Assignment 2

due: October 15

1. Use the Squeeze Theorem to find the following limits. Justify your answers.
(a) $\lim _{x \rightarrow 1^{-}} \sqrt{1-x^{2}} \cdot \sin ^{5}\left(\ln \left(1-x^{2}\right)\right)$
(b) $\lim _{x \rightarrow \infty} \sin \left(\frac{\pi}{x}\right) \cdot e^{\cos (\pi x)}$
(c) $\lim _{x \rightarrow \infty} \sqrt{x} \cdot \sin \left(\frac{1}{x}\right)$.
2. Show that $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$.
[Hint: Use the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.]
3. Find $\lim _{x \rightarrow 0} \frac{\sin (\sin (\sin x))}{x}$. Justify your answer.
4. Use the Intermediate Value Theorem to show that the following equations have a solution in a given interval I. Justify your answers.
(a) $x^{5}-4 x^{2}+e^{x}=0, \quad I=(-1,1)$;
(b) $e^{\sin x}-\sin (\cos x)=1, \quad I=\left(0, \frac{3 \pi}{2}\right)$.
[Hint: Consider the restriction to a suitable subinterval of I.]
5. Use the definition of derivative to find derivatives of the following functions:
(a) $f(x)=\cos x$
(b) $g(x)=\frac{1}{x^{2}}$.
