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NATURAL BOUND IN KWIECIŃSKI’S
CRITERION FOR FLATNESS

JANUSZ ADAMUS

(Communicated by Wolmer V. Vasconcelos)

Abstract. Kwieciński has proved a geometric criterion for flatness: A mor-
phism f : X → Y of germs of analytic spaces is not flat if and only if its i-fold
fibre power f{i} : X{i} → Y has a vertical component, for some i. We show
how to bound i using Hironaka’s local flattener: If f is not flat, then f{d} has
a vertical component, where d is the minimal number of generators of the ideal
in OY of the flattener of X.

1. Introduction

Let f : Z → Y be a morphism of germs of analytic spaces, and let W be an
irreducible component of Z. Let P be the associated prime of the zero ideal in the
local ring OZ , corresponding to W . We say that the component W is vertical
if there exists a nonzero a ∈ OY with f∗a ∈ P (see also the remark following
Lemma 3.1).

In [11, Thm. 1.1], Kwieciński shows that assuming Y is irreducible, i.e. the local
ring OY is a domain, the following conditions are equivalent:

(i) f : X → Y is flat;
(ii) for any i ≥ 1, the canonical map X×Y . . .×YX︸ ︷︷ ︸

i times

→ Y has no (isolated or

embedded) vertical components.
From now on we will write X{i} for the space X×Y . . .×YX (i times) and f{i}

for the canonical map X{i} → Y .
Note that if f is flat, then f{i} is flat for all i, since flatness is preserved by any

base change ([9, §6, Prop. 8]) and the composition of flat maps is flat. Therefore
the implication (i)⇒ (ii) is an immediate consequence of the definition of flatness
in terms of relations (see e.g. [2, Prop. 7.3]). This in fact is the only place where
the irreducibility assumption is needed (cf. the example in this section below).

Implication (ii) ⇒ (i) does not require irreducibility of Y , by Kwieciński’s
Lemma 3.1 below. Thus, for any nonflat map f : X → Y of germs of analytic
spaces there is a positive integer i such that X{i} has a vertical component. The
proof given by Kwieciński is based on Hironaka’s criterion for flatness (Thm. 2.2
below, see also [2, Thm. 7.9]). Hironaka uses this criterion to prove the existence
of the local flattener (see [2, Thm. 7.12]), which we use to give a precise power
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needed in condition (ii) of Kwieciński’s theorem. The local flattener for a morphism
f : X → Y of germs of analytic spaces is, by definition, the maximal subgerm P of
Y such that OX⊗OYOP is OP -flat, i.e. f |f−1(P ) : f−1(P )→ P is a flat morphism
(cf. [2, Thm. 7.12]). Our main result is the following:

Theorem 1.1. Let f : X → Y be a nonflat morphism of germs of analytic spaces.
Let Q be the ideal in OY of the flattener of X, and let d be the minimal number
of generators of Q. Then the canonical map f{d} : X{d} → Y has a vertical
component.

Of course, this leaves open the question of calculation. First results have been
given by Vasconcelos [15], and Galligo and Kwieciński [6] under certain restrictions
on X and Y : Galligo and Kwieciński assert that, assuming X,Y are reduced, X is
of pure dimension, and Y is smooth of dimension n, f : X → Y is flat if and only
if the canonical map f{n} : X{n} → Y has no geometric vertical components ([6,
Thm. 6.1]). An analogous result in the algebraic category, but without the pure
dimension assumption on X , was obtained by Vasconcelos in the case dimY = 2
([15, Prop. 6.1]).

By a geometric vertical component of a morphism f : Z → Y we mean a com-
ponent W of Z such that, for arbitrarily small representatives W̃ , Ỹ , f̃ of W,Y, f ,
respectively, the image f̃(W̃ ) has empty interior in Ỹ with transcendental topology
(cf. [6] and [11]). Note that although the notions of vertical and geometric vertical
coincide in the algebraic case over irreducible germ Y (as the image of an algebraic
set under a polynomial morphism is always constructible), they are not the same
in the analytic setup.

Clearly, over irreducible Y , every vertical component is geometric vertical, but
the converse is false in general. Consider for instance the Osgood mapping f :
C2

0 → C3
0 defined as (x, y) 7→ (x, xy, xyey) (see e.g. [7]). Then for an arbitrary

neighbourhood U of the origin in C2, f(U) has empty interior in C3, but there is
no proper analytic subgerm of C3

0 containing (f(U))0, and hence f has no vertical
components in our sense.

Observe that in general, i.e. without the irreducibility assumption on Y , the
equivalence from Kwieciński’s theorem is no longer valid. Consider for instance the
identity mapping on the space X = {(x, y) ∈ C2 : xy = 0}, which is obviously flat
while each of the irreducible components of X is vertical.

2. Diagram of initial exponents

and Hironaka’s criterion for flatness

We briefly recall here basic facts regarding the diagram of initial exponents. For
details we refer to [2].

Let A be a local analytic C-algebra, say A = C{y1, . . . , ym}/J , with the maximal
ideal m. Let L be a total ordering of monomials in t = (t1, . . . , tn) with coefficients in
A which is compatible with addition of exponents. We write tβ for tβ1

1 . . . tβnn , where
β = (β1, . . . , βn) ∈ Nn. Let A{t} = C{y, t}/J · C{y, t} be the ring of convergent
power series in t with coefficients in A. For a series F =

∑
β∈Nn

aβt
β ∈ A{t} define

its evaluation at 0 as F (0) =
∑
β∈Nn

aβ(0)tβ ∈ A/m{t} = C{t}, and for an ideal I in

A{t} define I(0) = {F (0) : F ∈ I}, the evaluated ideal. The support of F is defined
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as suppF = {β ∈ Nn : aβ 6= 0}, and νL(F ) = minL{β ∈ suppF} denotes the initial
exponent of F (with respect to L). Similarly, suppF (0) = {β ∈ Nn : aβ(0) 6= 0}
and νL(F (0)) = minL{β ∈ suppF (0)}, for the evaluated series.

Let I be an ideal in A{t}. The diagram of initial exponents of I (with resp. to
L) is defined as NL(I) = {νL(F ) : F ∈ I} ⊂ Nn.

Let f : X → Y be a morphism of germs of analytic spaces. Without loss of
generality can assume that X is a subgerm of Cn0 , for some n ≥ 1. We can then
embed X into Y × Cn0 via the graph of f . Therefore the local ring OX of X can
be thought of as a quotient of the local ring of Y × Cn0 , i.e. OX = OY {t}/I,
for some ideal I in OY {t}, where t = (t1, . . . , tn). Let ∆ = Nn \ NL(I(0)) be
the complement of the diagram of initial exponents of the evaluated ideal I(0),
and define OY {t}∆ = {F ∈ OY {t} : suppF ⊂ ∆}. Now consider the canonical
projection OY {t} → OX and its restriction to OY {t}∆, called κ. The two results
below, due to Hironaka, are crucial for our considerations.

Proposition 2.1 ([9, §6, Prop.9]). The natural map κ : OY {t}∆ → OX =OY {t}/I
is surjective.

Theorem 2.2 ([9, §6, Prop.10]). With the notations above, the map f : X → Y is
flat if and only if κ is bijective.

Observe that kerκ = {F ∈ OY {t}∆ : F ∈ I}, i.e. kerκ consists of these elements
of the ideal I whose supports lie entirely in ∆.

Remark 2.3. Let Q be the ideal in OY of the flattener of X . Then by the proof of [2,
Thm. 7.12], Q is generated by all the coefficients aβ of all the series F =

∑
β∈∆

aβt
β

from kerκ.

3. Kwieciński’s lemma

Our proof of Theorem 1.1 is based on the following result due to Kwieciński ([11,
Lemma 3.2]).

Lemma 3.1. Let f : X → Y be a nonflat morphism of germs of analytic spaces.
Then there is a positive integer i such that there exists a nonzero b ∈ OX{i} and a
nonzero a ∈ OY , with ab = 0.

Observe that according to our definition, the condition above is equivalent to
X{i} having a vertical component. Indeed, for a ∈ OY is a zerodivisor in OX{i} iff
it belongs to some of the associated primes of the zero ideal in the local ring OX{i} .

Note also that without any assumptions on Y , flatness implies the following
condition: For any i ≥ 1, if a ∈ OY is a zerodivisor in OX{i} , then it is a zerodivisor
in OY . (By the definition of flatness in terms of relations.)

We will now sketch the main steps of the proof of Lemma 3.1: Since f is not flat,
Theorem 2.2 together with Proposition 2.1 imply that kerκ 6= {0}. Pick any non-
trivial F =

∑
β∈∆ aβt

β from kerκ. Let aβ1 , . . . , aβi be distinct nonzero coefficients
of F which generate the ideal in OY of all the coefficients of the series F . One then
shows that F = aβ1F1+· · ·+aβiFi, where Fj(t) = tβj +

∑
β∈∆\{β1,...,βi}

fβt
β ∈ OY {t},

j = 1, . . . , i. Define aj = aβj and hj = κ(Fj) for j = 1, . . . , i. It follows that
a1h1 + · · · + aihi = 0, but h1(0), . . . , hi(0) are linearly independent (over C) in
OX/mOX = C{t}/I(0), where m is the maximal ideal in OY .
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Next consider the following commutative diagram of canonical maps of OY -
modules, where both tensor products are taken i times and we assume that Y is a
germ at 0:∧

OY

i
OX

ρ−−−−→ OX ⊗OY . . .⊗OYOX
λ−−−−→ OX{i}y y yµ∧

C

i
OX/mOX

ρ̄−−−−→ OX/mOX ⊗C . . .⊗COX/mOX
λ̄−−−−→ O(f−1(0))i

Put a = a1 and b = λ ◦ ρ(h1 ∧ · · · ∧ hi). Since a1h1 is an OY -linear combination
of h2, . . . , hi, then ab = λ ◦ ρ((a1h1) ∧ h2 · · · ∧ hi) = 0. Finally b 6= 0, because
µ(b) = λ̄◦ρ̄(h1(0)∧· · ·∧hi(0)) is nonzero, as h1(0), . . . , hi(0) are linearly independent
and ρ̄, λ̄ are injective.

4. Proof of Theorem 1.1

Let d be the minimal number of generators of the flattener ideal Q, i.e. d =
dimCQ/mQ, where m is the maximal ideal in the local ring OY . We begin with
the following lemma.

Lemma 4.1. Assume NL(I(0)) = N × D for some D ⊂ Nn−1. Then there is a
series F ∈ kerκ such that the coefficients of F generate the ideal Q.

Remark 4.2. The condition NL(I(0)) = N × D means that the diagram NL(I(0))
is trivial in the β1 direction. As can readily be seen from the proof below, we do
not really need that much but only triviality in some of the β1, . . . , βn directions.
The point is that triviality in the βj direction implies that for a series F ∈ OY {t}
with suppF ⊂ ∆ and for any power k, the series t kj F has support contained in ∆
again, since supp (t kj F ) = suppF + (0, . . . , k, . . . , 0), with k in the j’th place.

Proof of Lemma 4.1. Suppose to the contrary that for any series F =
∑
aβt

β from
kerκ, the coefficients aβ of F do not generate Q. Note that by Remark 2.3, all the
coefficients of F belong to Q.

For a series F ∈ kerκ define d(F ) as the maximal number of its coefficients
linearly independent (over C = OY /mOY ) modulo mQ. It follows that for any F ,
d(F ) < d, because otherwise the coefficients of some series would generate Q, by
Nakayama’s Lemma. Let s = max{d(F ) |F ∈ kerκ}. Pick any F1 =

∑
β∈∆ aβt

β

from kerκ with d(F1) = s, and let aβ1 , . . . , aβs be its coefficients linearly indepen-
dent modulo mQ. Then by the definition of d(F1), for any β ∈ suppF1\{β1, . . . , βs}
there exist r1

β , . . . , r
s
β ∈ C and qβ ∈ mQ such that aβ = r1

βaβ1 + · · · + rsβaβs + qβ ,
i.e. all the other coefficients of F are C-linear combinations of aβ1 , . . . , aβs modulo
mQ.

Since s < d, Remark 2.3, together with Nakayama’s Lemma, implies that there
exists a series F2 =

∑
γ∈∆ bγt

γ ∈ kerκ such that for some γ0 ∈ suppF2, the
coefficient bγ0 of F2 is linearly independent from aβ1 , . . . , aβs modulo mQ. Fix such
a series F2 and take a positive integer k satisfying inequality

(k, 0, . . . , 0) > max {β1, . . . , βs}(*)

with respect to the total ordering (induced by) L in Nn.
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Define a new series F0 = F1 + t k1 F2 and observe that F0 ∈ kerκ. Indeed,
F2 ∈ kerκ if and only if F2 ∈ I and suppF2 ⊂ ∆. Therefore Remark 4.2 yields
supp (t k1 F2) ⊂ ∆ (and obviously t k1 F2 ∈ I), whence t k1 F2 ∈ kerκ and F0 ∈ kerκ.

Put F0 =
∑

β∈∆ cβt
β . By the inequality (*), supp (t k1 F2) > max {β1, . . . , βs}, so

in particular cβ1 = aβ1 , . . . , cβs = aβs . Moreover, if β0 = γ0 + (k, 0, . . . , 0), then
β0 6= βj, j = 1, . . . , s, and

cβ0 = r1
β0
aβ1 + · · ·+ rsβ0

aβs + qβ0 + bγ0 ,

where rjβ0
∈ C, j = 1, . . . , s, qβ0 ∈ mQ. But bγ0 is linearly independent from

aβ1 , . . . , aβs , which implies that cβ0 is linearly independent from cβ1 , . . . , cβs . Thus
cβ0 , cβ1 , . . . , cβs are s+1 coefficients of F0 linearly independent modulo mQ, whence
d(F0) ≥ s+ 1, a contradiction.

Proof of Theorem 1.1. Suppose first that NL(I(0)) = N × D, as in Lemma 4.1.
Then we can find F ∈ kerκ, F =

∑
β∈∆ aβt

β such that among its coefficients are
aβ1 , . . . , aβd linearly independent modulo mQ. By Nakayama’s Lemma, aβ1 , . . . , aβd
generate Q (recall that d = dimCQ/mQ), so in particular they generate all the
coefficients of F . Therefore by applying Kwieciński’s Lemma 3.1 to this F one
obtains a nonzero a ∈ OY and a nonzero b ∈ OX{d} with ab = 0, i.e. a vertical
component in the d’th fibre power X{d} (cf. the remark following Lemma 3.1).

Next suppose the diagram NL(I(0)) is not trivial in any direction. Define X̃ =
C0×X , and f̃ : X̃ → Y as f̃ = f◦π, where π : X̃ → X is a canonical projection. Let
Ĩ = I ·OY {t0, t1, . . . , tn} be the extended ideal, so that O

X̃
= OY {t0, t1, . . . , tn}/Ĩ.

Since every element of Ĩ can be expressed in the form
∑
i∈N Fi(t1, . . . , tn) · t i0, with

Fi ∈ I, it follows that NL(Ĩ(0)) = N × NL(I(0)). Moreover, the flattener ideal
for f̃ : X̃ → Y is generated by the same elements as the flattener ideal Q, so in
particular its minimal sets of generators consist of d elements.

Now Lemma 4.1 applies to the diagram NL(Ĩ(0)), as it is trivial in the β0 direc-
tion, and following the first part of this proof we obtain that X̃{d} has a vertical
component. But clearly every irreducible component Z̃ of X̃{d} is of the form
Z × (Cd)0 for some irreducible component Z of X{d}, which implies that X{d}

itself has a vertical component. This completes the proof of our theorem.
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[11] M. Kwieciński, Flatness and fibred powers, Manuscripta Mathematica 97 (1998), 163–173.
MR 99h:14017
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