
less than d, a smooth d-dimensional real analytic set Z ⊂ M ′, and a semianalytic
subset S of Z of dimension d, such that σ = v−1

n ◦ π, π is a composite of finitely
many (restrictions of) blowings-up of coherent ideals, π is an isomorphism outside
π−1(vn(Σ)), and S = σ−1(E). If E is pure-dimensional, then S is non-singular.
Moreover, E ∩Σ ∈ AR(Rn).

Proof. Given E as above, the set vn(E) ⊂ [−1, 1]n is a compact subanalytic set in
Rn, of positive dimension d. Let U be a relatively compact open neighbourhood
of [−1, 1]n in Rn. By Theorem 4.1, there are an analytic manifold M ′′, a smooth
real analytic subset Z ′ of M ′′ of dimension d, a compact semianalytic subset T of
Z ′ of dimension d, and a proper analytic mapping π : M ′′ → U , such that π is
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a composite of finitely many (restrictions of) blowings-up of coherent ideals, and

T = π−1(vn(E)).

Since the frontier F := vn(E) \ vn(E) is a closed subanalytic set of dimension
strictly less than d and F ⊂ [−1, 1]n \ (−1, 1)n, then Z := Z ′ \ π−1(F ) is a smooth
d-dimensional real analytic subset of the manifold M ′ :=M ′′ \ π−1(F ). (Note that
up to this point one does not need the arc-symmetry of E.)

Set S := T \π−1(F ). We claim that, if E is pure-dimensional, then S is the union

of certain connected components of Z. Indeed, for any connected component S̃ of S
there is a connected component Z̃ of Z such that S̃ ⊂ Z̃. Now, dim S̃ = d = dim Z̃
and S̃ is subanalytic and arc-symmetric. Hence S̃ = Z̃, by Lemma 5.3 below.

To prove the last claim of the corollary, by induction, it suffices to show that
if π : M ′ → M is a blowing-up with subanalytic arc-symmetric center C ⊂ M ,
and X is an arc-symmetric subset of M ′, then π(X) ∪ C is arc-symmetric. Let
then γ : (−1, 1) → M be an analytic arc such that Int(γ−1(π(X) ∪ C)) 6= ∅.
If Int(γ−1(C)) 6= ∅, then γ((−1, 1)) ⊂ C, by arc-symmetry. Suppose then that
γ((−1, 1))∩C consists of isolated points (which then must be the case, by subana-
lyticity of γ−1(C)). Let γ̃ : (−1, 1) →M ′ be the lifting of γ (i.e., γ(t) = π(γ̃(t)) for
t ∈ (−1, 1)). Then, Int(γ̃−1(X)) 6= ∅, and hence γ̃((−1, 1)) ⊂ X , by arc-symmetry.
Consequently, γ((−1, 1)) = π(γ̃((−1, 1))) ⊂ π(X), which completes the proof. �

5. Arc-symmetric globally subanalytic sets

We now turn to the study of the class of arc-symmetric sets within the family of
globally subanalytic subsets of Rn. Let us begin with a few immediate observations.

Remark 5.1.

(1) Every E ∈ AR(Rn) is a closed set (in the Euclidean topology on Rn). This
follows from the subanalytic Curve Selection Lemma (see, e.g., [8, 1.17]).

(2) As mentioned in Section 1, AR(Rn) contains all arc-symmetric semialge-
braic subsets of Rn.

(3) AR(Rn) contains globally subanalytic real analytic sets in Rn. Indeed, real
analytic sets are arc-symmetric.

Theorem 5.2. There exists a noetherian topology on Rn, whose closed sets are
precisely the elements of AR(Rn).

The theorem follows easily from the two lemmas below. We shall call the above
noetherian topology the AR-topology on Rn. The elements of AR(Rn) will hence-
forth be called AR-closed sets.

Lemma 5.3. Let Γ be a connected, smooth, subanalytic subset of Rn, and let
E ⊂ Rn be subanalytic and arc-symmetric. Then

Γ 6⊂ E =⇒ dim(Γ ∩E) < dimΓ .

The proof of Lemma 5.3 is identical to that of [12, 1.6], as it only relies on
basic topological properties of o-minimal structures. We include it for the reader’s
convenience.

Proof. Suppose that dimΓ ∩ E = dimΓ = k. Then, IntΓ(Γ ∩ E) 6= ∅, so one

can pick a point a ∈ IntΓ(Γ ∩E). Let then U be an open chart around a in Γ
and let ϕ : U → Bk be an analytic isomorphism onto the open unit ball in Rk

such that ϕ(a) = 0. We have ϕ(IntΓ(Γ ∩ E)) ∩ Bk 6= ∅, and hence can pick a
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b ∈ ϕ(IntΓ(Γ ∩ E)) ∩ Bk. Let now x ∈ Bk be arbitrary and let γ̃ : [−1, 1] → Bk be
an analytic arc with γ̃(−1) = b, γ̃(1) = x. Set γ := ϕ−1◦γ̃. Then, Int(γ−1(E)) 6= ∅,
and hence by arc-symmetry of E, γ−1(E) = [−1, 1]. In particular, ϕ−1(x) ∈ E.
Since x was arbitrary, we have U ⊂ IntΓ(Γ ∩ E), and so a ∈ IntΓ(Γ ∩ E). Since

a was arbitrary, this proves IntΓ(Γ ∩E) = IntΓ(Γ ∩ E), and thus Γ ∩ E = Γ, by
connectedness of Γ. �

Lemma 5.4. Let Γ be a globally subanalytic, smooth, connected subset of Rn, and
let {Ei}i∈I ⊂ AR(Rn). Then, there exist i1, . . . , is ∈ I such that

Γ ∩
⋂

i∈I

Ei = Γ ∩Ei1 ∩ · · · ∩ Eis .

The proof, again, is virtually identical to that of [12, Lem. 1.5]. We include it
for the reader’s convenience.

Proof. We proceed by induction on k = dimΓ. If k = 0, then Γ is a singleton
and there is nothing to show. Suppose then that k ≥ 1 and the claim holds for all
globally subanalytic, smooth, connected subsets of Rn of dimensions less than k. If
Γ ⊂ Ei for all i ∈ I, then again there is nothing to show, so let i0 ∈ I be such that
Γ∩Ei0 6⊃ Γ. By Lemma 5.3, the globally subanalytic set Γ∩Ei0 is then of dimension
less than or equal to k− 1. By o-minimality, Γ∩Ei0 is a finite union of connected,
smooth, globally subanalytic sets Γ1, . . . ,Γs. By induction, for each j = 1, . . . , s,
there exists a finite index subset Ij ⊂ I such that Γj ∩

⋂
i∈I Ei = Γj ∩

⋂
i∈Ij

Ei.

Then,

Γ ∩
⋂

i∈I

Ei = (Γ1 ∪ · · · ∪ Γs) ∩
⋂

i∈I

Ei =

s⋃

j=1

(Γj ∩
⋂

i∈Ij

Ei) = Γ ∩
⋂

i∈I1∪···∪Is

Ei .

�

Proof of Theorem 5.2. By Lemma 5.4, letting Γ = Rn, intersection of an arbi-
trary family of AR-closed sets is an AR-closed set. Clearly, finite unions of arc-
symmetric sets are also arc-symmetric. So are the empty set ∅ and Rn. Noethe-
rianity of the AR-topology follows from Lemma 5.4 again, since every decreasing
sequence of AR-closed sets stabilizes. �

Given a set E ∈ AR(Rn), we will say that E is AR-irreducible if E cannot
be expressed as a union of two proper AR-closed subsets. By noetherianity of
AR-topology, every AR-closed set E can be uniquely expressed as a finite union
of AR-irreducible sets

E = E1 ∪ · · · ∪ Es , where Ei 6⊂
⋃

j 6=i

Ej for all i = 1, . . . , s .

The sets E1, . . . , Es are called the AR-irreducible components of E.
By noetherianity of AR-topology, one can also define the AR-closure of an

arbitrary set S ⊂ Rn, denoted S
AR

, as the smallest (with respect to inclusion)
AR-closed subset of Rn that contains S.

Remark 5.5. Unfortunately, in the subanalytic context, the AR-closure behaves
in a much less controlled way than in the semialgebraic setting of [12]. In particular,

for an arbitrary globally subanalytic set S, one may have dimS
AR

> dimS. Indeed,
consider, for example, S = {(x, y) ∈ R2 : y = sin(x), −1 ≤ x ≤ 1}. Then, S
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is globally subanalytic in R2 as a bounded subanalytic set, however by analytic
continuation any arc-symmetric set in R2 containing S must contain the whole

graph of the sine function as well. Thus, S
AR

= R2.

Nonetheless, the topological dimension (as a subanalytic set) of any AR-closed
set coincides with its AR-Krull dimension, as shown below. For a non-empty AR-
closed set E we define its Krull dimension as

dimK E = sup{l ∈ N : ∃E0  E1  · · ·  El ⊂ E, with Ej AR−irreducible} .
Theorem 5.6. If E is a non-empty AR-closed set in Rn, then

dimKE = dimE ,

where dimE is the supremum of dimensions of real analytic submanifolds of E.

Proof. By Proposition 5.8 below, we have dimKE ≤ dimE. For the proof of the
other inequality, we proceed by induction on d = dimE. The base case being clear,
assume d ≥ 1. By the Good Directions Lemma in o-minimal structures (see [8, 4.9]
or [7, Thm.VII.4.2]), there is a d-dimensional linear subspace U of Rn such that the
orthogonal projection π : Rn → U has finite fibres when restricted to E. Suppose
U is spanned by vectors u1, . . . , ud in Rn, and let V = span{u2, . . . , ud}. Then,
the set F = E ∩ π−1(V ) is AR-closed as the intersection of two AR-closed sets,
and of dimension d − 1. By the finiteness of decomposition into AR-irreducible
components, at least one such component of F is of dimension d− 1. �

For the next result recall that, by Corollary 4.2, for any E ∈ AR(Rn) of di-
mension d > 0, there are a proper modification σ : M ′ → Rn of Rn in a closed
subanalytic set Σ of dimension less than d, a d-dimensional smooth analytic set
Z ⊂M ′, and a semianalytic subset S of Z of dimension d, such that σ = v−1

n ◦π, π
is a composite of finitely many blowings-up of coherent ideals, π is an isomorphism
outside π−1(vn(Σ)), S = σ−1(E), and E ∩Σ ∈ AR(Rn). We denote by RegdE the
locus of smooth points of E of dimension d.

Proposition 5.7. Let E ⊂ Rn be an AR-irreducible set of dimension d > 0. Let
σ : M ′ → Rn and Z ⊂ M ′ be as in Corollary 4.2. Then, there is a connected
component Z̃ of Z such that

σ(Z̃) ⊃ RegdE .

Proof. Let σ−1(E) = E1 ∪ · · · ∪Es be the decomposition into AR-irreducible com-
ponents of the AR-closed set σ−1(E). Assume, without loss of generality, that

dimE1 = d. Let Z̃ be the connected component of Z, for which E1 ⊂ Z̃. Since
dim Z̃ = dimE1, then Z̃ = E1, by Lemma 5.3. We shall show that σ(Z̃) contains a
non-empty open subset of every connected component of RegdE \ Σ. To this end,
let us first prove the following:

Claim 1. σ(Z̃)
AR

⊂ σ(Z̃) ∪ (E ∩ Σ) .

It suffices to show that F := σ(Z̃)∪ (E ∩Σ) is arc-symmetric. Let γ : (−1, 1) →
Rn be an analytic arc such that Int(γ−1(F )) 6= ∅. If Int(γ−1(E ∩ Σ)) 6= ∅, then
γ((−1, 1)) ⊂ E ∩ Σ, by arc-symmetry. Suppose then that Int(γ−1(E ∩ Σ)) = ∅.
Then, γ can be lifted to γ̃ : (−1, 1) →M ′ (so that γ(t) = σ(γ̃(t)), for all t ∈ (−1, 1)).

It follows that Int(γ̃−1(Z̃)) 6= ∅, and hence γ̃((−1, 1)) ⊂ Z̃, by arc-symmetry. Thus,

γ((−1, 1)) = σ(γ̃((−1, 1))) ⊂ σ(Z̃), which completes the proof of Claim 1.
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Suppose now that there exists a connected component of RegdE \ Σ such that

σ(Z̃) does not contain its non-empty open subset. Let C be the union of all such

connected components of RegdE \ Σ. Then, dim(σ(Z̃) ∩ C) < d. Since σ is an
isomorphism over RegdE\Σ and dim(E∩Σ) < d, it follows that for every connected
component C of RegdE \Σ there exists precisely one component of Z whose image

by σ contains an open subset of C. Let Z ′ := Z \ Z̃ be the union of the remaining

components of Z. By Claim 1, it now follows that E = σ(Z̃)
AR

∪ σ(Z ′)
AR

is a
decomposition of E into proper AR-closed subsets.

The above contradiction proves that σ(Z̃)∩C contains a non-empty open subset

of C, for every connected component C of RegdE \ Σ. On the other hand, σ(Z̃)

is a closed subset of E, since σ is proper and Z̃ = E1 is closed. Therefore, by
connectedness, σ(Z̃) ∩ C = C for every C as above, which completes the proof of
the proposition. �

Proposition 5.8. Let E,F ∈ AR(Rn), F  E, and suppose that E is AR-
irreducible of positive dimension. Then, dimF < dimE.

Proof. For a proof by contradiction, suppose that dimF = dimE = d. Then,
there exists a connected component C of RegdE such that dim(F ∩ C) = d. By
Lemma 5.3, F ∩ C = C. Let σ and Z be as in Proposition 5.7. As in the proof
of Proposition 5.7, there is a component Z̃ of Z, such that Z̃ coincides with an
AR-irreducible component of σ−1(F ) and σ(Z̃) ⊃ C. Then, F ⊃ σ(Z̃) ⊃ RegdE.

Suppose that G := E \ F 6= ∅. We claim that then G is AR-closed. In-
deed, for any analytic arc γ : (−1, 1) → Rn with Int(γ−1(G)) 6= ∅, one has
Int(γ−1(F )) = ∅ for else γ((−1, 1)) ⊂ F , by arc-symmetry. Therefore, γ((−1, 1))
intersects F (at most) at isolated points, and hence by continuity γ((−1, 1)) ⊂ G.
Consequently, E = F ∪G is a union of two proper AR-closed subsets, contradicting
AR-irreducibility of E. Thus, one must have G = ∅, that is, E = F , which again
contradicts the assumptions of the proposition. �

Theorem 5.9. For every E ∈ AR(Rn) of dimension d > 0, there exists F ∈
AR(Rn) such that dim(E ∩ F ) < d and E \ F is a d-dimensional manifold.

Proof. Assume without loss of generality that E is AR-irreducible. Let σ : M ′ →
Rn, Σ ⊂ Rn, and Z ⊂M ′ be as in the paragraph preceding Proposition 5.7. Recall
that, by Claim 1 in the proof of Proposition 5.7, for every connected component Z̃

of Z, we have σ(Z̃)
AR

⊂ σ(Z̃) ∪ (E ∩ Σ) .
If E \ Σ ⊂ RegdE, then there is nothing to show. Suppose then that (E \ Σ) \

RegdE 6= ∅. Let Reg<dE denote the locus of smooth points of E of dimension(s)
less than d. For every connected component C of Reg<dE \ Σ, there is precisely

one connected component Z̃C of Z such that σ(Z̃C) contains a non-empty open

subset of C, and hence σ(Z̃C) ⊃ C. For such Z̃C one has dimσ(Z̃C) < d, for else

σ(Z̃C) ⊃ RegdE, as in the proof of Proposition 5.7; a contradiction. It follows that

σ(
⋃

C

Z̃C)
AR

⊂
⋃

C

σ(Z̃C) ∪ (E ∩Σ)
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is of dimension strictly less than d, where the union is over all connected components
C of Reg<dE \ Σ. Therefore, the set

F := (E ∩ Σ) ∪ σ(
⋃

C

Z̃C)
AR

has all the required properties. �

Remark 5.10. Note that, in general, one cannot expect that RegdE = E \ F for
some AR-closed set F . Indeed, this may not be true even if E is real algebraic.

6. Globally subanalytic arc-analytic functions

Let E ∈ AR(Rn) be non-empty. A function f : E → R is called arc-analytic,
when f ◦ γ is an analytic function for every analytic arc γ : (−1, 1) → E. It is
called globally subanalytic, when the graph Γf of f is a globally subanalytic set
in Rn+1. Following [12], we will denote by Aa(E) the ring of all arc-symmetric
globally subanalytic functions on E.

It is well known that every globally subanalytic arc-analytic function is continu-
ous in the Euclidean topology (see, e.g., [4, Lem. 6.8]). Moreover, by a straightfor-
ward adaptation of [12, Prop. 5.1], one has the following.

Remark 6.1. Let E ∈ AR(Rn) be non-empty, and let f : E → Rm be a globally
subanalytic function whose all components are arc-analytic. Then

(i) Γf ∈ AR(Rn × Rm).
(ii) If Z ∈ AR(Rm), then f−1(Z) ∈ AR(Rn).

Let nowM be a real analytic manifold, and let f :M → R be a function. We will
say that f is a globally subanalytic function on M , if M admits a closed embedding
into Rn for some n > 0 such that the graph Γf is a globally subanalytic set in Rn+1.
The following theorem shows that globally subanalytic arc-analytic functions are
blow-analytic in the sense of Kuo [11].

Theorem 6.2. Let M be a real analytic manifold and let f : M → R be a globally
subanalytic arc-analytic function on M . Then, there are a real analytic manifold

M̃ and a proper modification σ : M̃ → M , such that σ is a composite of finitely
many blowings-up of coherent ideal sheaves and f ◦ σ is real analytic.

Proof. Without loss of generality, suppose that M is a closed real analytic sub-
manifold of Rn, of dimension dimM = d > 0, and f : M → R is an arc-analytic
function whose graph Γf is globally subanalytic in Rn+1. Then, Γf ∈ AR(Rn+1)
and Γf is of pure dimension d. Consider a compact subanalytic set E ⊂ Rn+1

defined as E := vn+1(Γf ). By Theorem 2.1, there are a real analytic manifold N ,
of dimension dimN = d, and a proper real analytic mapping ψ : N → Rn+1, such
that ψ(N) = E. Let p : Rn+1 → Rn be the projection onto the first n coordinates.
Then, p◦ψ is proper and generically finite, and p(E) is compact and subanalytic in
Rn. Let U be a relatively compact open subanalytic neighbourhood of [−1, 1]n in
Rn. Let X , Y , and ϕ denote the complexifications of N , Rn, and p◦ψ, respectively.
We may assume that Y = Cn and ϕ factors through the projection Y × C → Y
onto the first n coordinates.

As in the proof of Theorem 4.1, one can now find a relatively compact open
neighbourhood V of U in Y , an open neighbourhoodW ofN in X , complex analytic
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spaces V ′ and W ′, a complex analytic map ϕ′ : W ′ → V ′, and a finite composite
of blowings-up of coherent ideal sheaves π′ : V ′ → V , all such that:

(i) V ′ is non-singular
(ii) π′ is an isomorphism over the complement of a subanalytic set Σ with

dim(p(E) ∩ Σ) < d
(iii) ϕ′ : W ′ → V ′ is the strict transform of ϕ : W → V by π′, and the non-

empty fibres of ϕ′ are zero-dimensional
(iv) the image Z ′ = ϕ′(W ′) is a smooth complex analytic subset of V ′, of

dimension dim(Z ′) = d.

Moreover, by uniqueness of fibre product, V ′ ×V W ∼= (V ′ × C) ×V×C W , and
hence ϕ′ factors as ϕ′ = q′ ◦ ψ′, where q′ : V ′ × C → V ′ is the projection and
ψ′ : W ′ → V ′ × C is a complex analytic map. Clearly, the non-empty fibres of ψ′

are zero-dimensional.
Let A := ψ′(W ′). By relative compactness of U ′ := π′−1(U), as in the proof

of Theorem 4.1, we may assume that A is analytic in V ′ × C. The projection
q′|A : A → Z ′ being proper, A is a subset of the zero-set of a non-zero polynomial
P (y′, z) ∈ O(V ′)[z].

Let Z be the real part of Z ′, and let π be the real part of π′. Further, let
F := p(E) \ p(vn+1(Γf )) = p(E) \ vn(M). Since M is closed in Rn, then F ⊂
[−1, 1]n \ (−1, 1)n. By Proposition 5.7, there is a connected component M ′ of the
real analytic manifold Z \ π−1(F ), such that (v−1

n ◦ π)(M ′) = M . The function
f ◦v−1

n ◦π is arc-analytic and satisfies the equation Q(x, (f ◦v−1
n ◦π)(x)) = 0, where

Q(x, t) is the real part of P (y′, z). Therefore, by [4, Thm. 1.1], there is a (finite,

by relative compactness of M ′) composite of blowings-up τ : M̃ → M ′ such that

f ◦ v−1
n ◦ π ◦ τ : M̃ → R is real analytic. �

We conclude this paper with a brief discussion of the relationship between the
AR-closed sets and the globally subanalytic arc-analytic functions on Rn. We
believe that, as in the semialgebraic setting, the AR-closed sets are precisely the
zero-loci of globally subanalytic arc-analytic functions (Conjecture 6.4 below). It
appears, however, that to establish such a relationship one would need a subanalytic
analogue of the Efroymson Extension Theorem, which is currently unavailable. As
a partial evidence for the conjecture, we recover below a fundamental observation
of Kurdyka that arc-symmetric sets are zero-sets of arc-analytic functions modulo
a subset of strictly smaller dimension (cf. [12, Thm. 6.2]).

Theorem 6.3. Let E ⊂ Rn be a non-empty AR-closed set of dimension dimE = d.
Then, there exists a function f ∈ Aa(R

n) such that

E ⊂ f−1(0), and dim(f−1(0) \ E) < d .

Proof. We proceed by indunction on d. If d = 0, then E is finite and hence a
zero-set of a polynomial. Suppose then that d ≥ 1 and the theorem holds for all
arc-symmetric globally subanalytic sets of dimensions less than d.

Given E as above, the set vn(E) ⊂ [−1, 1]n is a compact subanalytic set in Rn,
of dimension d. Let U be a relatively compact open subanalytic neighbourhood
of [−1, 1]n in Rn. By Theorem 4.1, there are a closed subanalytic set Σ ⊂ U of
dimension less than d, a real analytic manifold M ′, a smooth real analytic subset
Z of M ′, of dimension d, and a finite composite of blowings-up π : M ′ → U , such
that π is an isomorphism outside π−1(Σ) and π−1(E) ⊂ Z.
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Let E1, . . . , Es be the d-dimensional AR-irreducible components of E. By
Proposition 5.7, there are connected components Z1, . . . , Zt of Z, each a manifold
of dimension d, such that

π(Z1 ∪ · · · ∪ Zt) ⊃ vn(RegdE1 ∪ · · · ∪ RegdEs) ⊃ vn(RegdE) .

Let Z ′ denote the real analytic submanifold Z1∪· · ·∪Zt inM
′. By [9, Thm. IV.2.1],

there is a real analytic function g :M ′ → R such that g−1(0) = Z ′.
Next, consider F := v−1

n (Σ). We have F ∈ AR(Rn) and dimF < d. Hence, by
the inductive hypothesis, there is a function h ∈ Aa(R

n) such that h−1(0) ⊃ F .
We may now define a subanalytic function f1 : Rn → R by

f1(x) =

{
(g ◦ π−1 ◦ vn)(x) · h(x), x ∈ Rn \ F
0, x ∈ F .

Note first that f1 is, in fact, globally subanalytic (since g◦π−1|vn(Rn) is a restriction
of a subanalytic function on U). Moreover, we claim that f1 is arc-analytic. Indeed,
let γ : (−1, 1) → Rn be an arbitrary analytic arc. If Int(γ−1(F )) 6= ∅, then
γ((−1, 1)) ⊂ F , by arc-symmetry of F , and so f1◦γ ≡ 0. If, in turn, Int(γ−1(F )) =
∅, then γ lifts by v−1

n ◦ π to a unique analytic arc γ̃ : (−1, 1) → M ′ such that
γ = v−1

n ◦ π ◦ γ̃. We have then

(f1 ◦ γ)(t) = (g ◦ γ̃)(t) · h(γ(t)), t ∈ (−1, 1) ,

which is analytic. Therefore, f1 ∈ Aa(R
n).

By construction, RegdE ⊂ f−1
1 (0). Hence, by Theorem 5.9, there exists G ∈

AR(Rn) such that

dimG < d, and E \ f−1
1 (0) ⊂ G .

By the inductive hypothesis, there exists f2 ∈ Aa(R
n) such that f−1

2 (0) ⊃ G. It
follows that the function f := f1 · f2 has the required properties. �

Conjecture 6.4. We conjecture that, as in the semialgebraic setting ([1, 2]), ev-
ery AR-closed set is precisely the zero locus of a globally subanalytic arc-analytic
function, and every globally subanalytic arc-analytic function on an AR-closed set
E ⊂ Rn is a restriction to E of a globally subanalytic arc-analytic function on Rn.
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