Assignment 4

due: November 20

1. Find the following limits (using l'Hospital's Rules). Show your work.
(a) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{\ln x}}$
(b) $\lim _{x \rightarrow 0^{+}} x^{x}$
(c) $\lim _{x \rightarrow 1^{-}}(1-x) \tan \left(\frac{\pi x}{2}\right)$
(d) $\lim _{x \rightarrow 1}\left(\frac{\sin x}{\sin 1}\right)^{\frac{1}{x-1}}$
(e) $\lim _{x \rightarrow \infty}\left(\frac{1+x}{2+x}\right)^{\frac{1-\sqrt{x}}{1-x}}$
(f) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$
(g) $\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{\frac{1}{x}}$.
2. Find derivatives of the following functions. Show your work.
(a) $y=x^{f(x)}$, where $f(x)=e^{x}$
(b) $y=\left(\frac{\sin (m x)}{\sin (n x)}\right)^{g(x)}$, where $g(x)=(m x)^{n x}$.
3. Prove the Mean Value Theorem as a corollary to Rolle's Theorem.
[Hint: Given a function $f(x)$ continuous on the interval $[a, b]$ and differentiable on (a, b), consider the function $h(x)$ defined as

$$
h(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a} \cdot(x-a)
$$

Verify that $h(x)$ is continuous on $[a, b]$ and differentiable on (a, b), and satisfies $h(a)=h(b)$. Thus, $h(x)$ satisfies the assumptions of Rolle's Theorem. Use the conclusion of Rolle's Theorem for $h(x)$ to complete the proof.]
4. A function f is called weakly increasing when $x_{1}<x_{2}$ implies $f\left(x_{1}\right) \leq f\left(x_{2}\right)$, for any x_{1}, x_{2} in the domain of f. Similarly, f is weakly decreasing when $x_{1}<x_{2}$ implies $f\left(x_{1}\right) \geq f\left(x_{2}\right)$, for any x_{1}, x_{2} in the domain of f.
Let f be a function differentiable on an open interval I. Use the Mean Value Theorem to prove the following statements.
(a) If $f^{\prime}(x) \geq 0$ for all $x \in I$, then f is weakly increasing on I.
(b) If $f^{\prime}(x) \leq 0$ for all $x \in I$, then f is weakly decreasing on I.

