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6.1 Let f =
∑m

i=1 aiχAi
. For each S ⊂ {1, . . . ,m} define ÃS := (

⋂
j∈S Aj) ∩

(
⋂

j 6∈S A
c
j). It is straightforward to verify that the sets {ÃS} form a partition of⋃m

i=1Ai and Ai =
⋃

i∈S ÃS (the union here is over all subsets S ⊂ {1, . . . ,m}
that contain i). Therefore, f =

∑m
i=1 aiχAi

=
∑m

i=1 ai
∑

i∈S χÃS
=
∑

S ãSχÃS
,

where ãS =
∑

i∈S ai. It follows that,∫
fdµ =

m∑
i=1

aiµ(Ai) =
m∑
i=1

ai
∑
i∈S

µ(ÃS) =
∑
S

ãSµ(ÃS).

Let {c1, . . . , cM} be all the nonzero values taken by f and let Ck := {f =
ck}, k = 1, . . . ,M . Then f =

∑N
k=1 ckχCk

. Note that, by construction, each Ck

is a union of sets ÃS and each corresponding coefficient ãS is equal to ck, so∫
fdµ =

∑
S

ãSµ(ÃS) =
M∑
k=1

ckµ(Ck). (0.1)

The quantity at the end of equation (0.1) does not depend on the representation
of f . Since the representation we worked with was arbitrarily chosen it follows
that (0.1) is valid for any representation, which proves that the integral of non-
negative simple functions is well defined.

6.2 This exercise can be solved by using the definition of the integral, starting with
simple functions, etc.. Here is another solution. First note that, Proposition
6.3(4) implies that, if f, g are integrable such that f = g a.e. with respect
to some measure µ, then

∫
fdµ =

∫
gdµ. For our specific case, define the

constant function g(x) = f(y),∀x ∈ X, which satisfies g = f a.e. with respect
to δy, because y ∈ {f = g}. It follows that

∫
fdδy =

∫
gdδy =

∫
f(y)dδy =

f(y)
∫
dδy = f(y).

6.3 Let {sn} be a sequence of nonnegative simple functions such that sn ↑ f (which
always exists by Proposition 5.14). Let sn :=

∑mn

i=1 a
n
i χAn

i
, X = ∪mn

i=1A
n
i ,∀n. If

there exists n such that µ(An
i ) = ∞ and ani 6= 0 for some 1 ≤ i ≤ mn, then
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∫
X
sndµ =∞, hence

∫
X
fdµ =∞. Also,

∑
k f(k) ≥

∑
k sn(k) ≥

∑
k a

n
i χAn

i
(k) =

∞, so this proves the statement in this case.

Suppose now that for all n and 1 ≤ i ≤ mn, µ(An
i ) < ∞. For every n we

have
∫
sn =

∑mn

i=1 a
n
i µ(An

i ) =
∑mn

i=1 a
n
i |An

i |. On the other hand,
∑

k sn(k) =∑
k

∑mn

i=1 a
n
i χAn

i
(k) =

∑mn

i=1 a
n
i

∑
k χAn

i
(k) =

∑mn

i=1 a
n
i |An

i |, because χAn
i
(k) = 1

iff k ∈ An
i . Hence, the statement is true for every simple function sn.

For any n, we have
∫
X
fdµ ≥

∫
{1,...,n} fdµ =

∑n
k=1

∫
{k} fdµ =

∑n
k=1 f(k)µ({k}) =∑n

k=1 f(k), which implies
∫
X
fdµ ≥

∑
k f(k). On the other and,

∑
k sn(k) ≤∑

k f(k),∀n, hence
∫
X
fdµ = sup{

∑
k sn(k) | 0 ≤ sn ≤ f, sn-simple function} ≤∑

k f(k), which proves the statement.

6.4 Since µ is σ-finite, there exist µ-measurable sets {Ei} such that X = ∪∞i=1Ei and
µ(Ei) <∞. Let An := ∪ni=1Ei. Then An ⊂ An+1 and µ(An) <∞ for all n. Let
σn be nonnegative simple functions such that σn ↑ f . Define sn := σnχAn , which
are also nonnegative simple functions and satisfy µ({sn 6= 0}) < ∞, because
µ(An) <∞. Also, sn ≤ sn+1 because σn ≤ σn+1 and χAn ≤ χAn+1 . Since σn ↑ f
and χAn ↑ 1 it follows that sn ↑ f .

6.5 Recall that x ∧ y := min{x, y}. Let {sk} be a sequence of nonnegative simple
functions such that sk ↑ f . Since every sk is bounded, it is clear that there exists

nk such that sk ∧n = sk,∀n > nk. It means that, for every k, lim
n→∞

∫
(sk ∧n) =

lim
n>nk,n→∞

∫
(sk∧n) =

∫
sk. Since

∫
f∧n ≥

∫
sk∧n,∀k, we have lim

n→∞

∫
f∧n ≥

lim
n→∞

∫
sk∧n =

∫
sk,∀k, which implies lim

n→∞

∫
f ∧n ≥

∫
f . Clearly f ∧n ≤ f ,

hence
∫

(f ∧ n) ≤
∫
f , which implies lim

n→∞

∫
(f ∧ n) ≤

∫
f and this ends the

proof.

6.6 It suffices to prove the statement for f ≥ 0, since otherwise, we can apply
the result to |f |. For ε > 0 there exists a nonnegative simple function s :=∑m

i=1 aiχAi
such that

∫
X
f ≤

∫
X
s+ ε/2. For any A ∈ A,

∫
A
s =

∑m
i=1 aiµ(Ai ∩

A) ≤
∑m

i=1 aiµ(A) = µ(A)
∑m

i=1 ai. Let δ := ε/(2
∑m

i=1 ai). Then, for any
A ∈ A with µ(A) < δ we have

∫
A
f =

∫
A
f−

∫
A
s+
∫
A
s ≤ (

∫
X
f−

∫
X
s)+

∫
A
s <

ε/2 + ε/2 = ε.

6.7 By hypothesis, for each n there exists Mn > 0 such that |fn| < Mn. So,∫
|fn|dµ < Mn

∫
dµ = Mnµ(X) < ∞ so all fn are integrable. Also, for an

arbitrary ε > 0, by the uniform convergence of fn to f , we have |f | − |fn| ≤
|fn − f | < ε for all n > nε, for some nε > 0. So, |f | < |fn|+ ε < Mn + ε, hence
f is also integrable. Lastly |

∫
fndµ−

∫
fdµ| ≤

∫
|fn − f |dµ < ε

∫
dµ = εµ(X),

for all n > nε, which proves the statement.
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7.3 By the integrability assumption, it suffices to consider the case f ≥ 0. Sup-
pose first that An ↑ A, hence A = ∪nAn. Then fn := fχAn form an in-
creasing sequence of non-negative measurable functions, and fn ↑ f . Thus,
by the Monotone Convergence Theorem (MCT),

∫
An
f =

∫
A
fn −→

∫
A
f . For

the second part, suppose An ↓ A, hence A = ∩nAn. Then |
∫
An
f −

∫
A
f | =

|
∫
fχAn −

∫
fχA| ≤

∫
|f ||χAn − χA|. We cannot apply MTC directly, be-

cause the functions gn := |χAn − χA|, although nonnegative, form a decreas-
ing sequence. However, note that

∫
g1 < ∞, so if we define hn := g1 − gn,

then each hn is nonegative and integrable. Also, the sequence {hn} is increas-

ing and hn ↑ g1, because gn ↓ 0. So, by MTC, lim
n→∞

∫
hn =

∫
lim
n→∞

hn i.e.

lim
n→∞

∫
(g1−gn) =

∫
lim
n→∞

(g1−gn), which is the same as

∫
g1− lim

n→∞

∫
gn =

∫
g1,

hence lim
n→∞

∫
gn = 0. This implies the result.

7.4 (This solution follows the proof of Theorem 1.38 in Rudin’s Real and Complex
Analysis) Let f :=

∑∞
n=1 fn and ϕ :=

∑∞
n=1 |fn|. By Proposition 7.4 (in Bass’

textbook) and from the condition
∑∞

n=1

∫
|fn| < ∞ it follows that

∫
ϕ < ∞.

This implies that the set E := {ϕ =∞} has measure zero, hence the given series
absolutely converges a.e.. Since |f | = |

∑
n fn| ≤

∑
n |fn| = ϕ and

∫
ϕ < ∞,

it follows that f is also integrable. Lastly, put gn :=
∑n

i=1 fi. Then, |gn| ≤ ϕ,
gn → f pointwise and, by the Dominated Convergence Theorem, we get that∫
f =

∑∞
n=1

∫
fn.

7.5 Since |fn| ≤ gn, we also have |f | ≤ g a.e., hence |fn − f | ≤ gn + g a.e.. It
follows that the functions hn := gn + g − |fn − f | are non-negative a.e.. By

Fatou’s lemma, lim inf
n→∞

∫
hn ≥

∫
lim inf
n→∞

hn = 2

∫
g (because gn → g, fn → f

a.e.). On the other hand, lim inf
n→∞

∫
hn = lim inf

n→∞

(∫
(gn + g)−

∫
|fn − f |

)
=

2

∫
g − lim sup

n→∞

∫
|fn − f |, where we used the condition

∫
gn →

∫
g. It follows

that lim sup
n→∞

∫
|fn − f | ≤ 0. But lim sup

n→∞

∫
|fn − f | ≥ lim inf

n→∞

∫
|fn − f | ≥

lim inf
n→∞

∣∣∣∣ ∫ (fn−f)

∣∣∣∣ ≥ 0, hence lim
n→∞

∣∣∣∣ ∫ (fn−f)

∣∣∣∣ exists and it equals 0. Therefore

lim
n→∞

∫
(fn − f) exists and it is equal to 0, which proves the statement.

7.7 The solution makes use of Exercise 7.8 which we prove below. For any A ∈ A

we have

∣∣∣∣ ∫A fn − ∫A f ∣∣∣∣ =

∣∣∣∣ ∫A(fn − f)

∣∣∣∣ =

∣∣∣∣ ∫X(fn − f)χA

∣∣∣∣ ≤ ∫X |fn − f ||χA| ≤∫
X
|fn − f |. We are exactly under the conditions of Exercise 7.8 (because fn, f
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are non-negative), hence
∫
X
|fn − f | → 0, which implies the result.

7.8 For each n define gn := |fn|+ |f |−|fn−f |, so gn ≥ 0 and gn → 2|f |. By Fatou’s

lemma, lim inf
n→∞

∫
gn ≥ 2

∫
|f |. Following similar steps as in the solution for

Exercise 7.5, applied to our gn, and using the fact that by hypothesis
∫
|fn| →∫

|f |, we prove that lim sup
n→∞

∫
|fn − f | ≤ 0. So, 0 ≥ lim sup

n→∞

∫
|fn − f | ≥

lim inf
n→∞

∫
|fn − f | ≥ lim inf

n→∞

∣∣∣∣ ∫ (fn − f)

∣∣∣∣ ≥ 0 and the result follows.

7.9 Fix x0 ∈ R. Let ε > 0 be arbitrary. By Problem 6.6 above, one can choose
δ > 0 such that

∫
I
|f | < ε for every interval I ⊂ R of length less than δ. Then,

for any x with |x−x0| < δ, we have |F (x)−F (x0)| =
∣∣ ∫ x

a
f−
∫ x0

a
f
∣∣ =

∣∣ ∫ x

x0
f
∣∣ ≤∫

Ix,x0
|f | < ε, where Ix,x0 denotes the interval between x and x0. This proves

that F is continuous at x0.
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