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4.2 Let A ⊂ Rn, n ∈ Z+ and let ε > 0. We show first that there exist G,F ⊂ R,
where G is open and F is closed, such that F ⊂ A ⊂ G and

m(G \ A) < ε/2, m(A \ F ) < ε/2. (0.1)

We know that m(A) = inf{m(U) |A ⊂ U,U open in Rn}, hence there exists an
open set G ⊂ Rn such that A ⊂ G and m(G) < m(A) + ε/2. Since m(G) <
∞, we have m(G \ A) = m(G) − m(G ∩ A) = m(G) − m(A) < ε/2, which
proves the first part of (0.1). Next, since Ac is also Lebesgue-measurable, by
what we proved above, there exists an open set G ⊂ Rn, Ac ⊂ G, such that
m(G \ Ac) < ε/2. Then F := Gc is closed, F ⊂ A and the second part of (0.1)
is satisfied. So, since G \ F = (G \A)∪ (A \ F ) and (G \A)∩ (A \ F ) = ∅, we
have m(G \ F ) = m(G \ A) +m(A \ F ) < ε.

4.5 LetA ⊂ Rn be Lebesgue-measurable. By definition, m(A) = inf{
∑∞

k=0m(Rk) |A ⊂
∪∞k=0Rk, where all Rk are rectangles in Rn}. It is clear that m(Rk) is invariant
under translations, m(Rk) = m(Rk + x),∀k ≥ 0, therefore m(A + x) = m(A).
Next, note that if R is a rectangle in Rn then m(cR) = cnm(R), ∀c > 0, because
we stretch each of the n sides of R by the same factor of c. This implies the
result.

4.6 (1) It is straightforward to see that B =
⋂
N≥1

⋃
n≥N

An. Therefore, B is Lebesgue

measurable as a countable intersection of countable unions of Lebesgue
measurable sets.

(2) For every k ∈ Z+, let Bk =
k⋂

N=1

⋃
n≥N

An. Then, {Bk}∞k=1 forms a decreasing

sequence such that Bk ↓ B. Since Bk ⊂ [0, 1], we have that m(Bk) <∞ for
all k ≥ 1, and hence m(B) = lim

k→∞
m(Bk). By construction, Ak ⊂ Bk for all

k ≥ 1, hence m(Bk) > δ, which implies that m(B) ≥ δ.

(3) Let ε > 0 be arbitrary. Since the series
∑∞

n=1m(An) of non-negative real
numbers is convergent, one can choose N ∈ N such that

∑∞
n=N m(An) < ε.
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Since every point x ∈ B belongs to infinitely many of the An, there exists
some n(x) > N such that x ∈ An(x), hence B ⊂ ∪n≥NAn. It follows that
m(B) ≤ m(

⋃
n≥N An) ≤

∑∞
n=N m(An) < ε, which proves the statement,

because the ε was arbitrary.

(4) Define An := [0, 1/n], n ∈ Z+. Then all An are Lebesgue measurable subsets
of [0, 1] of measure m(An) = 1/n > 0, so

∑∞
n=1m(An) =

∑∞
n=1 1/n = ∞.

On the other hand, since 1/n → 0, it follows that the only point in [0, 1]
that is in infinitely many sets An is 0, hence B = {0} and m(B) = 0.

4.7 Let ε ∈ (0, 1) and define E := (0, ε)∪Q[ε,1], where Q[ε,1] is the set of all rational
numbers in [ε, 1]. Then, the closure of E is [0, 1], because Q[ε,1] is dense in [ε, 1]
and m(E) = m((0, ε)) +m(Q[ε,0]) = ε, because (0, ε) and Q[ε,0] are disjoint and
Q[ε,0] is a null set.

4.8 Let F ⊂ [0, 1] be closed and define QF := {q1, q2, . . . } to be an enumeration of
the rational numbers in F , which of course satisfies QF = F . For every Borel
set B ⊂ [0, 1], define

µ(B) =
∞∑
n=1

1

n2
δqn(B),

where δx represents the point mass measure corresponding to x ∈ R. It is
immediate to show that µ is a measure on [0, 1]. For every Borel set B ⊂ [0, 1]

we have µ(B) ≤ µ([0, 1]) =
∞∑
n=1

1

n2
< ∞, hence µ is finite. Also, µ(F c) =

∞∑
n=1

1

n2
δqn(F c) = 0. Because QF is dense in F , then F is the smallest set (with

respect to inclusion) with the above properties. Indeed, if F ′ ⊂ F is a subset of
F satisfying the same properties, then there is an open subset U ⊂ F \ F ′ and
a rational number q ∈ U . But µ({q}) > 0, which is a contradiction.

4.9 Consider the elements of [0, 1] in their ternary expansion a = 0.a1a2 . . . , where
aj ∈ {0, 1, 2},∀j ∈ N. For all k ∈ N define Ak := {0.a1a2 . . . | ak = 1}. For

all k ∈ N, Ak is a union of 3k−1 intervals of length
1

3k
each. Hence Ak is

Lebesgue measurable and m(Ak) =
1

3
> 0, for all k ∈ N. For any j 6= k, the

symmetric difference of Aj and Ak is the union of some nontrivial intervals,
so m(Aj∆Ak) > 0. Lastly, assuming w.l.o.g. that j < k, the intersection

Aj ∩ Ak consists of disjoint intervals whose total length is
1

3
of m(Aj), hence

m(Aj ∩ Ak) =
1

3
m(Aj) = m(Ak)m(Aj).

4.10 We prove this by contradiction and show that if m(A) > 0 then there exists
an interval I for which m(A ∩ I) > (1 − ε)m(I). Let us assume first that the
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result is true for Borel sets of finite measure. Then, if A ⊂ R is a Borel set such
that m(A) = ∞, since m is σ-finite, there exists a Borel set A′ ⊂ A such that
m(A′) < ∞. By applying the result for the finite case, the statement follows.
Suppose now that m(A) < ∞ and let ε > 0. By the first part of the proof of
Exercise 4, there exists an open set U ⊂ R, A ⊂ U , such that m(U) < m(A) +
ε

1−εm(A) = 1
1−εm(A) < ∞. Since U is open, there exists a family of pairwise

disjoint open intervals {In}∞n=1 such that U = ∪∞n=1In, so m(U) =
∑∞

n=1m(In).
Since A ⊂ U , we have m(A) = m(A∩U) = m(A∩∪∞n=1In) =

∑∞
n=1m(A∩ In).

Using all of the above, we get that
∑∞

n=1m(In) < 1
1−ε
∑∞

n=1m(A ∩ In). This

means that there exists n0 ∈ N such that m(In0) <
1

1−εm(A ∩ In0), which is in
contradiction with the hypothesis of our statement.

4.11 Let f : R → R be given as f(x) = m((A + x) ∩ A). If xn → x then clearly
A + xn → A + x, hence An := (A + xn) ∩ A → (A + x) ∩ A. Suppose first
that x > 0. It is easy to see that, if xn → x− we have An ↓ (A + x) ∩ A
and if xn → x+, then An ↑ (A + x) ∩ A. By Proposition 3.5, it follows that
m(An)→ m((A+ x) ∩A) which proves that f is continuous in (0,∞). Similar
steps show that f is continuous in (−∞, 0) and at 0, hence f is continuous in
R. Since f(0) = m(A) > 0, by continuity, there exists an interval 0 ∈ I ⊂ R
such that f(x) = m((A + x) ∩ A) > 0, for all x ∈ I. It follows that for every
x ∈ I, the set (A + x) ∩ A is nonempty. If, for a fixed x ∈ I, we choose an
element a ∈ (A+ x) ∩ A, then a = b+ x for some b ∈ A and, since also a ∈ A,
it follows that x ∈ B. This shows that 0 ∈ I ⊂ B, which proves the statement.

4.12 (This follows Rudin’s proof published in The American Mathematical Monthly,
Vol 90 No.1, 1983) Let I = [0, 1] and let CTDP stand for a compact, totally
disconnected subset of I of positive measure. Let {In} be an enumeration of all
closed intervals in I with rational endpoints.

Lemma 0.1. Every closed interval I contains a CTDP.

Proof of Lemma. We do it for I = [0, 1]; the procedure can be adapted to any
closed interval I. Let Q[0,1] := {q1, q2, . . . } be an enumeration of Q ∩ [0, 1].

For each qk ∈ Q[0,1], put Uk :=

(
qk −

1

2k+2
, qk +

1

2k+2

)
and let U := ∪∞k=1Uk,

K := [0, 1] \ U . Since U is open and [0, 1] is compact, K is compact. Also,

m(U) ≤
∞∑
k=1

m(Uk) =
∞∑
k=1

1

2k+1
=

1

2
. This means that m(K) = m([0, 1]) −

m(U ∩ [0, 1]) ≥ 1

2
> 0.

Continuing with the solution, construct sequences {An}, {Bn} of CTDP’s by
using the above lemma, as follows: start with disjoint CTDP’s A1, B1 ⊂ I1 and
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let C2 := A1 ∪ B2, which is again CTDP. Then, I2 \ C2 contains a nonempty
closed interval (because C2 is totally disconnected), say J , which again contains
two disjoint CTDP’s, A2, B2. Continue the process for all n ∈ N and let A :=
∪∞n=1An. If ∅ 6= U ⊂ I is open, then there exists n ∈ N such that In ⊂ U , hence
An, Bn ⊂ U . So, 0 < m(An) ≤ m(A∩U) < m(A∩U) +m(Bn) ≤ m(U), where
the last inequality follows from the fact that A ∩ Bn = ∅, and this concludes
the proof.
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