Assignment 3

due: October 31

- 1. Suppose f(x) is a twice differentiable function. Find f''(1), if $f(x)+x^2(f(x))^3=-2$, f(1)=-1, and $f'(1)=\frac{1}{2}$. Show your work.
- 2. Find derivatives of the following functions. Show your work.
 - (a) $y = \arctan(\sqrt{\sin x})$
 - (b) $y = x \cdot \arccos x \sqrt{1 x^2}$
 - (c) $y = \arcsin\left(\frac{x}{a}\right)$, where a > 0 is a constant
 - (d) $y = \log_a x$, where a > 0, $a \neq 1$.
- **3.** Find the equation of the tangent line to the curve $x^4 + \cos y = e^x \sin y$ at the point $(0, \frac{\pi}{4})$. Show your work.
- **4.** Find f''(0), if $f(x) = e^{\cos x} g(x)$, where g(x) is a twice differentiable function satisfying g(0) = 2, g'(0) = 1, and g''(0) = 3. Show your work.
- **5.** Find all points at which the curve $x^4 + y^4 = 16$ has a vertical tangent. Show your work.