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6.1 Let f = > " a;xa,. Forecach S C {1,...,m} deﬁnf, Ag = (Njes 45) N
(Mjgs A5)- 1t is straightforward to verify that the sets {Ag} form a partition of
U, A and A; = (U, Ag (the union here is over all subsets S C {1,...,m}

that contain 7). Therefore, f = > 7" aixa, = D101 @i D icg XA, = 25 ASX A,
where ag = Y. s a;. It follows that,
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Let {ci1,...,ca} be all the nonzero values taken by f and let Cy = {f =
ekt k=1,...,M. Then f = Zévzl ckXc,- Note that, by construction, each Cj,
is a union of sets Ag and each corresponding coefficient ag is equal to ¢, so

M

[ fdn =3 don(As) = 3 eunC). 01)
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The quantity at the end of equation (0.1) does not depend on the representation
of f. Since the representation we worked with was arbitrarily chosen it follows
that (0.1) is valid for any representation, which proves that the integral of non-
negative simple functions is well defined.

6.2 This exercise can be solved by using the definition of the integral, starting with
simple functions, etc.. Here is another solution. First note that, Proposition
6.3(4) implies that, if f, g are integrable such that f = g a.e. with respect
to some measure p, then [ fdu = [gdu. For our specific case, define the
constant function g(z) = f(y), Ve € X, which satisfies g = f a.e. with respect
to d,, because y € {f = g}. It follows that [ fdd, = [gdd, = [ f(y)ds, =

f(y) [ do, = f(y).

6.3 Let {s,} be a sequence of nonnegative simple functions such that s, T f (which
always exists by Proposition 5.14). Let s, := > ™ afxan, X = U A}, Vn. If
there exists n such that p(A) = oo and af # 0 for some 1 < i < m,, then
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6.6

6.7

Jx sndp = 00, hence [ fdu = co. Also, 3=, f(k) > >, sa(k) > 3, afxan(k) =
o0, so this proves the statement in this case.

Suppose now that for all n and 1 < i < m,, pu(A') < co. For every n we
have [s, = Y " afu(Ar) = > a|A?|. On the other hand, >, s,(k) =
S STl (B) = S0l > xan (B) = S all AT, because yap(k) = 1
iff £ € A?. Hence, the statement is true for every simple function s,,.

-----

> w_1 f(k), which implies [, fdu > 3", f(k). On the other and, }", s, (k) <
> x f(K),¥n, hence [, fdu =sup{>_, s,(k)|0 <s, < f,s,-simple function} <
>« f(k), which proves the statement.

Since p is o-finite, there exist py-measurable sets { E;} such that X = U, E; and
w(E;) < oo. Let A, := U E;. Then A, C A,+1 and u(A,) < oo for all n. Let
o, be nonnegative simple functions such that o, T f. Define s,, := 0,,x4, , which
are also nonnegative simple functions and satisfy p({s, # 0}) < oo, because
p(Ay,) < oo. Also, s, < 8,41 because 0, < 0,41 and x4, < Xa,,,. Since o, T f
and x4, T 1 it follows that s, T f.

Recall that = Ay := min{x,y}. Let {sx} be a sequence of nonnegative simple
functions such that s; T f. Since every s; is bounded, it is clear that there exists

ny such that sy An = sg,Vn > ng. It means that, for every k, lim /(sk An) =
n—oo

lim /(sk/\n) = /sk. Since [ fAn > [ spAn,Vk, we have lim [ fAn >

n>ng,n—00 n—oo

lim /sk/\n:/sk,Vk, which implies lim /f/\nz /f. Clearly fAn < f,
n—oo

n—oo
hence [(f An) < [ f, which implies lim /(f An) < /f and this ends the
n—oo

proof.

It suffices to prove the statement for f > 0, since otherwise, we can apply
the result to |f|. For e > 0 there exists a nonnegative simple function s :=
> aixa, such that [, f < [ s+¢e/2. Forany Ae A, [,s=>" a;u(A;N
A) < S aip(A) = p(A)>" a;. Let § = ¢/(2>°"  a;). Then, for any
A e Awith u(A) <dwehave [, f= [, f=[is+ [, s<([xf=[xs)+[,s<
ef2+¢e/2=¢.

By hypothesis, for each n there exists M, > 0 such that |f,| < M,. So,
[ 1faldp < M, [dp = Myu(X) < oo so all f, are integrable. Also, for an
arbitrary € > 0, by the uniform convergence of f, to f, we have |f| — |f.| <
|fn. — f] <€ for all n > n., for some n. > 0. So, |f| < |f.| +& < M, + ¢, hence

[ is also integrable. Lastly | [ fodp — [ fdu| < [ 1fo— fldu < e [ dp = ep(X),
for all n > n., which proves the statement.
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By the integrability assumption, it suffices to consider the case f > 0. Sup-
pose first that A, T A, hence A = U,A,. Then f, := fxa, form an in-
creasing sequence of non-negative measurable functions, and f, 1 f. Thus,
by the Monotone Convergence Theorem (MCT), [, f = [, fo — [, f. For
the second part, suppose A, | A, hence A = N, A,. Then | [, f— [, f| =
| [ fxa, = [ fxal < [1fllxa, — xal. We cannot apply MTC directly, be-
cause the functions g, := |xa, — xal, although nonnegative, form a decreas-
ing sequence. However, note that [¢; < oo, so if we define h, := g1 — gy,
then each h,, is nonegative and integrable. Also, the sequence {h,} is increas-
ing and h, 1 g1, because g, | 0. So, by MTC, lim /hn = / lim h,, i.e.

n—oo n—o0

lim [ (g1—9n) :/ lim (g1 —¢,), which is the same as/gl—lim /gn :/91,
n—oo n—00 n—o0

hence nh_}lrgo gn = 0. This implies the result.

(This solution follows the proof of Theorem 1.38 in Rudin’s Real and Complex
Analysis) Let f =" f, and ¢ := > > |fa|. By Proposition 7.4 (in Bass’
textbook) and from the condition Y 07, [|f.] < oo it follows that [¢ < oo.
This implies that the set F' := {(p = oo} has measure zero, hence the given series
absolutely converges a.e.. Since |f| = |>., ful < Y, |fal = ¢ and [ ¢ < o0,
it follows that f is also integrable. Lastly, put g, := > ., f;. Then, |g,| < ¢,
gn — [ pointwise and, by the Dominated Convergence Theorem, we get that

ffzzzozlffn-

Since |fn| < gn, we also have |f| < g a.e., hence |f, — f| < g, + g ae. It
follows that the functions h, := ¢, + g — |f. — f| are non-negative a.e.. By
Fatou’s lemma, lim inf/hn > /lim inf h,, = Q/g (because g, — g, fn — f

n—oo n—oo

a.e.). On the other hand, liminf/hn = lim inf (/(gn +9) — / | fn — f|) =
n—oo

n—oo

2 / g — limsup / | fn — f|, where we used the condition [ g, — [ g¢. It follows

n—oo

that 1imsup/|fn — fl < 0. But limsup/|fn—f| > liminf/|fn—f| >
n—oo

J =02 0.ence Jim \ Ji

lim [ (f, — f) exists and it is equal to 0, which proves the statement.
n—oo

lim inf exists and it equals 0. Therefore
n—oo

The solution makes use of Exercise 7.8 which we prove below. For any A € A

fAfn_fAf fA(fn_f)’: fx(fn_f)XA Slefn_fHXAlg
Jx |fa — f|. We are exactly under the conditions of Exercise 7.8 (because f,,, f

we have

3



7.8

7.9

are non-negative), hence [ |f, — f| = 0, which implies the result.

For each n define g, := | fu|+|f|—|fn— fl, s0 gn > 0 and g, — 2| f|. By Fatou’s

lemma, liminf [ g, > 2 [ |f|. Following similar steps as in the solution for
n—oo

Exercise 7.5, applied to our g,, and using the fact that by hypothesis [ |f,| —
[ 1f], we prove that limsup/|fn —f1 <0. So, 0 > limsup/|fn —f] >

n—oo n—oo

liminf/|fn—f| > liminf
n—oo n—oo

/ (fn—1f )’ > (0 and the result follows.

Fix g € R. Let € > 0 be arbitrary. By Problem 6.6 above, one can choose
6 > 0 such that [, |f] < e for every interval I C R of length less than 0. Then,
for any x with |z —x¢| < d, we have |F(z)— F(xo)| = }famf—faxo f| = ’f;; f‘ <
f Long |f| < e, where I, ,, denotes the interval between = and xy. This proves
that F' is continuous at xg.



