Assignment 4 due: November 20

1. Find the following limits (using l'Hospital's Rules). Show your work.

(a)
$$\lim_{x \to \infty} \frac{e^x}{x^{\ln x}}$$

(b) $\lim_{x \to 0^+} x^x$
(c) $\lim_{x \to 1^-} (1-x) \tan(\frac{\pi x}{2})$
(d) $\lim_{x \to 1} \left(\frac{\sin x}{\sin 1}\right)^{\frac{1}{x-1}}$
(e) $\lim_{x \to \infty} \left(\frac{1+x}{2+x}\right)^{\frac{1-\sqrt{x}}{1-x}}$
(f) $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$
(g) $\lim_{x \to \infty} (e^x + x)^{\frac{1}{x}}.$

2. Find derivatives of the following functions. Show your work.

(a)
$$y = x^{f(x)}$$
, where $f(x) = e^x$
(b) $y = \left(\frac{\sin(mx)}{\sin(nx)}\right)^{g(x)}$, where $g(x) = (mx)^{nx}$.

3. Prove the Mean Value Theorem as a corollary to Rolle's Theorem.

[Hint: Given a function f(x) continuous on the interval [a, b] and differentiable on (a, b), consider the function h(x) defined as

$$h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (x - a).$$

Verify that h(x) is continuous on [a, b] and differentiable on (a, b), and satisfies h(a) = h(b). Thus, h(x) satisfies the assumptions of Rolle's Theorem. Use the conclusion of Rolle's Theorem for h(x) to complete the proof.]

4. A function f is called *weakly increasing* when $x_1 < x_2$ implies $f(x_1) \le f(x_2)$, for any x_1, x_2 in the domain of f. Similarly, f is *weakly decreasing* when $x_1 < x_2$ implies $f(x_1) \ge f(x_2)$, for any x_1, x_2 in the domain of f.

Let f be a function differentiable on an open interval I. Use the Mean Value Theorem to prove the following statements.

- (a) If $f'(x) \ge 0$ for all $x \in I$, then f is weakly increasing on I.
- (b) If $f'(x) \leq 0$ for all $x \in I$, then f is weakly decreasing on I.