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Note that N is a Vitali set, same as the set which is the subject of the last
exercise in this problem set. Suppose m(A) > 0 and observe that for every
p#q€Qnl0,1] thesetsp+ A C p+ N and ¢+ A C g+ N are disjoint because
p+ N and g+ N are (recall the construction of a Vitali set). On the one hand,

r+A C [0,2] for all r € [0, 1], hence m( U (p+A)) < 2. On the other hand,

p€QN(0,1]
m(r + A) = m(A) for all r € [0, 1] so m( U (p+A) = Z m(p+A) =
peQNI0,1] peQNI0,1]

Z m(A) = oo because all sets under the union are pairwise disjoint and

peQN[0,1]
we also assumed m(A) > 0. This leads to a contradiction.

Extend the construction of Vitali sets to the real line: for any z,y € R, let
x ~ y be the equivalence relation defined by the condition x —y € Q and
let V' be a set given by selecting exactly one representative from every class
of equivalence. Then, R = Ugeq(q + V') where all the sets under the union
symbol are pairwise disjoint. It follows that A = U,eq [A N (¢ + V)]. If there
exists ¢ € Q such that AN (¢ + A) is non-measurable then we are done. So,
suppose that all A, :== AN (¢ + V) are measurable, ¢ € Q. Observe that
A,—A, CV—=Vand (V-V)N(Q\{0}) = @, because any two different elements
of V are not equivalent. It follows that A, — A, does not contain any open
interval centered at the origin. Since A, is measurable, by Steinhaus theorem
(Exercise 4.11, Problem Set 3) we have m(A,) = 0, for all ¢ € Q. It follows that
0 < m(A) = m(UepAq) = D_,cqm(Ag) = 0, which is a contradiction. This
proves that there must be a ¢ € Q such that AN (¢ + A) is non-measurable,
which proves the statement.

Remark 0.1. The version of Steinhaus theorem presented in Exercise 4.11 in
the textbook is stated for A being Borel measurable. In fact the theorem is true
for any Lebesgue measurable set A. The proof included in the posted solutions
for Problem Set 3 was done for this more general case.



4.15 Addressed in the solutions for Problem Set 2.

4.16 (1)

Let X = R and define

0, A is countable,
p(A) =<1, A and A® are uncountable,

2, A°is countable.

It is easy to see that p* is well defined and the verification of y* being
an outer measure is a just a routine exercise. For all n € Z_ define A,, :=
[—n,n|, B := [n,00). Then A, T R and B, | @. Thus, u*(A,) =1,Vn € Z_
but p*(R) = 2 because its complement is @ which is countable. Hence
p*(A,) does not converge to p*(R). Also, u*(B,,) = 1 but p*(@) = 0 which
proves that p*(B,,) does not converge to u*(2).

First we prove that u* is reqular, i.e. for every A C X there exists B € A
such that A C B and p*(A) = p*(B). By the definition of p*, for every
n > 0, there exists B, € As.t. A C B, and u(B,) < u*(A) + 1/n. Define
B := N, B, which is y-measurable, so p*(B) < p*(B,) < p*(A)+1/n,Vn >
0, since u* restricts to u on A. This means that p*(B) < p*(A). On the
other hand, A C B, for all n > 0, so A C B, hence p*(A) < p*(B) which
proves that in fact u*(A) = p*(B).

To prove the statement, first note that p*(A) > p*(A,), hence nh_)nolo 1w (A)
exists and p*(A) > 7}1320 1 (Ay). Therefore, it suffices to show the converse

inequality. Let B, € A be the sets that result from the regularity of u*:

A, C By, u(B,) = p*(A,), for all n > 0. Define the sets C,, := m By, for
k=n

all n > 0, which satisfy A, C C,, and C,, C C),41, for all n > 0. Let C :=

U C,,. Clearly, A C C. It follows that, for every n > 0, u*(A,) = u(B,) >
n=1

u(Cy) and by taking the limit, lim u*(A,) > lim u(C,) = p(C) > p*(A),
n—oo n—o0

which proves the statement.

4.17 We have B = U[m—l,x+1] = (U(x—l,x+1)> U (U{x—l}) U

T€EA T€A €A

T€EA T€EA

<U {z+ 1} ]. The set U (x — 1,2 + 1) is open, hence Lebesgue-measurable.

Also, it is easy to check that U{x —1} =—-14 A and U{x +1} =1+ A,

€A €A

which are both Lebesgue-measurable. It follows that B is measurable as the
union of three measurable sets.



4.18 To prove the statement is the same as proving that, if m(A) = 0, then there
exists ¢ € R such that (A+¢)NQ = @. Let B := U(q + A), which has

q€Q
measure 0, since m(q+ A) = m(A) = 0, for all ¢ € Q. Then, by construction,

B is invariant with respect to translations by rationals, i.e. B = p + B for all
peQ.

Next, we show that, for any r € R, (r+ B)NQ # @ iff Q C r+ B. Again, one
direction is trivial, so we prove the other. By hypothesis, there exists b € B
st. ¢g:=r+0be Q. Let p € Q be arbitrarily fixed. Then, p = (p—q)+q =
(p—q)+r+b=r+(p—q)+ber+(p—q)+ B =r+ B. Since p was arbitrarily
fixed, it follows that Q C r + B.

To end the proof, note that there exists o € R s.t. 0 ¢ o+ B, becuse otherwise,
for every r € R we would have —r € B, i.e. R C B which is impossible, since
m(B) = 0. So, Q ¢ ro + B, hence (ro + B) N Q = &, which proves the result.

2. (a) Let V be a Vitali set and suppose that m*(V') = 0. By the construction of V,
as a Vitali set, for every r € [0, 1] there exists v € V' s.t. 7 € v+ (QN]J0, 1)),
ie. 7 = v+ q for some g € QN [0,1], hence r € ¢+ V. It follows that
01 c [J (g+V). So,

qeQNIo,1]

L=m([0,1])) =m*([0,1) <m*( | (a+V)) <

g€QnNIo,1]
Yo omiq+V)= > m(V)=0,
g€QnIo,1] qeQn(o,1]

which is a contradiction.

(b) If € > 1 then, trivially m*(V) < m*([0,1]) = m([0,1]) = 1 < ¢, for any
Vitali set V' C [0,1]. Suppose that 0 < ¢ < 1. Let W C [0,1] be a Vitali
set. For each w € W choose ¢ € Q s.t. v := w — ¢ < €, which is possible
since Q N[0, 1] is dense in [0,1]. The set V' of all such v’s is again a Vitali
set: w—v =¢q € Q, hence v ~ w and, w; ¥ wsy implies vy % vy, Where
v; = w; — ¢;,1 = 1,2. Since v < ¢ for all v € V, we have V' C [0, €], hence
m*(V) <e.



