Assignment 1

due: September 28

1. Find the domain and range, and sketch the graph of the function:
(a) $f(x)=2-2^{-x}$
(b) $g(x)=e^{|x+1|}$.
2. Find the domain and range of the function f. Justify your answer.
(a) $f(x)=\ln \left(\arctan \left(e^{x}-2018\right)\right)$
(b) $f(x)=\sin \left(\sqrt{\pi x-4 x^{2}}\right)$
(c) $f(x)=\ln \left(\frac{e^{x}+e^{-x}}{2}\right)$.
3. (a) Use the definition of injectivity to show that, if functions f and g are injective, then so is the composite function $g \circ f$.
(b) Use the definition of the inverse function to show that, if functions f and g are injective, then the inverse $(g \circ f)^{-1}$ is equal to the function $f^{-1} \circ g^{-1}$.
(c) Use part (b) to find the inverse of the function

$$
h(x)=\frac{\ln x+3}{5-\ln x} .
$$

4. Determine which of the following functions are injective. Justify your answers.
(a) $y=\frac{4 x-1}{2 x+3}$
(b) $y=\frac{1}{1+e^{-x}}$
(c) $y=x^{3}-x$
(d) $y=\arcsin (\ln x)$.
5. Find the inverses of functions from Problem 4, whenever possible. For each inverse function, determine its domain and range. Justify your answers.
