12.1

12.3

12.4

12.7

Solutions for Problem Set 9 MATH 4122/9022

Octavian Mitrea

April 3, 2018

Let p be a signed measure on a measurable space (X,.A). Suppose first that A
is a null set and let P, N € A be a pair of sets given by the Hahn decomposition
theorem (P is positive, N is negative, X = PU N, PN N = ()). Then, by the
Jordan decomposition theorem, |u|(A) = pu™(A)+p (A) =pu(ANP) —u(AN
N) = 0, because ANP C A, ANN C A and A is a null set. Conversely,
if || (A) = 0 then pu*t(A) = p(A) = 0, since both put and = are positive
measures. If B C A then p*(B) = p~(B) = 0, by monotonicity, hence p(B) =
0.

Let s := sup {’ / fd,u‘ f < 1}. By Exercise 12.2 (not included in this prob-

lemset),‘/fd,u‘ /|f|d|,u|</d|,u| |p] (A), for all | f| < 1. This im-

plies s < |u| (A). For the converse inequality, let P,.S € A be given by the Hahn
decomposition theorem, with P is positive and N is negative. Then, |u|(A) =

pH(A)+pm(A) = p(ANP) = p(ANN) = [u(ANP) = p(ANN)| = ‘/Ampdu—

/ d,u‘ = '/(XAQP - XAmN)dM‘ =
ANP

Xp — X satisfies |f| = 1, which shows that |u| (A {‘/fdu’ I f] < 1}
hence |pu| (A) < s.

/(XP — XN)d/UL‘. The function f :=
A

Let P, S € A be given by the Hahn decomposition theorem, where P is positive
and N is negative. The first inequality: AT (A) = A(ANP) = pu(ANP)—v(AN
P) < u(ANP) < u(A), where in the second last inequality we used the fact that
both p and v are positive and finite. Similarly, the second inequality is derived
as follows: A7(A) = =AMANN)=—pu(ANN)+v(ANN) <v(ANN) <v(A).

a::sup{’[‘fdu‘:]f\gl}

Let



and
b := sup {Z |u(Bj)| : By € A, {B;}}_, is a partition of A,n € N} .
j=1

By Exercise 12.3, it suffices to show that a = b. As we have seen in the same
exercise, / fdu| < |u|(A), forall|f| <1,s0a <b,since |u|(A) = pu(ANP)—

A

WANN) = |pu(ANP)| 4+ |p(ANN)|, which is an element of the set defined in
the question (again, here P, N are given by the Hahn decomposition theorem).
For the converse inequality, let {B; }?:1 be a partition of A, B; € A and define

_ lu(B))|
1@ =B,y

that |f| < 1). Then,

forz € B;,j=1,...,n,and f(z) =0 for all z € X \ A (note
~ |u(B;)|
fd,u‘ = . w(B;) |, which
/. 2. (B, Z‘ )l

. (a) Let M(X) be the set of all complex measures on (X, M) endowed with the
two operations defined in the question. Then, py := 0 (the zero-measure)
is the additive identity, (—u)(A) := —u(A) is the additive inverse of any
pw € M(X), 1 € C is the complex scalar satisfying 1 -y = p and we
let to the reader to prove the rest of the vector space axioms, which are
straightforward to verify. For example, here is one of the distributivity
axioms: if a,b € C, p € M(X) and E € M, then [(a+ b)u|(F) = (a+b) -
W(E) = a- u(E) +b- u(E) = (a)(E) + (br) (E), hence (a+ by = api + by

(b) We use the following definition for the total variation measure |u| of a

complex measure p (see for example Rudin’s Real and Complex Analysis,
3rd edition, p. 116):

implies b < a.

|p] (A) = sup {Z |(Bj)| : B; € M,{B,}; is a partition of A} (0.1)

For the rest of the proof, we shall write sup Z | ;(Bj)| instead of the full
j=1
expression (0.1), where the supremum is taken over all partitions {B; }J of

X with B; € M. For a € C we have ||ap| = |ap| (X —supZ|au =

lalsup ) |u(By)| = |a|p(X) = [al|lp]. Next, suppose that [|p| :=

7j=1
|n](X) = 0 and let A € M. Then, [u(A)| < [p(A)] + [p(X\A)] <



supz |p(Bj)| = |p| (X) = 0. This proves that ||x| = 0 implies p = 0.

Lastly, for the triangle inequality, we have

I+ vl =[p+v|(X)

= supz |1(B)) + v(By)|
<sup2|u )|+ v(Bj)]

<supZ\u \+sup2\ )|

Zlul( )+!V|( ):||M||+||V||-
The last inequality involves all possible partitions of X, separately for u
and v, respectively. That is why we used different notations (B; and C}).

6. This is Proposition 6.8 in Rudin’s Real and Complex Analysis, 3rd edition, p.
120., whose solution we present in here.

(a)

First note that A is concentrated on A iff A(E) = 0 for all £ € M that do
not intersect A. Indeed, one direction is immediate and, to prove the other
one, just write £ = (E'\ A) U (E N A), as a disjoint union, and note that,
by hypothesis, A(E'\ A) = 0. Now, let F € M such that EN A = (. Then,
A(E) = 0 so, for any partition {£;}; of E we have A\(E;) = 0 for all j, since
none of the E; intersect A. By the definition used in Question 5 above
(for complex measures) and also, by Exercise 12.7 (for signed measures), it

follows that |A| (E£) = 0.

For two measures A, A2 to be mutually singular (as per the definition in
the textbook) is the same as saying that A; is concentrated on A and ), is
concentrated on B, for some measurable sets A, B € M,ANB =0, AUB =
X (we leave the straightforward proof of this statement to the reader).
Then, point (b) is an immediate consequence of point (a).

A1 L p implies the existence of two measurable sets A;, By € M, disjoint,
A; U By = X, such that \; is concentrated on A; and p on By. Similarly,
there exists disjoint measurable sets Ay, B € M such that A\ is concen-
trated on As and g on Bs. Then, A\; + A5 is concentrated on A := A; U A,,
 is concentrated on B := Bi N By, X = AUB and AN B = ().

This point is immediate.

Let £ € M be such that u(E) = 0 and let {E,}; be a partition of E. Since
p is positive, it follows that p(£;) = 0 for all j, so A(E;) = 0 for all j, hence
>_; IA(E;)| = 0, which implies [A| (£) = 0.
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(f) A2 L p implies that there exists a set A such that u(A) = 0 and on which
Ao is concentrated. Since A\ < p, A (B) = 0 for all B C A, hence )\ is
concentrated on the complement of A, which proves the statement.

(g) By point (f), it follows that A L X which clearly implies A\ = 0.

. Suppose there exist two pairs A\,, A; and A,, AL such that A = A\, + s = A, + AL

a’r’’'s

such that A\, < p, Ay L pand X, < p, A, L p. Then
N A=A = N (0.2)

Then, by point (¢) in the previous exercise, we have A, — X, L p. By point (d),
we have X, — A\, < p. By (0.2), X, — A\, and A\; — A are the same measure, so
by point (g) we must have X, — A\, = A\; — A, = 0, which proves the statement.



