Assignment 5 due: December 7

- 1. (a) Prove that $\sum_{k=1}^{n} k^{3} = \frac{n^{2}(n+1)^{2}}{4}$. (b) Use the formulas for $\sum_{k=1}^{n} k$, $\sum_{k=1}^{n} k^{2}$ and $\sum_{k=1}^{n} k^{3}$ to find $\sum_{k=1}^{n} k^{4}$. [Hint: Consider the sum $\sum_{k=1}^{n} [(1+k)^{5} - k^{5}]$.
- 2. Evaluate the following sums. Show your work.

(a)
$$\sum_{k=1}^{m} \left(\sum_{l=1}^{n} \frac{k}{l(l+1)} \right)$$

(b)
$$\sum_{k=1}^{n} \left(\frac{2018}{\sum_{l=1}^{k} l} \right).$$

3. Find the following limit. Show your work.

$$\lim_{n \to \infty} \left(\sqrt{\left(\sum_{i=1}^n i\right)} - \frac{n\sqrt{2}}{2} \right) \,.$$

4. Find the limit $\lim_{n\to\infty} S_n$, where

$$S_n = \sum_{k=1}^{n-1} \frac{k^4}{n^5} \,.$$

[Hint: Consider the function $f(x) = x^4$. Interpret S_n as the sum of areas of certain rectangles with base of length 1/n each, and one of the vertices lying on the graph of f. Use it to show that, for every natural $n \ge 2$, $S_n \le \int_0^1 f(x) dx$ and $S_n \ge \int_0^{1-1/n} f(x) dx$. Finally, apply the Squeeze Theorem.]

5. Let f be any linear function on a closed interval [a, b] (i.e., a function of the form f(x) = Ax + B for some $A, B \in \mathbb{R}$). Show that

$$\int_a^b f(x) \, \mathrm{d}x = (b-a) \cdot f(\frac{a+b}{2}) \, .$$

6. Let f be a function defined (piecewise) on the interval [1, 2018] by the formula

$$f(1) = \frac{2}{3}$$
 and $f(x) = \frac{2}{k(k+2)}$, for $x \in (k, k+1]$, where $k = 1, \dots, 2017$.

Find the area of the region bounded by the graph of f, the x-axis and the lines x = 1 and x = 2018.