Problem Set 2 January 24, 2018.

- **1.** Exercises 3.8–3.10.
- **2.** Exercise 4.3.
- **3.** Exercise 4.15.
- **4.** Let X be a set. Let Δ be the collection of all outer measures on X, and let Λ be the collection of all pairs (\mathcal{M}, μ) such that \mathcal{M} is a σ -algebra on X and μ is a measure on \mathcal{M} . For any $\alpha \in \Delta$, let $(\mathcal{M}_{\alpha}, \alpha_c) \in \Lambda$ denote the pair consisting of α -measurable sets \mathcal{M}_{α} and the measure $\alpha_c := \alpha|_{\mathcal{M}_{\alpha}}$. For $(\mathcal{M}, \mu) \in \Lambda$, let $\mu^0 \in \Delta$ denote the effect of Caratheodory construction on μ . Prove the following:
 - (a) $(\alpha_c)^0 = \alpha$ iff α is regular.
 - (b) $(\mu^0)_c = \mu$ iff there exists a regular $\gamma \in \Delta$ such that $\mu = \gamma_c$.
 - (c) If μ is complete and σ -finite, then $(\mu^0)_c = \mu$.
 - (d) For every $\mu \in \Lambda$, we have $((\mu^0)_c)^0 = \mu^0$.

Remark: In the above problems, equality of measures is understood in the sense of functions; i.e., together with their σ -algebraic domains.