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First, note that log(1 + z) > = — 2?/2, for all x > 0. Indeed, if g(z) :=
2
log(1 + z) — x + 22/2 for all z > 0, then g(0) = 0 and ¢'(z) = >

o

1+ ’
hence g(z) > ¢g(0) = 0 for all z > 0. Then, (1 + E) = onlog(1+x/n) <
n

o (x/m—a?/m?) _ (—ae+a?/2n) o (a2t /20) o ~w/2 g0 a0 <

x < n. Let f,(z) := (1 + E) nlog 2 4 cos(z/n)] xjo.n(x), © > 0. It follows
n

that | f,(z)| = fu(z) < e ®%log[2+ cos(z/n)] X (z) < e */?log3, for all

z >0, since —1 < cos(z/n) < 1. The function = — e~*/%log 3 is non-negative

and integrable on [0,00). Also, lim f,(z) = e “log3 so, by the Dominant
n—oo

Convergence Theorem (DCT), we have that

n T\ -1 o0
I (1+2) "1og2 de = i w(x)d
Jim i + 0g(2 + cos(xz/n))dx lim i fn(x)dw
:/ lim f,(z)dz
0 n—oo
:/ e “log3dx = log 3.
0
We have

/On (1 — %)nlog(Z + cos(z/n))dx = /000 (1 — %)nlog@ + cos(x/n))x[on (z)dz
= /OOO (1 — %)nlog@ + cos(z/n))X[o.n) (z)dz,

the last equality following from the fact that the two functions under the last
two integrals are equal everywhere except at = n. Note that log(1 —z) < —z
for all 0 < x < 1 (the proof is straightforward, similar to the one in Exercise



7.11). It follows that, for 0 < z < n,

nlog(l— z

e %) log(2 + cos(x/n))x[0n) ()

‘(1——%)nh¥ﬂ2+wm8@#nﬁxwmﬂf) =

< 6n(fgv/n) IOg 3

= e "log3.
The function z — e~ log 3 is non-negative and integrable on [0, c0) so, by DCT,
we have
lim (1 - E) log(2 4 cos(z/n))dz = lim (1 - f) log(2 + cos(x/n))xon (x)dx
= / lim [(1 - f) log(2 + cos(x /1)) X[0,n) (:E)dx]
0 N n
= / e “log3 = log 3.
0
1+ na? . .
7.13 Let f,(x) := m, 0<xz<1,ne€Z". Itis an easy computation to show
T n

that f,(z) > for1(z), for all 0 <z < 1 (in fact, for all z € R) and that f, | f
point-wise on [0, 1], where

0,if0 <z <1,
ﬂ@_{Lﬁxzo

The function f is integrable and fol f =0, since f =0 a.e. on [0,1]. Clearly,
| fn(2)1og(2 + cos(xz/n))xp1] < |fa(x)|log3. Since the sequence {f,(z)} is
decreasing for all 0 < x < 1 and both f; = 1 and f (the point-wise limit) are
bounded, it follows that there exists M > 0 such that |f,(z)| < M, for all
0<z<1landn € Z". By DCT we get that the required limit exists and is
equal to 0.

7.14 Define f,(x) := ne™™ > 0, for all z > 0. The integral in question becomes
I fal@)sin(l/x)de = [ fu(z)sin(l/@)xo.00) (x)de. It is straightforward to
show that, for all 0 < = < oo, {f.(x)} is decreasing and f, | 0. Since
| fo(2) sin(1/2) x(0,00)(%)] < fu(z) < fi(z) and fi(x) = e~ is bounded on (0, co),
it follows that there exists M > 0 such that |f,(x)sin(1/z)x (00 (x)] < M.
Since e~* is integrable on (0, c0), by DCT,

lim [ fo(x)sin(1/2)x(0,00)(2)dx = /Jl_)Iglo[fn(x) sin(1/2)x(0,00) (@)]dz = 0.

n—oo



7.15 Since f is continuous at 1, it follows that lim f(1 4+ z/n*)g(z)X[nm(z) =

n—oo

f(1)g(x), for all z € R. For every € R we have

‘f(l + x/nQ)g(x)X[—n,n} (l‘)| <M }g(x)X[—n,n] (:)3)‘ <M |g(l‘)| )

where M is a bound for f (i.e. |f| < M). By hypothesis, g is integrable, so we
can apply DCT. It follows that

n

lim [ 1+ a/t)g(@)dz = T [ £+ /n)g(w) i n(@)da

n—oo | .

:/ lim [f(1 + 2/n%)g(2)X[-nn (z)]dz

n—oo

= (1) [ gla)d

7.25 (1) v() = J, fdu = 0, because u(0) = 0. Let {A,} C A be a pairwise disjoint,

countable family of measurable sets and let A := U A,. Then,

n=1

o) = [ fin= [ Py ayin= | f;fondu
- i/fxfxndu = i/An fdu = iV(An),

where we used the fact that {A,} are pairwise disjoint and Proposition 7.6.

(2) It is enough to prove the required identity for the case where g is a simple
function. Indeed, under that assumption, let g be a nonnegative integrable
function. By Proposition 5.14, there exists a sequence {s,} of nonnegative
measurable simple functions such that s, 1 g, which implies s, f — ¢gf. In
fact, since {s, } is increasing and f > 0, it follows that s, f 1 gf. So, on one
hand, by the Monotone Convergence Theorem (MTC), [ s, fdu — [ fgdpu.
On the other, by the assumption we made that the formula is true for simple
functions, [ s,fdu = [ s,dv which again by MTC, converges to [ gdv, so
[ gdv = [ fgdu. The identity for the the general case follows immediately
by applying it to g*, ¢~
It remains to prove the formula for the case when g = Y, arxa, is a



8.5

8.7

nonnegative measurable simple function:

/gdy = Zaky (Ag) = ay fdu

=1

:;/A apfdp = Z/akfokdu
z/f;akxAkduz/fng

It suffices to show that the limit is 0 for ¢ taking only natural values, in which
case we shall denote it as n := ¢. Define A, :={x € X : f(z) > n}, n € Z .
Note that, by the definition of the integral of a nonnegative integrable function,
np(A,) < [ fxa,, since s, := nya, is a simple function satisfying 0 < s,, < f.
Also, clearly fxa, < f and, by hypothesis, f is nonnegative and integrable.
Lastly, we show that lim fxa, = 0. First note that A, C A, for all n, so

n—o0

A, | A= N¥,A,. Moreover, since f is a real-valued function, A = : if

da € N2, Ay, then f(a) > n for all n, which is not possible for any real number

f(a) € R. It follows that lim fyxa, = fxa = 0. By applying DCT, we obtain
n—oo

the result.

Let A, :={z € X : f(z) > n}. We have

oo o0
:Z/XAn:/ZXAny
n=1 n=1

by Proposition 7.6. Let z € X. For all n > f(x) we have xa,(z) = 0, so
[f ()]

ZXAn (x) = Z Xa, (z) = [f(z)], where [f(x)] is the greatest integer less than

n=1

or equal to f(z). But f(x) —1 < [f(x)] < f(x), hence f(z)—1< ZXA

f(z). Since x € X was arbitrarily fixed, the latter double 1nequahty is true

for any x € X. If f is integrable, then Zu /ZXA /f < 0.

n=1

Conversely, 0 < f < 1+ ZXA which implies that f is integrable: / f<

n= 1

/ (1+ZXAH> = u(X +Zu ) < 00, since p is finite.
n=1



9.1 Define
0, ifx€[0,1NQ,
flx) =42, ifze0,1]N(Q+n),
1, otherwise,
where Q+7 = {r+m : 7 € Q}. Then, f = xpi)\0 +X[0,1jn(Q+x) s Lebesque mea-
surable, and by density of Q and Q+m we have R(f) = 0 and R(f) = 2. On the
other hand, as countable sets, both [0, 1]NQ and [0, 1] N (Q + 7) have Lebesque

measure zero and f = 1 on their complement, so f=m([0,1]) = 1.
[0,1]



