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10.1 Since {f,} is Cauchy in measure, there exists a subsequence {f,, } such that

,U,({J} : |fnk+1 - fnk‘ > 1/2k}) < 1/2k

(just choose a = & = 1/2* and apply the definition of being Cauchy in measure).

So if we denote Ej, :={x : | fu,,, — fue | > 1/2F} we have p(Ey) < 1/2%. Since

U By C U E], it follows that p(Mpe, U2, Ej) = limy o p(U2,E)) <

limy, o0 D724 1/2 = limy 00 1/2"71 = 0. Let B := M2, U2, B Ifo & E

there exists k s.t. x ¢ U2, Fj, hence for all j, 1 > k | fo, (@) = fr ()| < 1/2871,

{fn.(z)} is a Cauchy sequence. Then, for x € E, lim;_, fn,(z) exists.
Define

(o) = {lim‘jﬁoo fn; (), fx € E
0, ifxeF,

which is well defined and measurable (we leave this last statement to be proved

by the reader, as an exercise). It follows that f,, — f ae. as j — oo,

since ,u(E) = 0. For a fixed j and = & U2, El we have as we proved above,

‘fn] — fu(x )|§1/2J 1 VlZ],hence‘fnJ ‘—|fn —hml_mofm( )|:
Hmy_so0 | fo; (2) = fr(2)] < 1/2770 Tt follows that {x : |fn — f(@)] >
1/2971} € U, Ey, hence p({x : |fnj — flz)] > 1/271}) < ,u(UlijEl) <
1/277" which converges to 0 as j — oo. This proves that the subsequence {fn,}
converges to f in measure. Of course, we have | f,(z) — f(z)| < | fu(z) — fu,(x)|+

[ (0) = F] s ) = 0)] > 0 hen | ) — £ (O] 2 /200 ) = 00| =
a/2. This implies that {z : | f.(z) — f(z)] > a} C {z : |fulz) = fo, (@ )‘ >

a/2} U{z : | fu,(z) — f(x)| = a/2}. Applying the facts that {f,} is Cauchy in
measure and f,,. converges in measure to f, the sets on the right hand side have
arbitrarily small measure (for j,n large enough), which proves the statement.

10.2 The symmetry and nonnegativity of d are obvious. Also, d(f,g) = 0 implies
J1f=gl/Q+]|f—gl)du =0, hence | f — g| = 0 a.e. Lastly, for the triangle
inequality evaluate the expression D := d(f,h)+d(h,g)—d(f,g). After elemen-
tary calculations, we find that D has positive denominator and its numerator
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is given by | f —h[+|h—g|=|f —gl+|f —hl|h—g|+|h—g[[f — h| which
is nonnegative (apply the triangle inequality to the first three terms). Sup-
pose now that f, — f in measure. The function t — t/(1 + t) is increasing

|fn_f| |fn_f|
so, for all € > 0, d(f,, f :/—du:/ —————du +
( ) X1+|fn_f‘ |fn—f|<al+’fn_f|
/ Mdu < eu(X) + p(] fo — f| > €), where the last term con-
(famt1ze L [ o = [

verges to 0 as n — oo, because of the convergence in measure of f,. It follows
that lim,, . d(fp, f) < ep(X) for all € > 0, which implies lim, o d(fn, f) =0

since u(X) < oo. For the converse, fix ¢ > 0. Then j_ v{|fo—fl>¢€}) =
£
€ |fn_f| |fn_f|
I e U e e
1+€/{|fn—f|zs} {1 fa=flzey L+ [ fo = f] x L+ fa = f]
where we used that on {| f, — f| > £} we have [ fn = /] > _°

T+ |fu—f| " 1+e

Let {f,,} be a subsequence of {f,} such that [ f,, — liminf, . [ f, (such
subsequence always exists by the definition of liminf of a sequence of num-
bers). As a subsequence of a sequence converging in measure to f, {fn,}
converges in measure to f. Hence, there exists a subsequence {g,} of {f..}
(which we denoted as g, to avoid the proliferation of indices) that converges
to f ae. Also, [g, — liminf, , [ f, (as a subsequence of {f, }). So,
/f = Jirgogn = /liminfgn < liminf/gn = lim /gn = liminf/fn

n—o0 n—oo n—o0 n—oo
which proves the statement.

Denote by f, := xa, for all n and let {g,} be a subsequence of {f,} such
that g, — f a.e.. Every function g, satisfies ¢,(X) C {0,1}, where X is the
underlining set of the measure space. Then, f(X) C {0,1} a.e. since g, — f
a.e.. Let E = {zx € X : limy 00 gn(x) = f(x)}. Then, A := EN{f =1} =
Un Nim>n {gm = 1} is measurable and f = x4 a.e..

For every ¢ > 0 let F. be the measurable set on which f, converges to f
uniformly and u(F°) < €. Define A := O FY),,, for m € Z,, which is clearly
measurable. Then u(A) < p(FY,,) < 1/m for all m, hence u(A) = 0. If v ¢ A
then there exists m such that x € F},,, hence f,(x) — f(x). Since u(A) =0
this means that f, — f a.e..

It suffices to show the result for nonnegative functions in LP (for an arbitrary
function in LP apply the result to its positive and negative parts). Let f > 0
be such function and let us first suppose that 1 < p < co. By Proposition 5.14
in the textbook there is an increasing sequence of simple functions {s,} such
that lim, . s, = f. Clearly, the functions s, are in L? for all n (note that
in general a simple function is not necessarily in L?, for 1 < p < o0). Since
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sp < fand f > 0 we have | f — s,|" <|f|’ which is integrable since f € LP. By
the dominated convergence theorem we have lim,, , [ | f — s, |’ du = 0 which
proves the statement for 1 < p < oco. For p = oo, note that each element
of L*™ has a bounded representative so we can assume f to be bounded. By
reviewing the proof of Proposition 5.14, it is easy to see that, if f is bounded,
the convergence s,, — f is uniform (where {s,} are the simple function given
by Proposition 5.14), that is VM > 0,3ng s.t. Vn > ng|s, — f| < M. But this
easily implies that || s, — f|le — 0.

15.4 For 0 < & < || f||oo define A, :={z € [0,1] : [ f(z)| > || flloo —€}. Then || f, =
oy /A > (o 17Fdm) > > (fy (1l — 2PPdm)> = (1 o —
e)m(A.)Y? (of course, m(A,) is finite). This implies

timinf | £}, > /. (0.1)
pP—00

Let p > ¢ and note that | f[ < || f ||« a.e.. Then, || fl, = (foy [fI"* | £ dm)t/P <
1F 1o Sy 117 dm) 2 = || fllo || £ 114", which implies

limsup || flp < [[f |- (0.2)
pP—00

From (0.1) and (0.2) we get the statement.

15.6 We work in the real Lebesgue measure space. For the first case, let f(z) :=
# V. Then | fll, = (f |&Vaxun|* dm)Ye = (fo,,(1/2) dm)/7 = oo,
But || fll, = (f [o Y0 | dm)? = ([ (1/a)4dm) > < o0, s0 f € L7
but f ¢ L9. For the second case, it is easy to verify (similarly) thatf(x) :=
x_l/px(l,oo) is an element of L? but not one of LP.

5. We prove directly (b) since (a) follows from (b) by setting oy = -+ = a,, = 1/n.
Let X := {x1,...,2,} endowed with the c-algebra of all subsets of X and
the finite measure given by u(z;) := «;, i = 1,...,n. Define ¢(t) := €' and
f:X = Ras f(z;) :=log(y;), t = 1,...,n (note that, by hypothesis, we have
y; > 0 for all 7). By Jensen’s inequality applied to the convex function ¢ and

to f, we get
exp (Z o7} 10g(?/z’)> < Zai exp(log(yi))

i=1 =1

which leads to the desired inequality.

6. This is mostly the proof of Theorem 3.11 in Rudin’s Real and Complex Analysis.
First assume 1 < p < oo and let {f,} be a Cauchy sequence in L”(u). There is
a subsequence {f,,} such that

anz'+1 - fnz < 1/2Z (03)
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Define g, := Zle ’fni“ — fai| and g = Y%, ‘fni“ — fn; |- By (0.3) and
Minkowski’s inequality we get that ||gx|, < 1. By applying Fatou’s lemma to
{gF'} we also get that | g||, < 1. This means that g < co a.e. and implies that
the series

f = f’n1 + Z(fm-u - fm)
=1

converges absolutely a.e.. Extend f by making it equal to 0 for all x for which
the above series does not converge and notice that f,, = fo, + 30—, (fa, =),
hence f,, — f a.e. as k — oo. For p = o0, let A :={|fi| > || felloo}, Bmn ==
{Ifmo = ful > [ fn — fullso} and E := Ap U B,,,, for all k,m,n € Z,. Then
u(E) = 0 and the sequence {f,} converges uniformly to a bounded function f
on E° Thenlet f =0on E.

. The second inequality follows easily from the fact that /14 f2 < 1+ f (recall
that f > 0) and that p(X) = 1. For the first inequality notice that the function
x — 1+ 22 is convex. By Jensen’s inequality

\/1+(/deu)2s/xmdu

which proves the statement.

. Let m denote the Lebesgue measure on R.

(a) For all n € Z, define

1/n, if —n? <z <n?
0, otherwise.

Then, the functions f,, are simple and satisfy [ f,dm = (1/n) m([-n? n?)) =
2n?/n = 2n — oo as n — oco. On the other hand, || f|l« = 1/n and hence
| fllo = 0 as n — oo.

(b) The sequence of simple functions defined as
n, if —1/n? <z <1/n?,
() = / /
0, otherwise,

for all n € Z_, satisfies the requirements.

(c) Define the following sequence of continuous functions on [0, 1]:

n?z, if 0 <z <1/n,
hy(z) := 4 2n —n2x, if 1/n <2 <2/n,

0, otherwise.
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Notice that, for all n, the graph of h, consists in the two equal sides of
an isosceles triangle of height n and with base [0,2/n], together with the
segment [2/n, 1] (where h, = 0). Then, [ h,dm = fol/n n*zdz + ff/:(Qn —
n*z)dr = 1/2+2—2+1/2 = 1. Also, ||hy||ec = maxh, = h,(1/n) = n,
80 lim,,_yo0 || An |Joo = o0. Lastly, for every = € [0, 1] there exists n, € Z,
such that h,(x) = 0 for all n > n,, which implies that h,, — 0 pointwise,
as n — oo.



