Problem Set 5

February 14, 2018.

- **0.** Read (and comprehend) the proof of Lusin's theorem (Thm. 5.15 in the text).
- **1.** Let (X, \mathcal{M}) be a measurable space and let $f: X \to \mathbb{R}$.
 - (a) Prove that f is a measurable function if and only if $f^{-1}(B) \in \mathcal{M}$ for every Borel measurable $B \subset \mathbb{R}$.
 - (b) Prove that f is a simple function if and only if f(X) is a finite set and f is measurable.
- **2.** Exercises 5.1–5.3.
- 3. Exercise 5.5.
- **4.** Exercises 5.7–5.9.
- **5.** Recall that, for $p \in [0, \infty)$, the *p*-dimensional Hausdorff outer measure on a metric space (X, d) is defined by

$$h^{p*}(Y) = \sup_{\delta > 0} \inf \left\{ \sum_{k=1}^{\infty} h^p(Y_k) \mid \{Y_k\}_{k=1}^{\infty} \subset \mathcal{P}(X), Y \subset \bigcup_k Y_k, \operatorname{diam}(Y_k) < \delta, \forall k \right\},\,$$

for
$$Y \subset X$$
, where $h^p(Z) = \frac{\alpha(p)}{2^p} \operatorname{diam}(Z)^p$ for $Z \neq \emptyset$, $h^p(\emptyset) = 0$, and $\alpha(p) = \frac{(\Gamma(\frac{1}{2}))^p}{\Gamma(\frac{p}{2}+1)}$.

Let h^p denote the measure obtained from h^{p^*} by restricting to the σ -algebra of h^{p^*} -measurable sets. One can show (the Key Lemma in class) that if $s \in (0, \infty)$ is such that $h^s(X) < \infty$ then $h^p(X) = 0$ for all p > s, and define the Hausdorff dimension of X by

$$\dim_{\mathcal{H}}(X) = \inf\{p > 0 : h^p(X) = 0\}.$$

(a) For $\delta > 0$, denote by h_{δ}^{p} the function on $\mathcal{P}(X)$ defined by

$$h^p_{\delta}(Y) = \inf \left\{ \sum_{k=1}^{\infty} h^p(Y_k) \mid \{Y_k\}_{k=1}^{\infty} \subset \mathcal{P}(X), Y \subset \bigcup_k Y_k, \operatorname{diam}(Y_k) < \delta, \forall k \right\}.$$

By the Caratheodory Extension Theorem, h_{δ}^{p} is an outer measure on X.

Prove that, for every $Y \subset X$, the function $(0,\infty) \ni \delta \mapsto h^p_{\delta}(Y) \in [0,\infty]$ is decreasing. Prove that h^{p^*} is an outer measure on X.

(b) Let $C \subset [0,1]$ be the ternary Cantor set. Complete the proof (sketched in class) of the fact that

$$\dim_{\mathcal{H}}(C) = \log_3 2.$$

(c) Let $S \subset [0,1]^2 \subset \mathbb{R}^2$ denote the Sierpiński carpet; i.e., $S = \bigcap_{i=1}^{\infty} S_i$, where

$$S_1 = [0,1]^2 \setminus \left(\frac{1}{3}, \frac{2}{3}\right)^2$$
,

and S_{i+1} is obtained from S_i by removing the open middle ninth square from each of the 8^i congruent squares of area $\frac{1}{9^i}$ that S_i is composed of.

Let m denote the Lebesgue measure in \mathbb{R}^2 . Find m(S). Find $\dim_{\mathcal{H}}(S)$. Justify your answers.