Problem Set 1 January 17, 2018.

1. Let X be a non-empty finite set, and let A be a σ -algebra on X. Consider a relation on X:

$$x \sim y \Longleftrightarrow [x \in A \Leftrightarrow y \in A, \text{ for all } A \in \mathcal{A}]$$
.

- (i) Show that the above is an equivalence relation on X.
- (ii) Show that, for every $x \in X$, its equivalence class satisfies $[x]_{\sim} = \bigcap \{A \in \mathcal{A} : x \in A\}$ and $[x]_{\sim} \in \mathcal{A}$.
- (iii) Let E_1, \ldots, E_k be all the distinct equivalence classes in X modulo \sim . Show that $\mathcal A$ consists precisely of the empty set and unions of all sub-collections of $\{E_1, \ldots, E_k\}$ (i.e., $A \in \mathcal A$ iff $A = \emptyset$ or there exist $1 \leq l \leq k$ and $\{i_1, \ldots, i_l\} \subset \{1, \ldots, k\}$ such that $A = E_{i_1} \cup \cdots \cup E_{i_l}$).
- **2.** Exercises 2.1 and 2.3–2.8 from the text.
- **3.** Exercises 3.1, 3.2 and 3.4–3.7 from the text.