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1. (a) Suppose that f−1(B) ∈ M for all Borel measurable sets B ⊂ R, in par-
ticular, f−1((a,∞)) ⊂ M for any a ∈ R, since (a,∞) is Borel, hence f s
measurable. The converse is Proposition 5.11 in the textbook.

(b) For every f =
∑m

j=1 cjχFj
, Fj ∈M, there are pairwise disjoint E1, . . . , En ∈

M (for some n ≥ m) and a1, . . . , an, such that f =
∑n

i=1 aiχEi
. If f =∑n

i=1 aiχEi
and the Ei ∈M are pairwise disjoint, clearly f(X) = {a1, . . . , an}

is finite. If a ∈ R then f−1((a,∞)) = ∪ai>aEi, which is measurable. Con-
versely, let f(X) = {a1, . . . , an}. Then, Ei := f−1({ai}) = f−1((−∞, a] ∩
[a,∞)) = f−1((−∞, a])∩ f−1([a,∞)) is measurable by Proposition 5.5. By
construction, f =

∑n
i=1 aiχEi

, hence f is simple.

5.1 Let a ∈ R and let {rn} be sequence of rational numbers converging to a from
the right, which we can always find since Q is dense in R. Then, f−1((a,∞)) =
f−1(∪∞n=1(rn,∞)) = ∪∞n=1f

−1((rn,∞)) which is a countable union of measurable
sets, hence it is measurable.

5.2 For each x ∈ (0, 1), denote by rx > 0 and gx the positive constant and the
Borel measurable function given by the hypothesis. It follows that (0, 1) =
∪x∈(0,1)[(x − rx, x + rx) ∩ (0, 1)]. As a topological space (with the subspace
topology), (0, 1) is second countable, hence there exists a countable subcover
{(xn − rn, xn + rn)} such that (0, 1) = ∪∞n=1[(xn − rn, xn + rn) ∩ (0, 1)], where
we wrote rn instead of rxn . Then, for all a ∈ R, we have f−1((a,∞)) =
f−1((a,∞))∩∪∞n=1[(xn−rn, xn+rn)∩(0, 1)] = ∪∞n=1[f

−1((a,∞))∩(xn−rn, xn+
rn)∩(0, 1)] = ∪∞n=1[g

−1
n ((a,∞))∩(xn−rn, xn+rn)∩(0, 1)] (again, here gn := gxn)

because f = gn on (xn − rn, xn + rn) ∩ (0, 1) by hypothesis. Since the last set
is the countable union of Borel measurable sets, it follows that f−1((a,∞)) is
Borel measurable.

5.3 Suppose f : X → (0,∞). Since f > 0 implies g > 0, it suffices to show
that g−1((a,∞)) is measurable for all a > 0. Indeed, for any b ≤ 0, we have
g−1((b,∞)) = g−1((0,∞)) = f−1((0,∞)), which is measurable. So, let a > 0.
Then g−1((a,∞)) = {x : 1/f(x) > a} = {x : f(x) < 1/a} which is measurable,
and this proves the statement.
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5.5 It suffices to prove the statement for f ≥ 0 since f = f+ − f−, where the
functions f+(x) := max{0, f(x)} and f−(x) := max{0,−f(x)} are both non-
negative and Lebesgue measurable. By Proposition 5.14, there exists a sequence

of non-negative simple functions sn =
mn∑
i=1

ani χEn
i

increasing to f (where mn ∈

Z+ depends on n), where for each n, the En
i are pairwise disjoint. By Proposition

4.14(4) (which can be easily extended to R), for all n ∈ Z+ and all i = 1, . . . ,mn,
there exists Dn

i ⊂ En
i such that Dn

i is Borel measurable and m(En
i \Dn

i ) = 0.

Define rn :=
mn∑
i=1

ani χDn
i
. Since χDn

i
= χEn

i
a.e., we have rn = sn a.e., for all

n ∈ Z+. The sequence (rn)∞n=1 is pointwise increasing and bounded above by
f , hence lim

n→∞
rn exists. Define g(x) := lim

n→∞
rn(x). Then, g is Borel measurable

and g = lim
n→∞

rn = lim
n→∞

sn = f a.e..

Remark 0.1. This exercise can also be proved by making use of Lusin’s the-
orem which is in fact valid on any closed interval of R, in particular on any
interval of the form [n, n + 1]. For any such interval, choose εm := 1/m and
consider F n := ∪mF n

m, where F n
m are the closed sets ”produced” by Lusin’s

theorem applied to [n, n + 1] and εm. Then, define g taking into consideration
that R = ∪∞n=0([n, n+ 1] ∪ [−n− 1,−n]).

5.7 Since f is differentiable, f is continuous on R, hence Borel measurable. Regard-

ing the derivative, for any x ∈ R, f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. In particular,

f ′(x) = lim
n→∞

fn(x), where fn(x) :=
f(x+ 1/n)− f(x)

1/n
, n ∈ Z+. But fn is con-

tinuous, hence Borel measurable for all n ∈ Z+. By Proposition 5.8, it follows
that f ′ is Borel measurable.

5.8 Let A ⊂ [0, 1] be a Vitali set. For each α ∈ A define fα := χ{α} (the character-
istic function of the set {α}) which is non-negative and Lebesgue measurable
(since {α} is). Then g(x) := supα∈A fα(x) is equal to 1 if x ∈ A and to 0, if
x 6∈ A, i.e. g = χA. Clearly g is finite but it is not measurable, since the Vitali
set A is not measurable, therefore its characteristic function is not measurable.

5.9 We can easily see that if g is Borel measurable then g◦f is Lebesgue measurable,
fact that addresses the first two questions (since any continuous function is Borel
measurable). Indeed, for a ∈ R, we have (g ◦ f)−1((a,∞)) = f−1(g−1((a,∞)))
and this set is Lebesgue measurable since g−1((a,∞)) is Borel measurable and
f is Lebesgue measurable (see the first exercise of this probem set, point (a)).
The answer to the last question is negative in general and the following is the
standard example, given for f defined on [0, 1], but then the construction can
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be easily extended to the entire real line. Let ϕ : [0, 1] → [0, 1] be the Cantor-
Lebesgue function defined in Example 4.11 in the textbook and let h : [0, 1]→
[0, 2] be defined as h(x) = x+ ϕ(x). By the properties of ϕ, it follows that h is
continuous and bijective, with a continuous inverse f := h−1. Let C ⊂ [0, 1] be
the ternary Cantor set and m the Lebesgue measure on R. Then, m(h(C)) > 0
since ϕ is locally constant in the complement of C (constant on each interval in
the complement of C) and h will map every such interval to an interval of the
same measure. By Exercise 4.14 (see Problem set 4), there exists a (Lebesgue)
non-measurable subset A ⊂ h(C). It follows that f(A) = h−1(A) ⊂ C and, since
m(C) = 0, the set f(A) is Lebesgue measurable, hence g := χf(A) is Lebesgue
measurable. However, (g◦f)−1({1}) = f−1(χ−1f(A)({1})) = f−1(f(A)) = A which
is not Lebesgue measurable, which proves that g ◦f is not Lebesgue measurable
(here we used the fact that {1} is Borel measurable and applied again Exercise
1.(a)).

5. (a) For a given subset Y ⊂ X and δ > 0, we shall refer to a cover {Yn}n as a
δ-cover if diam(Yn) < δ,∀n. Now, let Y ⊂ X and 0 < δ1 < δ2. Then, any
δ1-cover of Y is also a δ2-cover, which implies that hpδ1(Y ) ≥ hpδ2(Y ), which
proves the first statement. Next, since, by Caratheodory construction (see
Proposition 4.2 in the textbook) hpδ is an outer measure it is straightforward
to show that hp∗ := sup

δ>0
hpδ is also an outer measure.

(b) This solution follows Example 2.7 in Fractal Geometry: Mathematical Foun-
dations and Applications, 2nd ed, by Kenneth Falconer. The proof is in-

dependent of the scale factor
α(p)

2p
used in the definition of the Hausdorff

measure, so we may assume it is equal to 1 for all p. Let C ⊂ [0, 1] be the
ternary Cantor set. At each step k ≥ 1 in the construction of C we obtain a
set Ek consisting of 2k closed intervals, each of length 1/3k, which we shall
refer to as k-intervals. Let s := log3 2. We show that

1/2 ≤ hs(C) ≤ 1 (0.1)

which implies that dimHC = s = log3 2. The family of intervals {Ek}k
is a 1/3k-cover of C, hence hs

(1/3k)
(C) ≤ 2k/3ks = 1. So, if k → ∞ (i.e.

1/3k → 0) we get that hs(C) ≤ 1 (which implies that hp(C) = 0,∀p > s).
Next, we show that any cover {Ai}i of C satisfies∑

i

diam(Ai)
s ≥ 1

2
, (0.2)

which would imply the result. In fact, it is enough to assume that Ai are
closed intervals and, by the compactness of C, that the cover is finite. Since
Ai ⊂ [0, 1], ∀i, for each i, there exists a k such that

1/3k+1 ≤ diam(Ai) ≤ 1/3k. (0.3)
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It follows that Ai can intersect at most one k-interval, since the distance
between any two k-intervals is at least 1/3k. Also, if j ≥ k then Ai intersects
at most 2j−k = 2j(1/3sk) ≤ 2j3s diam(Ai)

s j-intervals of Ej, by (0.3). For
j large enough, we have 1/3j+1 ≤ diam(Ai) for all i. Therefore, since the
intervals {Ai}i intersect all 2j basic intervals of length 1/3j, we get (by
counting the intervals)

∑
i 2

j3s diam(Ai)
s ≥ 2j, i.e.

∑
i diam(Ai)

s ≥ 1/3s =
1/2, which proves (0.2), hence proving (0.1).

(c) At each step k ≥ 1 in the construction of S we obtain a set Ek ⊃ S
consisting of 8k closed (solid) squares, each of them having the area equal

to 1/9k. Therefore, m(S) = lim
k→∞

8k

9k
= 0. It is straightforward to adapt the

proof done for the Cantor set to prove that dimH S = log3 8. Indeed, at
each step we obtain a cover {Ek}k of S consisting of 8k closed squares (as
mentioned before) each with diam(Ek) =

√
2/3k. So, by putting s := log3 8,

it follows that hs√
2/3k

(S) ≤ 8k ·
√

2/3ks = 2s/2 for all k, which implies

hs(S) ≤ 2s/2 < ∞. Also, following steps similar to those in the proof for

the Cantor set, one can show that hs(S) ≥ 2
s−2
2 , which proves the statement.
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