Assignment 3

due: October 31

1. Suppose $f(x)$ is a twice differentiable function. Find $f^{\prime \prime}(1)$, if $f(x)+x^{2}(f(x))^{3}=-2, f(1)=-1$, and $f^{\prime}(1)=\frac{1}{2}$. Show your work.
2. Find derivatives of the following functions. Show your work.
(a) $y=\arctan (\sqrt{\sin x})$
(b) $y=x \cdot \arccos x-\sqrt{1-x^{2}}$
(c) $y=\arcsin \left(\frac{x}{a}\right)$, where $a>0$ is a constant
(d) $y=\log _{a} x$, where $a>0, a \neq 1$.
3. Find the equation of the tangent line to the curve $x^{4}+\cos y=e^{x} \sin y$ at the point $\left(0, \frac{\pi}{4}\right)$. Show your work.
4. Find $f^{\prime \prime}(0)$, if $f(x)=e^{\cos x} g(x)$, where $g(x)$ is a twice differentiable function satisfying $g(0)=2$, $g^{\prime}(0)=1$, and $g^{\prime \prime}(0)=3$. Show your work.
5. Find all points at which the curve $x^{4}+y^{4}=16$ has a vertical tangent. Show your work.
