Assignment 5

due: December 7

1. (a) Prove that $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
(b) Use the formulas for $\sum_{k=1}^{n} k, \sum_{k=1}^{n} k^{2}$ and $\sum_{k=1}^{n} k^{3}$ to find $\sum_{k=1}^{n} k^{4}$. [Hint: Consider the sum $\sum_{k=1}^{n}\left[(1+k)^{5}-k^{5}\right]$.
2. Evaluate the following sums. Show your work.
(a) $\sum_{k=1}^{m}\left(\sum_{l=1}^{n} \frac{k}{l(l+1)}\right)$
(b) $\sum_{k=1}^{n}\left(\frac{2018}{\sum_{l=1}^{k} l}\right)$.
3. Find the following limit. Show your work.

$$
\lim _{n \rightarrow \infty}\left(\sqrt{\left(\sum_{i=1}^{n} i\right)}-\frac{n \sqrt{2}}{2}\right)
$$

4. Find the limit $\lim _{n \rightarrow \infty} S_{n}$, where

$$
S_{n}=\sum_{k=1}^{n-1} \frac{k^{4}}{n^{5}}
$$

[Hint: Consider the function $f(x)=x^{4}$. Interpret S_{n} as the sum of areas of certain rectangles with base of length $1 / n$ each, and one of the vertices lying on the graph of f. Use it to show that, for every natural $n \geq 2, S_{n} \leq \int_{0}^{1} f(x) \mathrm{d} x$ and $S_{n} \geq \int_{0}^{1-1 / n} f(x) \mathrm{d} x$. Finally, apply the Squeeze Theorem.]
5. Let f be any linear function on a closed interval $[a, b]$ (i.e., a function of the form $f(x)=A x+B$ for some $A, B \in \mathbb{R})$. Show that

$$
\int_{a}^{b} f(x) \mathrm{d} x=(b-a) \cdot f\left(\frac{a+b}{2}\right) .
$$

6. Let f be a function defined (piecewise) on the interval $[1,2018]$ by the formula

$$
f(1)=\frac{2}{3} \quad \text { and } \quad f(x)=\frac{2}{k(k+2)}, \quad \text { for } x \in(k, k+1], \text { where } k=1, \ldots, 2017
$$

Find the area of the region bounded by the graph of f, the x-axis and the lines $x=1$ and $x=2018$.

