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4.2 Let ACR", n€Z, and let € > 0. We show first that there exist G, F' C R,
where G is open and F' is closed, such that I C A C G and

m(G\ A) <e/2, m(A\ F) <e/2. (0.1)

We know that m(A) = inf{m(U)| A C U,U open in R"}, hence there exists an
open set G C R" such that A C G and m(G) < m(A) + €/2. Since m(G) <
0o, we have m(G \ A) = m(G) — m(G N A) = m(G) — m(A) < ¢/2, which
proves the first part of (0.1). Next, since A¢ is also Lebesgue-measurable, by
what we proved above, there exists an open set G C R", A° C G, such that
m(G\ A°) < /2. Then F := G° is closed, F' C A and the second part of (0.1)
is satisfied. So, since G\ F = (G\ A)U(A\ F) and (G\ A)N(A\F) =9, we
have m(G\ F) =m(G\ A) + m(A\ F) <.

4.5 Let A C R" be Lebesgue-measurable. By definition, m(A) = inf{> ;- jm(R;) | A C
U2 o Rk, where all Ry, are rectangles in R™}. It is clear that m(Ry) is invariant
under translations, m(Ry) = m(Ry + x),Vk > 0, therefore m(A + z) = m(A).
Next, note that if R is a rectangle in R” then m(cR) = ¢*m(R), Yc > 0, because
we stretch each of the n sides of R by the same factor of ¢. This implies the
result.

4.6 (1) It is straightforward to see that B = ﬂ U A,,. Therefore, B is Lebesgue
N>1n>N
measurable as a countable intersection of countable unions of Lebesgue

measurable sets.
k

(2) For every k € Z,, let B, = ﬂ U A,,. Then, {Bj}32, forms a decreasing
N=1n>N
sequence such that By | B. Since By, C [0, 1], we have that m(By) < oo for
all £ > 1, and hence m(B) = klim m(By). By construction, Ay C By for all
—00

k > 1, hence m(By) > §, which implies that m(B) > 0.

(3) Let € > 0 be arbitrary. Since the series Y >~ m(A,) of non-negative real
numbers is convergent, one can choose N € N such that > > \m(A,) < e.
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Since every point x € B belongs to infinitely many of the A,,, there exists
some n(z) > N such that x € Ap(e), hence B C Up>nA,. It follows that
m(B) < m(U,sy An) < > o2 ym(A,) < e, which proves the statement,
because the £ was arbitrary.

(4) Define A,, :=[0,1/n], n € Z,. Then all A,, are Lebesgue measurable subsets
of [0,1] of measure m(A4,) = 1/n > 0,s0 > = m(A,) =", 1/n = .
On the other hand, since 1/n — 0, it follows that the only point in [0, 1]
that is in infinitely many sets A,, is 0, hence B = {0} and m(B) = 0.

Let € € (0,1) and define £ := (0,¢) UQ{c 1], where Q[ 1) is the set of all rational
numbers in [¢, 1]. Then, the closure of £ is [0, 1], because Q1] is dense in [e, 1]
and m(E) = m((0,¢)) + m(Qz0) = €, because (0,¢) and Q. are disjoint and
Q01 is a null set.

Let F' C [0,1] be closed and define Qr := {q1, ¢y, ... } to be an enumeration of
the rational numbers in F', which of course satisfies ), = F. For every Borel
set B C [0, 1], define
1
ILL(B) = Z E6Qn(B)7
n=1
where J, represents the point mass measure corresponding to z € R. It is

immediate to show that p is a measure on [0, 1]. For every Borel set B C [0, 1]

1
we have pu(B) < u([0,1]) = g — < 00, hence p is finite. Also, u(F°) =
n
n=1
— 1
E —04,(F°) = 0. Because Qr is dense in F, then F' is the smallest set (with
n
n=1

respect to inclusion) with the above properties. Indeed, if F’ C F is a subset of
F satisfying the same properties, then there is an open subset U C F'\ F’ and
a rational number ¢ € U. But u({q}) > 0, which is a contradiction.

Consider the elements of [0, 1] in their ternary expansion a = 0.ajas . .., where
a; € {0,1,2},Vj € N. For all £ € N define A;, := {0.a1az... |ay = 1}. For

all k € N, A, is a union of 37! intervals of length m each. Hence A; is

1
Lebesgue measurable and m(A) = 3 > 0, for all k € N. For any j # k, the

symmetric difference of A; and Aj is the union of some nontrivial intervals,
so m(A;AA,) > 0. Lastly, assuming w.lo.g. that j < k, the intersection

A; N Ay consists of disjoint intervals whose total length is 3 of m(A;), hence
1
m(A; N Ax) = gm(4;) = m(Ax)m(4;).

We prove this by contradiction and show that if m(A) > 0 then there exists
an interval I for which m(AN1I) > (1 —e)m(I). Let us assume first that the
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result is true for Borel sets of finite measure. Then, if A C R is a Borel set such
that m(A) = oo, since m is o-finite, there exists a Borel set A" C A such that
m(A’) < oo. By applying the result for the finite case, the statement follows.
Suppose now that m(A) < oo and let € > 0. By the first part of the proof of
Exercise 4, there exists an open set U C R, A C U, such that m(U) < m(A) +
=m(A) = =m(A4) < oo. Since U is open, there exists a family of pairwise
disjoint open intervals {I,}°°, such that U = U;2, I, so m(U) = >~ m(1,).
Since A C U, we have m(A) = m(ANU) =m(ANU I,) => " m(AN1,).
Using all of the above, we get that Y>°  m(l,) < 7= > ", m(AN1I,). This

means that there exists ng € N such that m(1,,) < =m(A N I,,), which is in
contradiction with the hypothesis of our statement.

Let f : R — R be given as f(z) = m((A+z)NA). If x, — x then clearly
A+ x, - A+ x, hence 4, = (A+z,)NA— (A+2x)N A Suppose first
that x > 0. It is easy to see that, if z,, — 2~ we have A, | (A+2)NA
and if z,, — «7, then A, 1 (A + x) N A. By Proposition 3.5, it follows that
m(A,) = m((A+ z) N A) which proves that f is continuous in (0, 00). Similar
steps show that f is continuous in (—o0,0) and at 0, hence f is continuous in
R. Since f(0) = m(A) > 0, by continuity, there exists an interval 0 € I C R
such that f(z) = m((A+x)NA) >0, for all x € I. It follows that for every
x € I, the set (A + x) N A is nonempty. If, for a fixed 2 € I, we choose an
element a € (A+ x) N A, then a = b+ x for some b € A and, since also a € A,
it follows that € B. This shows that 0 € [ C B, which proves the statement.

(This follows Rudin’s proof published in The American Mathematical Monthly,
Vol 90 No.1, 1983) Let I = [0,1] and let CTDP stand for a compact, totally
disconnected subset of I of positive measure. Let {I,,} be an enumeration of all
closed intervals in I with rational endpoints.

Lemma 0.1. Fvery closed interval I contains a CTDP.

Proof of Lemma. We do it for I = [0, 1]; the procedure can be adapted to any
closed interval I. Let Q1 := {q1,¢2,...} be an enumeration of Q N [0, 1].
1

G~ G B i and let U := U, Uy,

For each g € Qo1), put Uy := <
K := 10,1\ U. Since U is open and [0, 1] is compact, K is compact. Also,

o0

1 1
m(U) < E m(Uy) = 22k+1 =5 This means that m(K) = m([0,1]) —
k=1 k=1
1
m(Uﬂ[O,l])2§>O. O

Continuing with the solution, construct sequences {A,},{B,} of CTDP’s by
using the above lemma, as follows: start with disjoint CTDP’s Ay, By C I; and



let Cy := Ay U By, which is again CTDP. Then, I, \ Cy contains a nonempty
closed interval (because Cy is totally disconnected), say .J, which again contains
two disjoint CTDP’s, Ay, By. Continue the process for all n € N and let A :=
U A,. If 0 # U C I is open, then there exists n € N such that I, C U, hence
Ay, B, CU. So, 0 <m(A,) <m(ANU) <m(ANU)+m(B,) <m(U), where
the last inequality follows from the fact that AN B, = ), and this concludes
the proof.



