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Abstract

We study the relationship between degeneracies of the family of fibres of an analytic ma
and the existence of vertical components in fibre powers of the mapping. Our main result
following criterion for openness of complex analytic maps: Letf :X → Y be an analytic map o
analytic spaces, withX being puredimensional andY being locally irreducible of dimensionn. Then
f is open if and only if there are no isolated algebraic vertical components in thenth fibre power
X{n}.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to discuss the relationship between degeneracies
family of fibres of an analytic mapping (as expressed by a failure of openness or fla
and the existence ofvertical components in fibre powers of the mapping. There ar
fact two natural notions of avertical component (algebraicandgeometric) and we are
interested also in the relationship between them.

Let fξ :Xξ → Yη be a morphism of germs of analytic spaces. An irreducible (isol
or embedded) componentW of Xξ is calledalgebraic verticalif there exists a nonzer
elementa ∈ OY,η such that (the pullback of)a belongs to the associated primep in
OX,ξ corresponding toW . Equivalently,W is algebraic verticalif an arbitrarily small
representative ofW is mapped into a proper analytic subset of a neighbourhood ofη in Y .
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We say thatW is geometric verticalif an arbitrarily small representative ofW is mapped
into a nowhere dense subset of a neighbourhoodofη in Y , or equivalently, if the hypergerm
(in the sense of Galligo and Kwieciński, see [6])f (W) has empty interior inYη with the
transcendental topology.

The concept of avertical component comes up naturally as an equivalent of tor
in algebraic geometry: Letf :X → Y be a polynomial map of algebraic varieties withY
irreducible. Then the coordinate ring of the source,A(X) has nonzero torsion as a modu
over the coordinate ringA(Y ) of the target if and only if there exists a nonzero elem
a ∈A(Y ) such that its pullbackf ∗a is a zerodivisor inA(X). Since the set of zerodiviso
equals the union of the associated primes, it follows from “prime avoidance” (see
[4, Section 3.2]) thatA(X) has nonzero torsion overA(Y ) if and only if there exists an
irreducible (isolated or embedded) component ofX whose image underf is contained in
a proper algebraic subset ofY (or, equivalently, is nowhere dense inY ). There are two
natural ways of generalizing this property of irreducible components to the analytic
For a morphismfξ :Xξ → Yη of germs of analytic spaces (withYη irreducible), one can
either consider the components of the source that are mapped into nowhere dense s
of the target (thegeometric verticalcomponents), or the components that are mapped
proper analytic subgerms of the target (thealgebraic verticalcomponents).

The geometric approach has proved to be a very powerful tool in analytic geometry
in work of Kwieciński [9], Kwieciński and Tworzewski [10], and Galligo and Kwieciński
[6]. Note that in principle the existence of thealgebraic verticalcomponents is a weake
condition than the presence of thegeometric verticalones. Indeed, anyalgebraic vertical
component (over an irreducible target) isgeometric vertical, since a proper analytic subs
of a locally irreducible analytic set has empty interior. The converse is not true thou
can be seen in the following example of Osgood (cf. [7, Kap. II, §5]):

f :C2 � (x, y) �→ (
x, xy, xyey

) ∈ C
3.

Here the image of an arbitrarily small neighbourhood of the origin is nowhere denseC3,
but its Zariski closure has dimension 3 and therefore the image is not contained in a
locally analytic subset of the target.

Remark 1.1. On the other hand, the algebraic approach has an advantage that
statements aboutalgebraic verticalcomponents (as opposed togeometric vertical) can
be restated in terms of torsion freeness of the local rings. Namely,fξ :Xξ → Yη has no
(isolated or embedded) algebraic vertical components if and only if the local ringOX,ξ is
a torsionfreeOY,η-module.

In view of Remark 1.1, an interesting question is under what conditions are th
approaches equivalent. In the next section we show that one can expect a positive
to this question under some minor constraints on the source space. Our main
Theorem 2.2, gives a criterion for openness in terms ofverticalcomponents in fibre power
under the assumption that the source be puredimensional. The result is a consequ
our Proposition 2.1. Though technical, this proposition is interesting in itself and pla
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important role in providing a relationship between the isolated irreducible compone
the fibre powerX{n}

ξ {n} of Xξ overYη, and a filtration ofY by the fibre dimension off .
As we show in Example 2.5, the geometric and the algebraic approaches a

equivalent in general; that is, there are examples of bad behaviour of analytic mappin
can be detected by means ofgeometric verticalcomponents but not by thealgebraicones.
The fundamental reasons for this are that, in general, thealgebraic verticalcomponents do
not detect a hidden Gabrielov irregularity, and that a fibre power of a regular map may
be irregular. These are the main obstructions to extending results ongeometric vertical
components toalgebraic verticalones. Section 3 is devoted to clarifying the problem.

In the last section we take on the problem of flatness. We briefly discuss criter
flatness in terms ofverticalcomponents of fibre powers and give a generalization of re
on flatness by Auslander and by the author (see Theorem 4.3). We also raise a
question of reformulating the Galligo–Kwieciński criterion as a statement aboutalgebraic
verticalcomponents. As follows from our result on openness, in the context of flatne
most important role is played by theembeddedcomponents in the fibre powers. Thus,
order to strengthen the Galligo–Kwieciński theorem one needs to understand behav
of theembeddedalgebraic vertical components and their relationship with theembedded
geometric vertical components, which is still unclear.

2. Vertical components and openness

We begin with a technical observation carrying the kernel of all the subsequent re
In Sections 2 and 3 we will always keep the following assumptions: Letfξ :Xξ → Yη
be a morphism of germs of analytic spaces, letXξ be of pure dimensionm, and letYη
be irreducible of dimensionn. Let V be a locally irreducible neighbourhood ofη in Y ,
and letU be a neighbourhood ofξ in X such thatf (U) ⊂ V andU = U1 ∪ · · · ∪ Us

consists of finitely many isolated irreducible components of dimensionm throughξ that
are precisely the representatives inU of the isolated irreducible components of the ge
Xξ . (In Sections 2 and 3 we are not interested in the nilpotent structure ofXξ . In fact, if
one takes into account the embedded components as well, one obtains criteria for
instead. See Section 4 for details.)

Let fbdx f = dimx f
−1(f (x)) be the fibre dimension off at a point. Let l =

min{fbdx f : x ∈ U} and let k = max{fbdx f : x ∈ U}. For l � j � k, defineAj =
{x ∈ U : fbdx f � j }. Then, for eachj , Aj is analytic inU (by the Cartan–Remme
Theorem, see [12]) andU = Al ⊃ Al+1 ⊃ · · · ⊃ Ak. Define Bj = f (Aj ) = {y ∈ V :
dimf−1(y) � j }, for l � j � k. Note that, except forBk (cf. proof of Proposition 2.1
below), theBj may not even be semianalytic in general. Nonetheless, there is an inter
connection between the filtrationV ⊃ Bl ⊃ Bl+1 ⊃ · · · ⊃ Bk and the isolated irreducibl
components of thenth fibre powerU {n} that we describe below. The induced map fr
U {n} to V will be denoted byf {n}, andξ {n} = (ξ, . . . , ξ) ∈ U {n}.

Proposition 2.1. Under the above assumptions, letU {n} = ⋃
i∈I Wi be the decompositio

into finitely many isolated irreducible components throughξ {n}. Then
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(a) For eachj = l, . . . , k, there exist componentsWij ,1, . . . ,Wij ,pj ofU {n} such that

Bj =
pj⋃
q=1

f {n}(Wij ,q).

(b) If y ∈ Bj with dimf−1(y) = s (s � j), Z is an irreducible component of th
fibre (f {n})−1(y) of dimensionns, and W is an irreducible component ofU {n}
containingZ, thenf {n}(W) ⊂ Bj .

Proof. Fix j � l + 1 (the statement is trivial forj = l asBl = f (U)). Pick anyy ∈ Bj .
Then dimf−1(y) = s for somes � j . Let Z be an irreducible component of the fib
(f {n})−1(y) of dimensionns, and letW be an irreducible component ofU {n} containingZ.
We will show thatf {n}(W)⊂ Bj .

Suppose to the contrary thatW ∩ (U {n} \ (f {n})−1(Bj )) �= ∅, that is, suppose that the
existsz = (x1, . . . , xn) ∈ W such thatf (xi) ∈ V \ Bj for i = 1, . . . , n. Then fbdxi f �
j − 1, i = 1, . . . , n, and hence fbdz f {n} � n(j − 1) = nj − n. In particular, the generi
fibre dimension off {n}|W is not greater thannj − n. Since rank(f {n}|W) � dimV = n,
then dimW � (nj − n)+ n= nj .

Now we have:W ⊃ Z, dimW � nj , dimZ = ns � nj , and bothW andZ irreducible.
This is only possible whenW = Z, and hencef {n}(W) = f {n}(Z) = {y} ⊂ Bj ,
a contradiction. Thereforef {n}(W) ⊂ Bj , which completes the proof of part (b) of o
proposition.

Part (a) follows immediately, since for anyy ∈ Bj and any irreducible componentZ of
(f {n})−1(y) of the highest dimension, there exists an isolated irreducible componentW of
U {n} that containsZ. ✷

Now we are ready to establish our criterion for openness:

Theorem 2.2. Let fξ :Xξ → Yη be a morphism of germs of analytic spaces. LetXξ be
puredimensional and letYη be irreducible of dimensionn. Then the following condition
are equivalent:

(i) fξ is open,

(ii) X
{n}
ξ {n} has no isolated geometric vertical components,

(iii) X
{n}
ξ {n} has no isolated algebraic vertical components.

Remark 2.3. In light of Remark 1.1, the equivalence (i)⇔ (iii) in the above theorem coul
be restated as follows:

fξ :Xξ → Yη is open if and only if thereducedlocal ring (OX{n},ξ {n})red is a torsionfree
OY,η-module.

(Compare with Theorem 4.2 and Remark 4.6 in Section 4.)
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Proof of Theorem 2.2. First, note that iffξ :Xξ → Yη is open, then

f
{i}
ξ {i} :X{i}

ξ {i} → Yη

is open for everyi � 1, and hence every isolated irreducible component ofX
{i}
ξ {i} is mapped

ontoYη. This proves (i)⇒ (ii). The implication (ii)⇒ (iii) is trivial, as everyalgebraic
verticalcomponent isgeometric verticalover an irreducible target (see Section 1).

For the proof of (iii)⇒ (i) we assume that dimX =m and suppose thatfξ is not open.
LetV andU =U1∪· · ·∪Us be as before. Consider the setA=Ak = {x ∈U : fbdx f = k}.
ThenA is analytic inU , andξ ∈A as the fibre dimension is Zariski upper semi-continuo
Since the fibre dimension off is constant onA, it follows by Remmert’s Rank Theorem
(see [12]) that for arbitrarily small neighbourhood̃U of ξ in U , f (Ũ ∩A) is locally analytic
in V , of dimension dimξ A− k. Without loss of generality can assume thatBk = f (A) is
analytic inV (by shrinkingV andU if necessary).

Observe thatBk is a proper analytic subset ofV : First, notice thatk cannot be the
generic fibre dimension for all the componentsU1, . . . ,Us simultaneously, since thenf
would be open. Hence, for somej � s, the generic fibre dimension off |Uj is at most
k − 1, and therefore dimV � dimUj − (k − 1)=m− k + 1.

Let A = A1 ∪ · · · ∪ Aq be the decomposition of the setA into isolated irreducible
components. Fixi � q . The set

Ãi = Reg
(
Ai

) \
⋃
j �=i

Aj

is open inA. Let a ∈ Ãi and letZ be an irreducible component of the fibref−1(f (a))

of dimensionk containinga. ThenZ ∩ Ãi is open inZ, and hence of dimensionk. Since
this is true for an arbitrary pointa from an open subset of the componentAi , the generic
fibre dimension off |Ai equalsk and dimf (Ai)�m− k, as dimAi � dimU = m. Thus,
dimf (A) = dim

⋃q

i=1f (A
i) � m − k, whereas dimV � m− k + 1, soBk = f (A) must

be properly contained inV .
Finally, observe thatη ∈ Bk , as ξ lies in A. Let Z be an irreducible compone

of the fibre (f {n})−1(η) of dimensionnk, and letW be an irreducible component o
U {n} containingZ. Then by Proposition 2.1(b),f {n}(W) ⊂ Bk , henceW is algebraic
vertical. ✷
Remark 2.4. Note that since openness is a local property, Theorem 2.2 can eas
“globalized” to the case of an analytic mapf :X → Y of analytic spaces, whereX
is puredimensional andY is locally irreducible of dimensionn. Thus, our result is a
stronger version of the theorem by Kwieciński and Tworzewski asserting that openn
is equivalent to the lack ofgeometric verticalcomponents in thenth fibre powerX{n} (see
[10, Theorem 3.2]).

However, unlike withgeometric verticalcomponents, the puredimensionality constra
onX in our theorem is unavoidable. IfX is not puredimensional, it may happen that
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exceptional fibres of one component are generic for a component of higher dime
and therefore they do not give rise to an isolatedalgebraic verticalcomponent in any
fibre power. This phenomenon is illustrated in the following example, where not on
the morphismf not open, but also it is not even regular in the sense of Gabrielov w
restricted to one of the components (cf. Section 3).

Example 2.5. Let X = X1 ∪ X2, whereX1 = {(x, y, s, t, z) ∈ C
5: s = t = z = 0} and

X2 = {(x, y, s, t, z) ∈ C5: x = 0}. Definef :X → Y = C3 as

f (x, y, s, t, z)= (
x + s, xy + t, xyey + z

)
.

Observe that (the germ at the origin of)f |X1 is an Osgood mapping and hence it
not regular in the sense of Gabrielov. Thereforef is not open. But the exceptional fib
{x = s = t = z = 0} of f |X1 is in no sense exceptional forf |X2. One can easily verify
that in any fibre power ofX overY , any isolated (!) irreducible component is eitherpurely
geometric vertical (with the image equal to that off |X1) or maps onto (the germ at th
origin of) Y and so is not vertical in neither sense.

Remark 2.6. By Theorem 2.2, the existence of isolatedgeometric verticalcomponents
in X

{n}
ξ {n} is equivalent to the existence of isolatedalgebraic verticalcomponents, provide

Xξ is puredimensional. Nevertheless, it is not true that every isolatedgeometric vertical

component inX{n}
ξ {n} is algebraic vertical. As we show in Proposition 3.1 and Example 3

at the end of the next section, this is not even true in the case of a smooth domain.

3. Fibre powers and Gabrielov regularity

In this section we show that the fibre product doesn’t behave well with respe
Gabrielov regularity. Recall that a morphismfξ :Xξ → Yη of germs of analytic space
is calledGabrielov regularif dimη f (Z)= dimη f (Z) for arbitrarily small representativ
Z of X at ξ , wheref (Z) denotes the Zariski closure off (Z) in a representative ofY atη
(see, e.g., [13, §1]).

The following result is an immediate corollary of Proposition 2.1. DefineS =
{y ∈ V : dimf−1(y) > l}, where as beforel = min{fbdx f : x ∈ U}. Then dimS < dimV ,
sinceU is puredimensional.

Proposition 3.1. Suppose thatdimη S = n, whereS denotes the Zariski closure ofS in V .

ThenX{n}
ξ {n} contains an isolatedpurely geometricvertical component, i.e., a geometr

vertical component which is not algebraic vertical.

As a consequence, there exist Gabrielov regular mappingsfξ :Xξ → Yη such that, for

somei � 1, f {i}
ξ {i} is not Gabrielov regular when restricted to one of the isolated irredu

components (see Example 3.3 below).
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Proof of Proposition 3.1. By Proposition 2.1, there exist irreducible compone
W1, . . . ,Wp of U {n} such that

S =
p⋃
i=1

f {n}(Wi).

(Recall thatS = Bl+1 according to the notation from Proposition 3.1.) We claim t
dimη f {n}(Wj ) = n for somej ∈ {1, . . . , p}. Indeed, if dimη f {n}(Wi) < n for all i, then
we would have

n= dimη S = dimη

p⋃
i=1

f {n}(Wi)= max
{
dimη f {n}(Wi): i = 1, . . . , p

}
< n,

a contradiction. So obtainedWj is not algebraic vertical, and it is geometric vertical, sin
dimη f

{n}(Wj )� dimη S < n. ✷
The proposition yields a necessary and sufficient condition forX

{n}
ξ {n} having purely

geometric vertical components in the case of dominating mappings:

Corollary 3.2. Letfξ :Xξ → Yη be a morphism of germs of analytic spaces withXξ being
of pure dimensionm andYη being irreducible of dimensionn, and assumef is dominating,

i.e.,m− l = n. ThenX{n}
ξ {n} has an isolated purely geometric vertical component if and o

if (the germ atη of) Y equals(the germ atη of) the Zariski closure ofS.

Proof. LetV andU be as before. If dimη S < n, then there exists a proper locally analy
subset̃V ⊂ V containingS and such that dimη Ṽ < n.

Then, for any isolated componentW ofU {n}, eitherf {n}(W)⊂ S orW∩(f {n})−1(V \S)
�= ∅. In the first casef {n}(W)⊂ Ṽ , soW is algebraic vertical. In the second case there
ists a pointz= (x1, . . . , xn) ∈W such that fbdxi f = l, i = 1, . . . , n, hence the image unde
f of an arbitrarily small neighbourhood ofxi has nonempty interior inV (by Remmert’s
Rank Theorem and sincem − l = n). Therefore, the image underf {n} of an arbitrarily
small neighbourhood ofz has nonempty interior inV , i.e.,W is not a vertical componen
in neither sense. ✷

Finally we show an example of a Gabrielov regular mappingf :X → Y , with smooth
X andY , and such that the Zariski closure ofS equalsY . By Proposition 3.1 above, the to
fibre power ofX overY has an isolated irreduciblepurely geometric verticalcomponent.
This shows that a fibre product of a regular map may itself be nonregular when res
to an irreducible component.

Example 3.3. LetX = Y = C4 and definef as follows

(x, y, s, t) �→ (
x, (x + s)y, x2y2ey, x2y2ey(1+xey) + st

)
.
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It is easy to check that the generic fibre dimension off equals 0, hence the generic rank
f is 4, and sof is Gabrielov regular.

On the other hand,S contains the image of the setC2 × {0} × C, consisting of points
(z1, z2, z3, z4) of the form(x, xy, x2y2ey, x2y2ey(1+xey)), whose Zariski closure equa
C

4 (cf. [7, Kap. II, §5]). Hence alsoS = C
4.

4. Vertical components and flatness

In this section we discuss briefly the results relating flatness of a morphism of g
of analytic spaces and vertical components in fibre products. Our point of departure
fundamental result of Auslander:

Theorem 4.1 [2, Theorem 3.2].LetR be an unramified regular local ring of dimensio
n > 0 and letM be a finiteR-module. ThenM isR-free if and only if thenth tensor power
M⊗n is a torsionfreeR-module.

(Auslander’s result was later extended by Lichtenbaum [11] to arbitrary regular
rings.)

Recall that in the case of finite modules, freeness is equivalent to flatness. Als
finite modulesM andN over a local analytic algebraR, their analytic tensor produc
denoted byM ⊗̂R N , equals the ordinary one,M⊗R N . Thus, the following result obtaine
by Kwieciński can be viewed as a generalization of Theorem 4.1 to arbitrary (nonfi
analytic mappings.

Theorem 4.2 [9, Theorem 1.1].Let fξ :Xξ → Yη be a morphism of germs of analyt
spaces and assume thatYη is irreducible. Then the following conditions are equivalent:

(i) fξ is flat,

(ii) for any i � 1, the canonical mapf {i}
ξ {i} :X{i}

ξ {i} → Yη has no(isolated or embedded)
algebraic vertical components.

Note that by our Remark 1.1, the latter condition is equivalent to saying that

for anyi � 1, theith analytic tensor power ofOX,ξ overOY,η,OX,ξ ⊗̂OY,η
· · · ⊗̂OY,η

OX,

(i times) is a torsionfreeOY,η-module.

Observe that the implication(i) ⇒ (ii) in Theorem 4.2 is immediate, since flatness
fξ implies thatf {i}

ξ {i} is flat for all i � 1, as flatness is preserved by any base change
[8, §6, Proposition 8]) and composition of flat maps is flat. Therefore, the interesting p
the theorem is(ii)⇒ (i). It turns out that this implication can be significantly strengthe
and one can give an explicit bound in condition (ii) expressed in terms of Hironaka’s
flattener.

Recall that for a morphismfξ :Xξ → Yη of germs of analytic spaces and a fin
OX,ξ -moduleM, there exists a unique maximal germ of an analytic subspaceP of Yη
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such thatOP ⊗̂OY,η
M is OP -flat. We call the germP the flattener of M (see, e.g.

[3, Theorem 7.12]).
Here we generalize the result of [1] to finite modules overOX,ξ , establishing a cleare

connection with Theorem 4.1. In particular, ifXξ = Yη, then we obtain a generalization
Auslander’s original result to the case of nonregular rings.

Theorem 4.3 (cf. [1, Theorem 1.1]).Letfξ :Xξ → Yη be a morphism of germs of analyt
spaces, letYη be irreducible, and letM be a finiteOX,ξ -module that is notOY,η-flat.
Let Q be the ideal inOY,η of the flattener ofM and let d be the minimal number o
generators ofQ. Then thed th analytic tensor power ofM, M ⊗̂OY,η

· · · ⊗̂OY,η
M (d times)

has nonzero torsion overOY,η.

The proof is a straightforward generalization of that of [1, Theorem 1.1].
Another remarkable generalization of Theorem 4.1 to the case of nonfinite map

was obtained by Galligo and Kwieciński under the original regularity assumption
Auslander.

Theorem 4.4 [6, Theorem 6.1]. Let fξ :Xξ → Yη be a morphism of germs of analyt
spaces. LetXξ be puredimensional and letYη be smooth of dimensionn. Then the following
conditions are equivalent:

(i) fξ is flat,

(ii) the canonical mapf {n}
ξ {n} :X{n}

ξ {n} → Yη has no(isolated or embedded) geometric vertical
components.

(The result was first proved in the algebraic case, forn = 2 and for arbitraryX, by
Vasconcelos, see [14, Proposition 6.1].)

Recall that in the algebraic context the lack of vertical components is equivale
torsionfreeness. That is, the algebraic version of the Galligo–Kwieciński theorem reads a
follows:

LetA be a regular local ring of dimensionn and letB be a puredimensional noetheria
A-algebra. ThenB is A-flat if and only if thenth tensor power ofB over A,
B⊗A · · ·⊗AB (n times) is a torsionfreeA-module.

Note that, although Theorem 4.4 combined with primary decomposition algor
provides a useful computer algebra tool for testing flatness, it cannot be rephrased i
of torsionfreeness of analytic tensor powers ofOX,ξ , as the vertical components in questi
aregeometricand notalgebraic. Also, we do not know a proof of the algebraic version
Theorem 4.4 (forn > 2) that does not involve transcendental methods. Therefore, a n
question arises: Can one replacegeometric verticalby algebraic vertical(possibly in a
higher fibre power ofXξ ) in Theorem 4.4? Our results from previous sections allow to
some restrictions on this problem:
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Remark 4.5. It is enough to restrict our attention to the case whenfξ :Xξ → Yη is open.

For, if fξ is not open, then there exists anisolatedalgebraic vertical component inX{n}
ξ {n} ,

by Theorem 2.2. Moreover, if a morphismfξ :Xξ → Yη is open and nonflat, then a vertic

component occurring inX{n}
ξ {n} must be embedded. Indeed, iffξ is open, thenf {i}

ξ {i} is open
for i � 1, and hence all the isolated components are mapped ontoYη.

It seems plausible that one could generalize the Galligo–Kwieciński theorem exploiting
techniques similar to those from Section 2. By the above remark though, one would
to understand the relationship between existence of theembeddedgeometric vertical and
theembeddedalgebraic vertical components in fibre powers. This seems to be much
difficult than describing the connection between the isolated components.

Finally, observe that in the (very special) case whenOX,ξ is Cohen–Macaulay, ou
Theorem 2.2 yields the following nice equivalence:

Remark 4.6. Assume thatOX,ξ is Cohen–Macaulay andYη is smooth of dimensionn.
Then, by [5, Proposition 3.20],fξ :Xξ → Yη is flat if and only if it is open, that is
fξ :Xξ → Yη is flat if and only if(OX{n},ξ {n})red is a torsionfreeOY,η-module.
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