Available online at www.sciencedirect.com -
sc.E..cE@.,.nEcT@ JOURNAL OF

Algebra

e o

ELSEVIER Journal of Algebra 272 (2004) 394-403 —_—
www.elsevier.com/locate/jalgebra

Vertical components in fibre powers
of analytic spaces

Janusz Adamus

Department of Mathematics, University of Toronto, Toronto, Ontario, M5S 3G3 Canada
Received 14 October 2002
Communicated by Michel Broué

Abstract

We study the relationship between degeneracies of the family of fibres of an analytic mapping
and the existence of vertical components in fibre powers of the mapping. Our main result is the
following criterion for openness of complex analytic maps: lfetX — Y be an analytic map of
analytic spaces, witll being puredimensional aridbeing locally irreducible of dimension Then
f {is} open if and only if there are no isolated algebraic vertical components inthhigbre power
Xt
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1. Introduction

The purpose of this paper is to discuss the relationship between degeneracies of the
family of fibres of an analytic mapping (as expressed by a failure of openness or flatness)
and the existence ofertical components in fibre powers of the mapping. There are in
fact two natural notions of aertical component glgebraic and geometri¢ and we are
interested also in the relationship between them.

Let f: X¢ — Y, be a morphism of germs of analytic spaces. An irreducible (isolated
or embedded) componefit of X; is calledalgebraic verticalif there exists a nonzero
elementa € Oy, such that (the pullback ofy belongs to the associated primpein
Ox ¢ corresponding td¥. Equivalently, W is algebraic verticalif an arbitrarily small
representative o is mapped into a proper analytic subset of a neighbourhogdrof.
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We say thatW is geometric verticalf an arbitrarily small representative ¥ is mapped
into a nowhere dense subset of a neighbourhogdof’, or equivalently, if the hypergerm
(in the sense of Galligo and Kwidtski, see [6])f (W) has empty interior irY,, with the
transcendental topology.

The concept of arertical component comes up naturally as an equivalent of torsion
in algebraic geometry: Lef : X — Y be a polynomial map of algebraic varieties with
irreducible. Then the coordinate ring of the souré€X) has nonzero torsion as a module
over the coordinate ring (Y) of the target if and only if there exists a nonzero element
a € A(Y) such that its pullback™a is a zerodivisor il (X). Since the set of zerodivisors
equals the union of the associated primes, it follows from “prime avoidance” (see, e.g.,
[4, Section 3.2]) thatA(X) has nonzero torsion ovet(Y) if and only if there exists an
irreducible (isolated or embedded) componenkofvhose image undef is contained in
a proper algebraic subset &f (or, equivalently, is nowhere dense ). There are two
natural ways of generalizing this property of irreducible components to the analytic case.
For a morphismf; : Xe — Y, of germs of analytic spaces (witf}, irreducible), one can
either consider the components of the source that are mapped into nowhere dense subgerms
of the target (thgeometric verticatomponents), or the components that are mapped into
proper analytic subgerms of the target (#igebraic verticalcomponents).

The geometric approach has provedto be a very powerful tool in analytic geometry; e.g.,
in work of Kwiecinski [9], Kwiecihski and Tworzewski [10], and Galligo and Kwiéski
[6]. Note that in principle the existence of thégebraic verticalcomponents is a weaker
condition than the presence of theometric verticabnes. Indeed, angigebraic vertical
component (over an irreducible targetpisometric verticglsince a proper analytic subset
of a locally irreducible analytic set has empty interior. The converse is not true though, as
can be seen in the following example of Osgood (cf. [7, Kap. Il, 85]):

fiC?s (x,y) (x,xy,xyey) e C3.

Here the image of an arbitrarily small neighbourhood of the origin is nowhere defiSe in
but its Zariski closure has dimension 3 and therefore the image is not contained in a proper
locally analytic subset of the target.

Remark 1.1. On the other hand, the algebraic approach has an advantage that all the
statements abouwtlgebraic verticalcomponents (as opposed geometric verticgl can

be restated in terms of torsion freeness of the local rings. Narfielyfs — ¥, has no
(isolated or embeddgdailgebraic vertical components if and only if the local ri6ity ¢ is

a torsionfreeOy ,-module

In view of Remark 1.1, an interesting question is under what conditions are the two
approaches equivalent. In the next section we show that one can expect a positive answer
to this question under some minor constraints on the source space. Our main result,
Theorem 2.2, gives a criterion for openness in termgeofical components in fibre powers
under the assumption that the source be puredimensional. The result is a consequence of
our Proposition 2.1. Though technical, this proposition is interesting in itself and plays an
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important role in providing a relationship between the isolated irreducible components in
the fibre powetxé'{’j, of X¢ overY,, and a filtration oft” by the fibre dimension of .

As we show in Example 2.5, the geometric and the algebraic approaches are not
equivalentin general; that is, there are examples of bad behaviour of analytic mappings that
can be detected by meansggfometric verticatomponents but not by tregebraicones.

The fundamental reasons for this are that, in generahlebraic verticacomponents do

not detect a hidden Gabrielov irregularity, and that a fibre power of a regular map may itself
be irregular. These are the main obstructions to extending resulieametric vertical
components talgebraic verticalones. Section 3 is devoted to clarifying the problem.

In the last section we take on the problem of flatness. We briefly discuss criteria for
flatness in terms ofertical components of fibre powers and give a generalization of results
on flatness by Auslander and by the author (see Theorem 4.3). We also raise an open
question of reformulating the Galligo—Kwiéski criterion as a statement abalgebraic
verticalcomponents. As follows from our result on openness, in the context of flatness the
most important role is played by trembedded@omponents in the fibre powers. Thus, in
order to strengthen the Galligo—Kwiéski theorem one needs to understand behaviour
of the embeddedlgebraic vertical components and their relationship withettmedded
geometric vertical components, which is still unclear.

2. Vertical componentsand openness

We begin with a technical observation carrying the kernel of all the subsequent results.
In Sections 2 and 3 we will always keep the following assumptions: frefiXs — Y,
be a morphism of germs of analytic spaces,Xetbe of pure dimensiom, and letY,
be irreducible of dimension. Let V be a locally irreducible neighbourhood gfin Y,
and letU be a neighbourhood of in X such thatf(U) c V andU =Uy U --- U Uj
consists of finitely many isolated irreducible components of dimensighroughé that
are precisely the representativeslinof the isolated irreducible components of the germ
Xe. (In Sections 2 and 3 we are not interested in the nilpotent structuke .an fact, if
one takes into account the embedded components as well, one obtains criteria for flatness
instead. See Section 4 for details.)

Let fbd, f = dim, f~1(f(x)) be the fibre dimension off at a point. Let! =
min{fbd, f: x € U} and letk = maxfbd, f: x € U}. Forl < j <k, defined; =
{x e U: fbd, f > j}. Then, for eachj, A; is analytic inU (by the Cartan-Remmert
Theorem, see [12]) and/ = A; D Aj41 D --- D Ay. Define B; = f(A)) ={y e V:
dim f=1(y) > j}, for I < j < k. Note that, except foB, (cf. proof of Proposition 2.1
below), theB; may not even be semianalytic in general. Nonetheless, there is an interesting
connection between the filtratiorh > B; © B;+1 D --- D Bx and the isolated irreducible
components of thath fibre powert/"} that we describe below. The induced map from
U to v will be denoted byf ™, ande ™ = (¢, ..., &) e U,

Proposition 2.1. Under the above assumptions, &t = Ui Wi be the decomposition
into finitely many isolated irreducible components throggh. Then
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(a) Foreachj =1, ..., k, there exist components; 1. ..., W;, ,, of U™ such that

Pj

Bi=J r"wi .

g=1

(b) If y € B; with dimf=1(y) =s (s > j), Z is an irreducible component of the
fiore (f")~1(y) of dimensionns, and W is an irreducible component of/ !
containingZ, then (W) c B,.

Proof. Fix j > 1+ 1 (the statement is trivial fof =/ as B, = f(U)). Pick anyy € B;.
Then dimf~1(y) = s for somes > j. Let Z be an irreducible component of the fibre
(f")~1(y) of dimensioms, and letW be an irreducible component bf"} containingZ.
We will show thatf "} (W) c B;.

Suppose to the contrary thit N (U™ \ (f")~1(B;)) # @, that is, suppose that there
existsz = (x1,...,x,) € W such thatf(x;) e V\ B; fori =1,...,n. Then fbd, f <
j—1,i=1,...,n, and hence fbdf'"} <n(j — 1) = nj — n. In particular, the generic
fibre dimension off"}|W is not greater thanj — n. Since rankf " |W) < dimV =n,
thendimW < (nj —n) +n=nj.

Now we haveW D Z, dimW < nj, dimZ = ns > nj, and bothW andZ irreducible.
This is only possible wherW = Z, and hencef™ (W) = f"(z) = {y} c B,

a contradiction. Thereforg "} (W) c Bj, which completes the proof of part (b) of our
proposition.

Part (a) follows immediately, since for anye B; and any irreducible compone#tof
(f"H~1(y) of the highest dimension, there exists an isolated irreducible comp@neit
U™ that containZ. O

Now we are ready to establish our criterion for openness:
Theorem 2.2. Let f: : X — Y, be a morphism of germs of analytic spaces. Ketbe

puredimensional and lef, be irreducible of dimension. Then the following conditions
are equivalent

(i) f:isopen,
(i) Xé’}j} has no isolated geometric vertical components,

(iii) Xé’(l,f, has no isolated algebraic vertical components.

Remark 2.3.In light of Remark 1.1, the equivalence &} (iii) in the above theorem could
be restated as follows:

fe 1 X¢ — Yy is openif and only if theeducedocal ring (Ox i g )red IS a torsionfree
Oy,,-module

(Compare with Theorem 4.2 and Remark 4.6 in Section 4.)
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Proof of Theorem 2.2. First, note that iff; : X — Y, is open, then

fg{{li}> :Xélg) - Y
is open for every > 1, and hence every isolated irreducible componemé@f is mapped
onto ¥,,. This proves (i}= (ii). The implication (ii)= (iii) is trivial, as everyalgebraic
vertical component igeometric verticabver an irreducible target (see Section 1).

For the proof of (iii)= (i) we assume that ditki = m and suppose that is not open.
LetV andU = U1 U---UU;, be as before. Considerthe set= Ay = {x € U: fbd, f =k}.
ThenA is analytic inU, andg € A as the fibre dimension is Zariski upper semi-continuous.
Since the fibre dimension of is constant or, it follows by Remmert’s Rank Theorem
(see [12]) that for arbitrarily small neighbourhoﬁd)fé inU, f(ljﬂA) is locally analytic
in V, of dimension dira A — k. Without loss of generality can assume tBat= f(A) is
analytic inV (by shrinkingV andU if necessary).

Observe thatBy is a proper analytic subset oV: First, notice thatt cannot be the
generic fibre dimension for all the componebts, . .., U; simultaneously, since thefi
would be open. Hence, for somje< s, the generic fibre dimension of|U; is at most
k —1, and therefore dif > dimU; — (k— 1) =m —k + 1.

Let A= Al U ... U A7 be the decomposition of the sgt into isolated irreducible
components. Fix < g. The set

Al =RegA')\ | ] A/

J#i

is open inA. Leta € A" and letZ be an irreducible component of the fibfe1(f(a))
of dimensionk containinga. ThenZ N A’ is open inZ, and hence of dimensidn Since
this is true for an arbitrary point from an open subset of the componeiif the generic
fibre dimension off |A’ equalsk and dimf (A?) < m —k, as dimA’ < dimU = m. Thus,
dim f(A) =dimUJ?_, f(A") <m —k, whereas din¥ >m — k + 1, soBx = f(A) must
be properly contained iW .

Finally, observe that) € By, as¢ lies in A. Let Z be an irreducible component
of the fibre (f")~1(») of dimensionnk, and letW be an irreducible component of
U containingZ. Then by Proposition 2.1(b)f "} (W) c Bi, henceW is algebraic
vertical. O

Remark 2.4. Note that since openness is a local property, Theorem 2.2 can easily be
“globalized” to the case of an analytic map: X — Y of analytic spaces, wher&

is puredimensional and is locally irreducible of dimensiom. Thus, our result is a
stronger version of the theorem by Kwiéski and Tworzewski asserting that openness
is equivalent to the lack ajeometric verticatomponents in theth fibre powerx " (see

[10, Theorem 3.2]).

However, unlike withgeometric verticatomponents, the puredimensionality constraint
on X in our theorem is unavoidable. ¥ is not puredimensional, it may happen that the
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exceptional fibres of one component are generic for a component of higher dimension,
and therefore they do not give rise to an isolatdgebraic verticalcomponent in any

fibre power. This phenomenon is illustrated in the following example, where not only is
the morphismf not open, but also it is not even regular in the sense of Gabrielov when
restricted to one of the components (cf. Section 3).

Example 2.5. Let X = X1 U X, whereX1 = {(x,y,s,1,z7) € C° s =t =z =0} and
Xo={(x,y,s,1,27) € C?% x =0}. Definef: X - Y =C3 as

f,y,s.t,2)=(x+s,xy+1,xye” +2).

Observe that (the germ at the origin of) X1 is an Osgood mapping and hence it is
not regular in the sense of Gabrielov. Therefgrés not open. But the exceptional fibre
{x =s =t =z=0} of f|X1is in no sense exceptional fgi| X,. One can easily verify
that in any fibre power ok overY, any isolated (!) irreducible component is eitiperrely
geometric vertical (with the image equal to that ©jfX1) or maps onto (the germ at the
origin of) Y and so is not vertical in neither sense.

Remark 2.6. By Theorem 2.2, the existence of isolatgeometric verticacomponents
in Xé'{’}, is equivalent to the existence of isolatelgebraic verticalcomponents, provided
X¢ is puredimensional. Nevertheless, it is not true that every isolggedhetric vertical
component inXé'{’j, is algebraic vertical As we show in Proposition 3.1 and Example 3.3
at the end of the next section, this is not even true in the case of a smooth domain.

3. Fibrepowersand Gabrielov regularity

In this section we show that the fibre product doesn’t behave well with respect to
Gabrielov regularity. Recall that a morphisfa: X — 1, of germs of analytic spaces
is calledGabrielov regularif dim,, f(Z) = dim, f(Z) for arbitrarily small representative
Z of X at&, wheref (Z) denotes the Zariski closure ¢f(Z) in a representative df atn
(see, e.g., [13, 81]).

The following result is an immediate corollary of Proposition 2.1. Defifie-
{y € V: dim f~1(y) > I}, where as before= min{fbd, f: x € U}. Then dimS < dimV,
sinceU is puredimensional.

Proposition 3.1. Suppose thadim, S = n, whereS denotes the Zariski closure §fin V.
Then Xé'{’}, contains an isolateghurely geometriosertical component, i.e., a geometric
vertical component which is not algebraic vertical.

As a consequence, there exist Gabrielov regular mapping&: — Y, such that, for
somei > 1, f;f,}, is not Gabrielov regular when restricted to one of the isolated irreducible
components (see Example 3.3 below).
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Proof of Proposition 3.1. By Proposition 2.1, there exist irreducible components
Wi, ..., W, of U such that

p
s=J " w.

i=1

(Recall thatS = B;;+1 according to the notation from Proposition 3.1.) We claim that
dim, "} (W;) =n for somej € {1, ..., p}. Indeed, if dim, 7 (W;) < n for all i, then
we would have

P
n=dim, § =dim, |_J £ (W;) = max{dim, f0(W,): i =1.....p} <n,
i=1

a contradiction. So obtainddl; is not algebraic vertical, and it is geometric vertical, since
dim, fW(W;) <dim, S <n. O

The proposition yields a necessary and sufficient conditionxfgj}, having purely
geometric vertical components in the case of dominating mappings:

Corollary 3.2. Let f¢ : X¢ — Y, be a morphism of germs of analytic spaces viithbeing

of pure dimensiom andY, being irreducible of dimensiom, and assumg is dominating,
i.e.,m—1=n. ThenXé’},,}} has an isolated purely geometric vertical component if and only
if (the germ at; of) Y equals(the germ at; of) the Zariski closure of.

Proof. LetV andU be as before. If dijiS < n, then there exists a proper locally analytic
subsetV C V containings and such that dimV < n.

Then, for any isolated componeiitof U "}, eitherf "} (W) c Sor wn(f"H=L(v\ $)
= (. In the first casef "} (W) c V,soW is algebraic vertical. In the second case there ex-
ists a point = (x1, ..., x,) € Wsuchthatfbd f=1,i =1,...,n, hence theimage under
f of an arbitrarily small neighbourhood af has nonempty interior it¥ (by Remmert’s
Rank Theorem and sinoe — I = n). Therefore, the image undgi”} of an arbitrarily
small neighbourhood af has nonempty interior i, i.e., W is not a vertical component
in neither sense. O

Finally we show an example of a Gabrielov regular mappfndd — Y, with smooth
X andY, and such that the Zariski closure$e&qualsY . By Proposition 3.1 above, the top
fibre power ofX overY has an isolated irreducibfrely geometric verticatomponent.
This shows that a fibre product of a regular map may itself be nonregular when restricted
to an irreducible component.

Example3.3. Let X = Y = C* and definef as follows

(x,v,5,0) > (x, (x + )y, x°y%e”, x? 2pyAtxe’) 4 o).
y y y y
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Itis easy to check that the generic fibre dimensioif @quals 0, hence the generic rank of
fis 4, and sof is Gabrielov regular.

On the other hands contains the image of the s&€ x {0} x C, consisting of points
(21,22, 23, z4) of the form(x, xy, x2y2eY, x2y2ey1+xe)) whose Zariski closure equals
C* (cf. [7, Kap. I, §5]). Hence als§ = C*.

4. Vertical componentsand flatness

In this section we discuss briefly the results relating flatness of a morphism of germs
of analytic spaces and vertical components in fibre products. Our point of departure is the
fundamental result of Auslander:

Theorem 4.1 [2, Theorem 3.2].Let R be an unramified regular local ring of dimension
n > 0and letM be a finiteR-module. Ther/ is R-free if and only if the:th tensor power
M®" is a torsionfreeR-module.

(Auslander’s result was later extended by Lichtenbaum [11] to arbitrary regular local
rings.)

Recall that in the case of finite modules, freeness is equivalent to flatness. Also, for
finite modulesM and N over a local analytic algebrg&, their analytic tensor product,
denoted byM ®x N, equals the ordinary on#f @ z N. Thus, the following result obtained
by Kwiecihski can be viewed as a generalization of Theorem 4.1 to arbitrary (nonfinite)
analytic mappings.

Theorem 4.2 [9, Theorem 1.1]Let f:: X — Y, be a morphism of germs of analytic
spaces and assume thigt is irreducible. Then the following conditions are equivalent

(i) feisflat,
(i) for anyi > 1, the canonical mapf;{’,}, :Xé’g, — Y, has no(isolated or embeddgd
algebraic vertical components.

Note that by our Remark 1.1, the latter condition is equivalent to saying that

foranyi > 1, theith analytic tensor power @y ¢ overOy ,, Ox ¢ ®@M e ®Om Oxe
(i timeg is a torsionfreeDy, ,-module

Observe that the implicatioi) = (ii) in Theorem 4.2 is immediate, since flatness of
fe implies thatfs{f,}} is flat for alli > 1, as flatness is preserved by any base change (see
[8, 86, Proposition 8]) and composition of flat maps is flat. Therefore, the interesting part of
the theorem igii) = (i). It turns out that this implication can be significantly strengthened
and one can give an explicit bound in condition (ii) expressed in terms of Hironaka’s local
flattener.

Recall that for a morphisny; : X — Y, of germs of analytic spaces and a finite
Oy :-module M, there exists a unique maximal germ of an analytic subspacé Y,
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such thatOp ®<9y,n M is Op-flat. We call the germP the flattenerof M (see, e.g.,
[3, Theorem 7.12]).

Here we generalize the result of [1] to finite modules o¥gr¢, establishing a clearer
connection with Theorem 4.1. In particular ¥t = Y,,, then we obtain a generalization of
Auslander’s original result to the case of nonregular rings.

Theorem 4.3 (cf. [1, Theorem 1.1])Let f¢ : X — ¥, be a morphism of germs of analytic
spaces, letr;, be irreducible, and letM be a finiteOy ¢-module that is noOy ,-flat.
Let Q be the ideal inOy,, of the flattener of\ and letd be the minimal number of
generators o). Then theith analytic tensor power off, M &o,, -+ ®o,, M (d timeg
has nonzero torsion ovedy .

The proof is a straightforward generalization of that of [1, Theorem 1.1].

Another remarkable generalization of Theorem 4.1 to the case of nonfinite mappings
was obtained by Galligo and Kwidwki under the original regularity assumption of
Auslander.

Theorem 4.4 [6, Theorem 6.1]. Let f:: X — Y, be a morphism of germs of analytic
spaces. LeX¢ be puredimensional and 1&t, be smooth of dimensien Then the following
conditions are equivalent

(i) feisflat,
(ii)y the canonical map‘s{(’,’?}} :Xé’}n}} — Y, has no(isolated or embeddgdieometric vertical
components.

(The result was first proved in the algebraic case,sfet 2 and for arbitraryX, by
Vasconcelos, see [14, Proposition 6.1].)

Recall that in the algebraic context the lack of vertical components is equivalent to
torsionfreeness. That is, the algebraic version of the Galligo—Khs&ttheorem reads as
follows:

Let A be a regular local ring of dimensiomand letB be a puredimensional noetherian
A-algebra. ThenB is A-flat if and only if thenth tensor power ofB over A,
B®4---®4B (ntimeg is a torsionfreed-module.

Note that, although Theorem 4.4 combined with primary decomposition algorithms
provides a useful computer algebra tool for testing flatness, it cannot be rephrased in terms
of torsionfreeness of analytic tensor powergx{ ¢, as the vertical components in question
aregeometricand notalgebraic Also, we do not know a proof of the algebraic version of
Theorem 4.4 (for > 2) that does not involve transcendental methods. Therefore, a natural
guestion arises: Can one replageometric verticaby algebraic vertical(possibly in a
higher fibre power oX¢) in Theorem 4.47? Our results from previous sections allow to put
some restrictions on this problem:
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Remark 4.5. It is enough to restrict our attention to the case wifenX: — Y, is open.

For, if f¢ is not open, then there exists @olatedalgebraic vertical component mij{])

by Theorem 2.2. Moreover, if a morphisfh: X — Y, is open and nonflat, then a vertical
component occurring iv(é’}j} must be embedded. Indeed fif is open, thenfgzi}) is open
fori > 1, and hence all the isolated components are mappedignto

It seems plausible that one could generalize the Galligo—Knws&etheorem exploiting
techniques similar to those from Section 2. By the above remark though, one would need
to understand the relationship between existence oéthieeddedieometric vertical and
theembeddedlgebraic vertical components in fibre powers. This seems to be much more
difficult than describing the connection between the isolated components.

Finally, observe that in the (very special) case wifgn: is Cohen—Macaulay, our
Theorem 2.2 yields the following nice equivalence:

Remark 4.6. Assume thatDy ¢ is Cohen—Macaulay anH, is smooth of dimension.
Then, by [5, Proposition 3.20]f: : X — Y, is flat if and only if it is open, that is:
fe 1 Xe — Yy is flatif and only if(Ox ) gm)red iS a torsionfreeOy ,-module
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