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Abstract. We construct a left semi-model structure on the category of intensional type
theories (precisely, on CxlCatId,1,Σ(,Πext)). This presents an ∞-category of such type theo-
ries; we show moreover that there is an ∞-functor Cl∞ from there to the ∞-category of
suitably structured quasi-categories.

This allows a precise formulation of the conjectures that intensional type theory gives
internal languages for higher categories, and provides a framework and toolbox for further
progress on these conjectures.

1. Introduction

Homotopy Type Theory (HoTT) has often been described as the internal language
of ∞-categories. Informally, this covers a range of ideas: theorems and constructions
given in HoTT can be interpreted in a variety of higher-categorical settings, and conversely,
many higher-categorical notions can be translated into type theory. Various results in these
directions have been given: some proven, some conjectured, some only informally sketched
(see, for instance, [Joy11, Shu12, Shu15b, Shu15a, Shu15c, Kap15]).

By analogy with established “internal languages” in 1-categorical settings, one hopes for
a single master statement subsuming all of these: the existence of suitable equivalences
between some (higher) categories of type theories and ∞-categories.

The first contribution of the current paper is a framework for precise statements of such
conjectures. We do so by assembling type theories into a higher category, and giving a
functor Cl∞ from this to a higher category of suitably structured quasicategories. The
internal language conjecture then states: Cl∞ is an equivalence of higher categories.

The other main contribution is a left semi-model structure on the category of type theo-
ries. This gives a tractable and explicit presentation of the higher category thereof, which
we hope will provide a solid base for further progress on the conjectures.

In a little more detail: we work with “type theories” as contextual categories or categories
with attributes (CwA’s), keeping our results independent of the correspondence between
these and syntactically presented theories. We assume Id-, Σ-, and unit types throughout;
we consider also the extension to Π-types.

Two technical tools of the paper may be of independent interest. One (small, but useful
and to our knowledge new) is a notion of equivalence between arbitrary objects of a CwA.
The other is the construction of the CwA of span-equivalences in a given CwA, a powerful
tool for constructing equivalences between CwA’s.

In Section 5, we make use of some results from our forthcoming article [KL16], currently
in preparation. However, those results may be treated as black boxes; the present paper
can be read as essentially self-contained.

During the preparation of this paper, we learned that Valery Isaev has independently
given a similar construction in [Isa16], defining a (full) model structure on a slightly different
category of type theories (assuming an interval type, instead of Martin-Löf identity types).

2. Background

In this section, we review the necessary background on categorical models of type theory.
We recall the definition of a contextual category and introduce the notation for working with
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them. We then investigate their homotopy-theoretic properties, employing the language of
fibration categories.

Contextual categories and functors

We choose to work with contextual categories as our model of type theory. These were
introduced by Cartmell in his thesis [Car78] and studied by Streicher [Str91] and more
recently in a series of papers by Voevodsky (see e.g., [Voe15a, Voe16, Voe15c, Voe15b]).

Definition 2.1. A contextual category C consists of the following data:

(1) a category C;
(2) a grading of objects as Ob C =

∐
n:N Obn C;

(3) an object 1 ∈ Ob0 C;
(4) father operations ftn : Obn+1 C Obn C (whose subscripts we suppress);
(5) for each Γ ∈ Obn+1 C, a map pΓ : Γ ft Γ (the canonical projection from Γ,

distinguished in diagrams as );
(6) for each Γ ∈ Obn+1 C and f : ∆ ft Γ, an object f∗Γ together with a connecting

map f.Γ : f∗Γ Γ;

such that:

(7) 1 is the unique object in Ob0 C;
(8) 1 is a terminal object in C;
(9) for each Γ ∈ Obn+1 C, and f : ∆ ft Γ, we have ft(f∗Γ) = ∆, and the square

f∗Γ Γ

∆ ft Γ

pf∗Γ

f.Γ

y
pΓ

f

is a pullback (the canonical pullback of Γ along f); and
(10) these canonical pullbacks are strictly functorial: that is, for Γ ∈ Obn+1 C, id∗ft ΓΓ = Γ

and idft Γ.Γ = idΓ; and for Γ ∈ Obn+1 C, f : ∆ ft Γ and g : Θ ∆, we have
(fg)∗Γ = g∗f∗Γ and fg.Γ = f.Γ ◦ g.f∗Γ.

Contextual categories can be easily seen as models of an essentially algebraic theory with
sorts indexed by N + N × N. As such, they come with a canonical notion of morphism:
a contextual functor F : C D between contextual categories is a homomorphism
between them, regarded as models of an essentially algebraic theory. Explicitly, F is a
functor preserving on the nose all the structure of Definition 2.1: the grading on objects,
the terminal object, the father maps, the dependent projections, the canonical pullbacks,
and the connecting maps.

We denote the category of contextual categories and contextual functors by CxlCat.

Notation 2.2. Given Γ ∈ Obn C, we write TyC(Γ) for the set of objects Γ′ ∈ Obn+1 C
such that ft(Γ′) = Γ, and call these types in context Γ. For A ∈ TyC(Γ), we write
Γ.A for A considered as an object of C, pA for the projection pΓ.A : Γ.A Γ, and
f.A : f∗(Γ.A) Γ.A for the connecting map f.(Γ.A). For each f : Γ′ Γ, we have
a map f∗ : TyC(Γ) TyC(Γ′) given by the pullback operation of C. The axioms of a
contextual category ensure that this forms a presheaf TyC : Cop Set.

More generally, by a context extension of Γ ∈ Obn C, we mean some object Γ′ ∈
Obn+m C with ftm Γ′ = Γ. Again, we will write such an extension (considered as an object
of C) as Γ.∆, with a canonical projection p∆ : Γ.∆ Γ obtained by composing the
projections Γ.∆ ft(Γ.∆) . . . ftm(Γ.∆) = Γ. Similarly, given f : Γ′ Γ and a
context extension ∆ of Γ, by iterating the pullback of types we obtain a pullback context
extension f∗∆ over Γ′, with f.∆ : Γ′.f∗∆ Γ.∆.

Given Γ ∈ C and A ∈ TyC(Γ), we write TmC,Γ(A) for the set of sections s : Γ Γ.A
of the projection pA. When no confusion is possible, we will omit the subscripts, writing
Ty(Γ) and Tm(A) respectively.
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Definition 2.3. Contextual categories can be equipped with additional operations cor-
responding to the various type-constructors of Martin-Löf Type Theory. For the present
paper we consider just the structure corresponding to:

• identity types (denoted Id);
• unit types (1) and dependent sum types (Σ);
• dependent function types, with functional extensionality rules (together, Πext).

For the definitions of these structures, see [KL12, App. B].
For each choice of constructors, contextual categories with such structure are again mod-

els of an essentially algebraic theory (extending the e.a.t. of contextual categories), so have
a natural notion of morphism: contextual functors preserving the extra structure.

We write CxlCatId,1,Σ for the category of contextual categories equipped with Id-, 1-,
and Σ-types; and CxlCatId,1,Σ,Πext the category of contextual categories with all these plus
extensional dependent function types. When a statement, construction, or proof can be read
in parallel for each of these categories, we will refer to them as CxlCatId,1,Σ(,Πext). There is
moreover (again, by their description as e.a.t.’s) a free–forgetful adjunction

CxlCatId,1,Σ CxlCatId,1,Σ,Πext⊥

Remark 2.4. One often considers other logical structure besides Id, 1, Σ, and Πext. Some
of the results of this paper extend directly to such further structure; others do not. In the
absence of a good general framework for such structure, however, we restrict ourselves for
the present paper to the case of Id, 1,Σ(,Πext), except for a few definitions and constructions
that only assume Id-types.

Definition 2.5. Following Garner [Gar09, Prop. 3.3.1], we note that Id-types on a con-
textual category allow the construction of more general identity contexts. Specifically,
given Γ ∈ Obn C and a context extension Γ.∆ ∈ Obn+m C, there is a further context ex-
tension Γ.∆.p∗∆∆.Id∆ ∈ Obn+3m C, along with a reflexivity map and elimination operation
generalizing those of the identity type Γ.A.p∗AA.IdA of a single type over Γ.

Definition 2.6. Given f, g : Γ ∆ in a contextual category C, a homotopy H from f
to g (denoted H : f ∼ g) is a factorization of (f, g) : Γ ∆ ×∆ = ∆.p∗∆∆ through the

identity context ∆.p∗∆∆.Id∆
pId∆ ∆.p∗∆∆.

There are various established definitions of equivalence in contextual categories, all es-
sentially equivalent [Uni13, Ch. 4]; we choose the following:

Definition 2.7. Let C be a contextual category with identity types.

• A structured equivalence w : Γ ' ∆ consists of a map f : Γ ∆, together with
maps g1, g2 : ∆ Γ and homotopies η : fg1 ∼ 1∆ and ε : g2f ∼ 1Γ.
• An equivalence Γ ∼ ∆ in C is a map f : Γ ∆ for which there exist some
g1, g2, η, ε making it a structured equivalence.

Definition 2.8. Given a contextual category C and an object Γ ∈ C, the fibrant slice
contextual category C//Γ is given by:

• objects in Obm C//Γ are context extensions Γ.∆ ∈ Obn+m C;
• (C//Γ)(Γ.∆, Γ.∆′) := (C/Γ)(Γ.∆, Γ.∆′);
• the remaining structure is inherited from C.

If C carries identity types (resp. 1, Σ, Πext), then so does C//Γ.

This satisfies the familiar categorical property that a slice of a slice is again a slice, in
that (C//Γ)//Γ.∆ ∼= C//(Γ.∆).

Moreover, any contextual functor F : C D and object Γ ∈ C induce an evident
contextual functor F//Γ : C//Γ D//FΓ; and this preserves any logical structure that F
does.
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Fibration categories

Fibration categories and variations thereof (like Shulman’s type-theoretic fibration cat-
egories [Shu15b, Def. 2.1] and Joyal’s tribes [Joy14]) have proven useful when studying
homotopy-theoretic aspects of type theory. We begin by recalling some of the basic defini-
tions and constructions.

Fibration categories were introduced by Brown [Bro73] as categories of fibrant ob-
jects. We slightly strengthen them, following other recent authors (e.g. [Szu14, Def. 1.1]).

Definition 2.9. A fibration category consists of a category C together with two wide
subcategories (subcategories containing all objects): F of fibrations and W of weak
equivalences such that:

(1) weak equivalences satisfy the 2-out-of-6 property; that is, given a composable triple
of morphisms:

X f Y g Z h Z

if hg and gf are weak equivalences, then so are f , g, h, and hgf .
(2) all isomorphisms are acyclic fibrations (i.e., are both fibrations and weak equiva-

lences).
(3) pullbacks along fibrations exist; fibrations and acyclic fibrations are stable under

pullback.
(4) C has a terminal object 1; the canonical map X 1 is a fibration for any object

X ∈ C (that is, all objects are fibrant).
(5) every map can be factored as a weak equivalence followed by a fibration.

Given a fibration category C, its homotopy category HoC is the result of formally
inverting the weak equivalences. It can be described more explicitly using the notion of
weak right homotopy.

Definition 2.10 ([Bro73, §2]). A path object for X ∈ C is any factorization X ∼

PX X ×X of the diagonal map as a weak equivalence followed by a fibration.
Maps f, g : X Y are weakly right homotopic, f ∼ g, if for some trivial fibration

t : X ′ X the maps ft, gt : X ′ Y factor jointly through some path object PY
Y × Y .

X ′ PY

X Y × Y.

t

h

〈f,g〉

Say f, g are (strictly) right homotopic, f ∼r g, if one can take X ′ = X, t = idX .1

In general fibration categories, the weak notion is more important:

Theorem 2.11 ([Bro73, Thm. 1]). For any fibration category C, the homotopy category
HoC may be taken as the category with the same objects as C, and with HomHoC(X,Y ) =
HomC(X,Y )/ ∼.

Definition 2.12.

• A functor between fibration categories is exact if it preserves fibrations, acyclic
fibrations, pullbacks along fibrations, and a terminal object.
• An exact functor is a weak equivalence of fibration categories if it induces an

equivalence of homotopy categories.

As mentioned above, the framework of fibration categories can be used to study homotopy-
theoretic aspects of type theory. Let C be a contextual category with Id-types. Define classes
W, F of maps in C by:

1In some recent literature, e.g. [Szu14], right homotopic is used for the weak notion; we distinguish that
explicitly to avoid clashing with more established usage.
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• W is precisely the equivalences of Definition 2.7;
• F consists of maps isomorphic to some composite of canonical projections.

Theorem 2.13 ([AKL15, Thm. 3.2.5], [Kap15, Ex. 2.6.(3)]).

(1) For any contextual category C with Id, 1, and Σ, these classes F and W make C a
fibration category.

(2) This forms the object part of a faithful functor CxlCatId,1,Σ FibCat.

The fibration categories arising from contextual categories are particularly nice in that all
of their objects are also cofibrant; that is, every acyclic fibration admits a section [AKL15,
Lem. 3.2.14]. This justifies the following description of their homotopy categories:

Lemma 2.14. Let C ∈ CxlCatId,1,Σ. Then the homotopy category of C (regarded as a
fibration category) can be described as follows:

• objects of Ho C are the objects of C;
• morphisms Γ ∆ in Ho C are homotopy classes of maps in C, in the sense of

Definition 2.6.

Proof. As shown in [AKL15, Thm. 3.2.5], the path-objects in a contextual category C are
given exactly by the identity contexts. Homotopy in the sense of Definition 2.6 is therefore
exactly right homotopy in the sense of Definition 2.10. Furthermore, since every object is
cofibrant, this coincides with weak right homotopy. �

Finally, we note an indispensible (and easily overlooked) lemma: the property of being
an equivalence does not depend on where one views a map.

Lemma 2.15. Let C be a contextual category with identity types. A map f : Γ.∆ Γ.∆′

over Γ is an equivalence in C//Γ if and only if it is an equivalence in C.

Proof. More generally, let f : Y Y ′ be a map of fibrations over a base X, in any fibration
category C, with Y and Y ′ cofibrant. Then f is a homotopy equivalence in C if and only if
it is one in C/X. This follows by an argument originally due to Dold; it is given for model
categories in [KP97, Thm. 6.3], but adapts directly to the present setting. �

3. Equivalences, fibrations, and cofibrations of contextual categories

In this section, we will define the three classes of maps: weak equivalences, cofibrations,
and fibrations required for the left semi-model structure, as well as state the internal lan-
guage conjectures.

We begin by introducing two notions of equivalence between contextual categories: type-
theoretic and homotopy-theoreric, and proving that they are equivalent (Proposition 3.3).
We then review the basic facts about known connections between type theory and higher
category theory, and state the internal language conjectures (3.7). In the remainder of
the section, we introduce notions of (trivial) fibrations and cofibrations between contextual
categories, proving some their properties.

Logical and homotopy-theoretic equivalences

Definition 3.1. A map F : C D of contextual categories with Id-types is a (type-
theoretic) equivalence if it satisfies

(1) weak type lifting: for any Γ ∈ C and A ∈ Ty(FΓ), there exists Ā ∈ Ty(Γ)
together with an equivalence FĀ ∼ A over FΓ; and

(2) weak term lifting: for any Γ ∈ C, A ∈ Ty(Γ), and a ∈ Tm(FA), there exists
ā ∈ Tm(A) together with an element of the identity type e ∈ Tm(IdFA(F ā, a)).

Write W for the class of type-theoretic equivalences in CxlCatId,1,Σ(,Πext).

From a logical perspective, this is a sort of conservativity between theories: compare e.g.
the condition TY-CONS of [Hof95, §3.2.3].

Both lifting properties can in fact be strengthened:
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Lemma 3.2. Every type-theoretic equivalence F : C ∼ D additionally satisfies

(1) weak context lifting: for any context Γ ∈ C and context extension FΓ.∆, there
exists a context extension Γ.∆̄ together with an equivalence F (Γ.∆̄) ∼ FΓ.∆ over
FΓ; and

(2) weak section lifting: for any context extension Γ.∆ ∈ C and section s : FΓ
FΓ.F∆ of the generalized projection pF∆, there exists a section s̄ : Γ Γ.∆ of
p∆, together with a homotopy e : F s̄ ∼ s over Γ.

Proof. Induction on the length of the context. �

One can also use the associated fibration category (Theorem 2.13) to define equivalences
in a more homotopy-theoretic way. Specifically, call a map F : C D a homotopy-
theoretic equivalence if the induced functor HoF : Ho C Ho D is an equivalence of
categories. It turns out these two definitions coincide:

Proposition 3.3. A contextual functor is a type-theoretic equivalence if and only if it is a
homotopy-theoretic equivalence.

Proof of Proposition 3.3. We rely on Lemma 2.14 throughout.
First, assume F : C D is a type-theoretic equivalence. Then HoF is:

• full, by weak section lifting (Lemma 3.2(2)): a map f : FΓ F∆ can be viewed
as a section of the context extension FΓ.p∗ΓF∆ FΓ and as such can be lifted
(up to homotopy) to a map f̄ : Γ Γ.∆;
• faithful, by weak section lifting applied to the identity contexts;
• essentially surjective, by weak context lifting (Lemma 3.2(1)).

Conversely, assume that HoF is an equivalence of categories. For weak type lifting,
suppose A ∈ Ty(FΓ). Since HoF is essentially surjective, one can find Γ′ ∈ C and w :
FΓ′ ∼ FΓ.A. Moreover, since HoF is full, there is some f : Γ′ Γ such that the triangle

FΓ′ FΓ.A

FΓ

w
∼

Ff pA

commutes up to homotopy. Since pA is a fibration, we can replace w with some homotopic
w′ making the triangle commute on the nose. Factoring f as an equivalence u followed by
a fibration p∆ : Γ.∆ Γ, and taking the iterated Σ-type of ∆, we obtain Ā ∈ Ty(Γ) and
an equivalence w′ · Fu−1 : FĀ ∼ A over FΓ, as required.

Lastly, we give weak term lifting; this is a little more involved. We start by showing a
“crude section lifting” property: for any Γ.∆ ∈ C and section a : FΓ F (Γ.∆) of pF∆,
there is some section â : Γ Γ.∆ of p∆, together with a homotopy h : F â ∼ a (but not
yet necessarily over Γ, as required in weak term/section lifting) .

Given such Γ.∆ and a, by fullness of HoF there is some map a′ : Γ Γ.∆ with
Fa′ ∼ a. Now F (p∆a

′) ∼ pF∆a = idFΓ, so by faithfulness of HoF , p∆a
′ ∼ idΓ. So since pΓ

is a fibration, we can replace a′ by some section â of p∆, with â ∼ a′ and hence F â ∼ a as
required.

Now, we can strengthen this to full term-lifting. Given Γ, A, a, take by crude section-
lifting some section â : Γ Γ.A and homotopy h : Fa′ ∼ a : FΓ FΓ.FA. We can
split h up into h0 = pFΓh : idΓ ∼ idΓ and h1 ∈ TmΓ(IdFA((h0)!Fa

′, a)), where (h0)! denotes
transport (as used in the definition of identity contexts). In type-theoretic notation,

• x:FΓ ` h0(x) : IdFΓ(x, x),
• x:FΓ ` h1(x) : IdFA(h0(x)!Fa

′(x), a(x))

We now apply crude section lifting to h0 : FΓ FΓ.IdFΓ(idFΓ, idFΓ). Type-theoretically,

the result is a term x:Γ ` ĥ0(x) : IdΓ(x, x), together with a homotopy α : Fĥ0 ∼ h0, which
once again we split up into two parts:
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• x:FΓ ` α0(x) : IdFΓ(x, x),

• x:FΓ ` α1(x) : IdFΓ(α0(x)!Fĥ0(x), h0(x)).

By the J-structure (Id-elimination), one can produce a term x, y :FΓ, u : IdFΓ(x, y) `
θ(x, y, u) : IdId(y,y)(u!Fĥ0(x), F ĥ0(y)). 2 So, in particular, we get a term x:FΓ ` β(x) :

IdFΓ(Fĥ0(x), h0(x)), by composing θ(x, x, α0(x))−1 with α1(x).

Now define the corrected lifting of a as x:Γ ` ā(x) := ĥ0(x)!â(x) : A. The desired equality
x:FΓ ` IdFA(F ā(x), a(x)) is then a composite:

F (ā(x)) = F (ĥ0(x))!F (â(x))
β(x)
=Id h0(x)!F (â(x))

h1(x)
=Id a(x). �

This justifies dropping the distinction, and simply calling such functors equivalences. It
also immediately gives:

Corollary 3.4. W satisfies 2-out-of-6 and is closed under retracts.

Proof. Equivalences of categories are closed under 2-out-of-6 and retracts; thus so are equiv-
alences of contextual categories, as their inverse image under Ho by Proposition 3.3. �

Closing, we note another useful property:

Lemma 3.5. If a contextual functor F : C D is an equivalence, then so is the induced
functor on slices F//Γ : C//Γ D//FΓ.

Proof. Straightforward, with the use of Lemma 2.15. �

Conjectures on internal languages

In this section, we will provide precise statements of the conjectures establishing dependent
type theories as internal languages of (sufficiently structured) higher categories. Thus its
goal is to put the results of the remainder of the paper in a broader context.

By a category with weak equivalences, we mean a pair (C,W), where C is a category
and W a wide subcategory of C (whose maps we call weak equivalences). A functor F
between categories with weak equivalences (C,W), (C′,W ′) is homotopical if it preserves
weak equivalences. Write weCat for the category of categories with weak equivalences and
homotopical functors.

Every fibration category (C,F ,W) has an obvious underlying category with weak equiva-
lences (C,W), and by Ken Brown’s Lemma [Hov99, Lem. 1.1.12], every exact functor is ho-
motopical. It follows by Theorem 2.13 that every contextual category has an underlying cat-
egory with weak equivalences, and this construction forms a functor CxlCatId,1,Σ weCat.

The category weCat can itself be regarded as a category with weak equivalences, where
the weak equivalences are Dwyer–Kan equivalences (DK-equivalences) [BK12].

Let Cat∞ denote the full subcategory of the category sSet of simplicial sets, whose objects
are quasicategories [Joy08, Def. 1.5]. We will consider Cat∞ as a category with weak
equivalences in which the weak equivalences are categorical equivalences [Joy08, Def. 1.20].

The categories with weak equivalences weCat and Cat∞ are DK-equivalent and we will
write Ho∞ for an equivalence weCat Cat∞. While this functor may be implemented in
many ways (see [Bar16, §1.6] for several possibilities), they are all equivalent, by [Toë05,
Thm. 6.3]. For concreteness, we take Ho∞ to be the composite of the hammock localization
followed by the right derived functor of the homotopy coherent nerve.

We will write ClId,1,Σ∞ for the composite functor

CxlCatId,1,Σ weCat Ho∞ Cat∞

and ClId,1,Σ,Πext for its composite with the forgetful functor CxlCatId,1,Σ,Πext CxlCatId,1,Σ.
For working with these functors in practice, one can exploit Szumi lo’s construction of the

quasicategory of frames NfC in a fibration category C [Szu14, §3.1]. For any fibration

2In traditional homotopy-theoretic terms: Fĥ0 is a global section of the free loop space of FΓ, so must
land in the center of π0(FΓ).
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category, there is an equivalence NfC ' Ho∞ C [KS16, Cor. 4.15]; so for fibration categories,
Nf gives a much more explicit and workable description of the quasicategory Ho∞ than is
provided by the more general constructions.

Theorem 3.6.

(1) The functor ClId,1,Σ∞ takes values in the category Lex∞ of quasicategories with fi-
nite limits and finite limit preserving functors. Moreover, it takes equivalences of
contextual categories to categorical equivalences of quasicategories.

(2) The functor ClId,1,Σ,Πext
∞ takes values in the category LCCC∞ of locally cartesian

closed quasicategories and locally cartesian closed functors. As before, it takes equiv-
alences of contextual categories to categorical equivalences of quasicategories.

Proof. The first part of (1) is noted in [Kap15, p. 10]. For the second part, observe that the
equivalences of contextual categories are exactly the weak equivalences of their underlying
fibration categories, which are in turn preserved by Nf [Szu14, Thm. 3.3].

Similarly, the first part of (2) is exactly the statement of [Kap15, Thm. 5.8], whereas the
second part follows immediately by the same reasoning as above. �

In light of the above theorem, one can formulate the following conjecture, an∞-categorical
analogue of the results of Clairambault and Dybjer [CD11], establishing intensional type
theory as an internal language for suitable ∞-categories.

Conjecture 3.7. The functors ClId,1,Σ∞ and ClId,1,Σ,Πext
∞ are DK-equivalences of categories

with weak equivalences.

Ultimately, one would like to extend the above correspondences to include univalent type
theories on one side and elementary ∞-toposes on the other; however, neither of these
notions is yet defined. On the type-theoretic side, it is not currently clear which rules
to choose, of the many proposed for univalent universes and higher inductive types. On
the higher-categorical side, a precise definition of an elementary ∞-topos remains to be
formulated. Lurie [Lur09] provides a detailed study of Grothendieck ∞-toposes, but does
not pursue the idea of their elementary counterparts [Lur09, 6.1.3.11].

Once these notions have been formulated, one hopes that the functor ClId,1,Σ,Πext
∞ can

be promoted to a functor ClHoTT
∞ : CxlCatHoTT ElTop∞ (where we write CxlCatHoTT

for the category of contextual categories admitting rules for univalent type theories, and
ElTop∞ for the category of elementary ∞-toposes). Eventually, one hopes to obtain the
following diagram, with the horizontal arrows DK-equivalences:

CxlCatHoTT

CxlCatId,1,Σ,Πext

CxlCatId,1,Σ

ElTop∞

LCCC∞

Lex∞

ClHoTT
∞

(∼)

ClId,1,Σ∞

(∼)

Cl
Id,1,Σ,Πext∞

(∼)

Remark 3.8. The categories of the right hand column may be seen as the (∞, 1)-cores of
larger (∞, 2)-categories. One may wonder if the maps Cl∞ are in fact (∞, 2)-equivalences,
for some yet-to-be-defined (∞, 2)-category structures on CxlCat(...).

By analogy with 1-categorical settings, we hope that this should be the case for ClId,1,Σ∞ ,

but do not expect it for ClId,1,Σ,Πext
∞ or ClHoTT

∞ . Indeed, we do not expect the full (∞, 2)-
category LCCC∞ to be as well-behaved at all as its (∞, 1)-core, essentially due to the
non-covariance of exponentials.

This phenomenon appears most simply in, for example, the fact if C[A] is the free carte-
sian closed category on an object, and F,G : C[A] D are cartesian functors (deter-
mined by the objects FA,GA ∈ D), then natural isomorphisms α : F ∼= G are determined
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uniquely by isomorphisms αA : FA ∼= GA, but no such nice property holds for general
natural transformations F G.

Fibrations and cofibrations

We define in this section two cofibrantly generated weak factorization systems, (C, T F)
and (A,F) on CxlCatId,1,Σ(,Πext). To do so, we first set up generating sets of left maps,
whose domains and codomains are presented in Definition 3.9, as freely generated objects
in CxlCatId,1,Σ. (The existence of freely generated objects follows from the presentation of
CxlCatId,1,Σ(,Πext) as models of an essentially algebraic theory.)

Definition 3.9. Define the following freely generated objects in CxlCatId,1,Σ:

• 〈〈Γn 〉〉 is freely generated by a context of length n.
• 〈〈Γn ` A 〉〉 is freely generated by a context Γ of length n, and a type A over this

context. (Of course 〈〈Γn ` A 〉〉 ∼= 〈〈Γn+1 〉〉, but we distinguish them notationally
for readability.)
• 〈〈Γn ` a : A 〉〉 is freely generated by Γ, A as in 〈〈Γn ` A 〉〉, and a section of pA.
• 〈〈Γn ` A ' A′ 〉〉 is freely generated by a context Γ of length n, types A, A′ over Γ,

and maps f, gl, gr, αl, αr constituting an equivalence from A to A′ over Γ.
• 〈〈Γn ` e : IdA(a, a′) 〉〉 is freely generated by Γ, A as in 〈〈Γn ` A 〉〉, and a section of

the composite projection map Γ.A.A.IdA Γ (giving all three: a, a′, and e).

Applying the left adjoint functor F : CxlCatId,1,Σ CxlCatId,1,Σ,Πext gives similarly
freely generated objects in CxlCatId,1,Σ,Πext . When necessary for disambiguation, we may
distinguish these different incarnations as e.g. 〈〈Γn 〉〉Id,1,Σ vs. 〈〈Γn 〉〉Id,1,Σ,Πext

; but when it
is clear which category we are working in, or when statements apply to both of them, we
write just 〈〈Γn 〉〉, and so on.

Definition 3.10. Take I and J to be the following sets of maps in CxlCatId,1,Σ(,Πext):

• I consists of the evident inclusions 〈〈Γn 〉〉 〈〈Γn ` A 〉〉 and 〈〈Γn ` A 〉〉 〈〈Γn `
a : A 〉〉, for all n ∈ N;
• J consists of the evident inclusions 〈〈Γn ` A 〉〉 〈〈Γn ` A ' A′ 〉〉 and 〈〈Γn ` a :
A 〉〉 〈〈Γn ` e : IdA(a, a′) 〉〉, for all n ∈ N.

Definition 3.11. In each of CxlCatId,1,Σ and CxlCatId,1,Σ,Πext , we define the classes of maps

T F := It, C := tT F , F := Jt, andA := tF . Call maps in these classes trivial fibrations,
cofibrations, fibrations, and anodyne maps.

Unwinding the universal properties of the maps in I, we see that a map F : C D is a
trivial fibration just if types and terms lift along it on the nose (we will call these properties
strict type lifting and strict term lifting); that is, for any Γ ∈ C and A ∈ Ty(FΓ),
there is some Ā ∈ Ty(Γ) with F (Ā) = A, and similarly for terms. Note that since clearly
strict type/term lifting implies the corresponding weak version, every trivial fibration is
also a weak equivalence. These conditions are a strong form of conservativity, considered
in [Lum10, Def. 4.2.5] as contractibility; cf. also [Hof95, Thm. 3.2.5].

Similarly, the lifting properties of a fibrations can be seen explicitly as equivalence-
lifting and path-lifting respectively.

By standard results on weak factorization systems, we have:

Proposition 3.12. (C, T F) and (A,F) are both weak factorization systems.

The forgetful functor CxlCatId,1,Σ,Πext CxlCatId,1,Σ preserves and reflects fibrations
and trivial fibrations, while its left adjoint preserves cofibrations and anodyne maps, since
I Id,1,Σ,Πext , J Id,1,Σ,Πext were the images of I Id,1,Σ, J Id,1,Σ under the left adjoint. Note however
that the forgetful functor will not generally preserve cofibrations or anodyne maps.

It also follows automatically that a map of contextual categories is a cofibration (resp. an-
odyne) just if it is a retract of a cell complex built from the basic maps in I (resp. J). We
will not make formal use of this fact, but it is helpful for intuition: a typical cofibration is
an I-cell complex, i.e. an extension of type theories obtained by repeatedly adjoining new
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types and terms (possibly infinitely many), but no new judgemental equalities. In partic-
ular, a typical cofibrant object is a type theory generated (over the constructors Id, 1,Σ or
Id, 1,Σ,Πext under consideration) just by algebraic type and term rules, with no extra def-
initional equalities. Similarly, a typical anodyne map is a J-cell complex, i.e. an extension
built by repeatedly adjoining new terms and types along with equivalences or propositional
equalities to pre-existing ones.

Proposition 3.13. Every object in CxlCatId,1,Σ(,Πext) is fibrant.

Proof. Immediate since the generating anodyne maps all have retractions, given by the
identity equivalence and reflexivity term, respectively. �

Note that checking the equivalence-lifting criterion for a fibration directly would be rather
tedious in practice, since it involves lifting structured equivalences. In Corollary 4.16 below,
we show that this is happily unnecessary: it is enough to lift unstructured equivalences.

4. Categories with attributes

For assembling the classes of maps above into semi-model structures on CxlCatId,1,Σ(,Πext),

our main technical workhorse will be the category CEqv of span-equivalences in C—
almost a path object, but not quite—along with some related auxiliary constructions.

All these are most naturally viewed not directly as constructions on contextual categories,
but as living in the slightly more general world of categories with attributes (CwA’s).

In this section, we therefore recall and develop some background results on CwA’s and
their relationship with contextual categories, before tackling the span-equivalence construc-
tions themselves in Section 5.

Categories with Attributes: background

Definition 4.1. A category with attributes (CwA) consists of:

(1) a category C, with a chosen terminal object 1;
(2) a functor Ty : Cop Set;
(3) an assignment to each A ∈ Ty(Γ), an object Γ.A ∈ C and a map pA : Γ.A Γ;
(4) for each A ∈ Ty(Γ) and f : ∆ Γ, a map f.A : ∆.f∗A Γ.A (called the

connecting map) such that the following square is a pullback:

∆.f∗A Γ.A

∆ Γ

f.A

pf∗A

y
pA

f

As defined, categories with attributes are models for an evident essentially algebraic
theory. A map of categories with attributes is a homomorphism of such models: explicitly,
a functor F : C C′ and transformation FTy : TyC TyC′ · F , strictly preserving all
the structure (chosen terminal object, context extension, and so on).

Write CwA for the category of categories with attributes. Just as in the case of contextual
categories, one may equip categories with attributes with additional structure corresponding
to different type constructors. The translations of these structures from the language of
contextual categories to that of categories with attributes are straightforward. We will write
CwAId,1,Σ and CwAId,1,Σ,Πext for the categories of categories with attributes equipped with
the corresponding extra structure, and when a statement applies to both of these cases, we
will indicate it by writing CwAId,1,Σ(,Πext)

Definition 4.2. The presheaf Ty defined in Notation 2.2 allows us to regard any contex-
tual category as a category with attributes. This extends to an evident faithful functor
CxlCat CwA; and indeed exhibits CxlCat as the full subcategory consisting of CwA’s
equipped with a suitable grading on objects, since such a grading is unique if it exists, and
is automatically preserved by any CwA map.
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To go the other way, we generalize Definition 2.8:

Definition 4.3. Let C be a CwA, and Γ an object of C.
A context over Γ is a sequence ∆ = (A0, · · · , An−1), where A0 ∈ TyC(Γ), . . . , Ai ∈

TyC(Γ.A0. · · · .Ai−1), . . . . Any context induces an evident context extension Γ.∆ :=
Γ.A0. · · · .An−1, with projection map p∆ : Γ.∆ Γ.

The fibrant slice C//Γ is the contextual category defined as follows:

(1) objects of degree n are contexts ∆ of length n over Γ;
(2) C//Γ(∆,∆′) := C/Γ(Γ.∆,Γ.∆′), and the category structure is inherited from C/Γ;
(3) reindexing and the connecting maps are inherited directly from C.

Moreover, an Id-type (resp. 1, Σ, extensional Π-type) structure on C induces one on
C//Γ.

A map f : Γ′ Γ in C induces a contextual functor f∗ : C//Γ C//Γ′, functorially
in f , and preserving all logical structure under consideration.

Similarly, for any CwA map F : C D and object Γ ∈ C, there is as before an induced
slice functor F//Γ : C//Γ D//FΓ, preserving any logical structure that F does.

In particular, we call C//1 the contextual core of C, and denote this by core C.

Proposition 4.4. This forms the object part of a functor core : CwA CxlCat, right
adjoint to the inclusion functor (so exhibiting CxlCat as a coreflective subcategory of CwA),
and similarly for the categories with Id, 1,Σ and Id, 1,Σ,Πext:

CxlCatId,1,Σ,Πext CwAId,1,Σ,Πext

CxlCatId,1,Σ CwAId,1,Σ

CxlCat CwA

⊥

⊥

⊥

Proof. Given F : C D, with C a contextual category and D an arbitrary CwA, F
factors uniquely through D//1 D via a contextual map F̄ : C D//1, since every
Γ ∈ Obn C is uniquely expressible in the form 1.A0 . . . An−1, and hence must be sent under
F̄ to the sequence (FA0, . . . , FAn).

It is similarly routine to check that D//1 D preserves all logical structure under
consideration, and given F as above, F̄ preserve such structure if and only if F does. �

Equivalences in CwAs

In a contextual category with identity types, Definition 2.7 gives a good notion of when a
map is an equivalence.

In a category with attributes, however, objects are not in general built up out of types
(i.e., there may objects Γ ∈ C whose canonical map Γ 1 cannot be written as a
composite of p-maps). So we do not have identity contexts for arbitrary objects, nor hence
a notion of homotopy between arbitrary maps; so we need a slightly less direct definition of
equivalences.

Definition 4.5. Let C be a CwA with Id-types. A map Γ ∆ in C an equivalence if the
induced contextual functor f∗ : C//∆ C//Γ is an equivalence of contextual categories
(in the sense of Definition 3.1).

When C is contextual, or more generally when f lies in some fibrant slice of C, this
coincides with the established definition:

Proposition 4.6. Let C be a CwA with Id-types, and f : Γ.∆1 Γ.∆2 a map between
context extensions over Γ ∈ C. Then f is an equivalence in the sense of Definition 4.5
if and only if, considered as a map ∆1 ∆2 in the contextual category C//Γ, it is an
equivalence in the sense of Definition 2.7.
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Proof. (⇒): First, take the canonical element Γ, y1 :∆1 ` y1 : ∆1 and lift this along f∗ (by
Lemma 3.2) to get Γ, y2 :∆2 ` g(y2) : ∆1 with Γ, y1 :∆1 ` η(y1) : Id∆1(gf(y1), y1). This
defines g : ∆2 ∆1 in C//Γ and shows that it is a one-sided quasi-inverse of f .

Next, consider the identity context Γ, y2 :∆2 ` Id∆2(f(g(y2)), y2). Pulled back along f ,
it gives Γ, y1 :∆1 ` Id∆1(fgf(y1), f(y1)), which is inhabited by the action of f on η(y1).
Lifting this along f∗ shows that g is a quasi-inverse for f .

(⇐): Assuming that f is equivalence, we may choose its quasi-inverse g. The (weak) lifts
of types and terms are then defined by pullback along g and the required equivalences/paths
are given by the homotopies fg ∼ id and gf ∼ id. �

(Note that in the argument for (⇒), we did not use the weak type lifting property
along f∗, only the weak term lifting; so as a scholium we see that for functors of the form
f∗ : C//Γ.∆ C//Γ.∆′, where f is a map over Γ, weak term lifting implies weak type
lifting.)

Proposition 4.7. Equivalences in a CwA satisfy 2-out-of-6, and are stable under retracts.

Proof. By the same properties for equivalences of contextual categories (Corollary 3.4). �

Proposition 4.8. Suppose ∆1,∆2 are context extensions of Γ, w : Γ.∆1 Γ.∆2 is a
map over Γ, and f : Γ′ Γ is any map. If w is an equivalence (in C), then so is
f∗w : f∗∆1 f∗∆2.

Proof. We can view w as a map in C//Γ; by Proposition 4.6, it is an equivalence there in
the contextual sense. But f∗ : C//Γ C//Γ′ is a contextual functor preserving Id-types;
so f∗w is an equivalence in C//Γ′, and hence in C. �

Proposition 4.9. If f : Γ′ Γ is an equivalence, and A ∈ Ty(Γ), then f.A : Γ′.f∗A
Γ.A (the pullback of f along pA) is again an equivalence.

Proof. (f.A)∗ is equal (on the nose!) to the functor f∗//pA, which is an equivalence by
Lemma 3.5. �

This can be seen as a form of right properness for equivalences in a CwA.

Fibrations and cofibrations of CwAs

In this section, we define classes of fibrations between CwAs analogously to how they were
defined for contextual categories in Section 3. As before, we start with the generating sets
of left maps in CwAId,1,Σ(,Πext), generalizing Definition 3.9.

Definition 4.10.

• 〈〈Γ 〉〉CwA is freely generated (as a CwA with Id, 1, Σ, and possibly Πext) by a single
object Γ ∈ C.
• 〈〈Γ ` A 〉〉CwA is freely generated by Γ ∈ C and A ∈ Ty(Γ).
• 〈〈Γ ` a : A 〉〉CwA is freely generated by Γ, A as above, and a section a of pA :

Γ.A Γ.
• 〈〈Γ ` A ' A′ 〉〉CwA is freely generated by a context Γ, types A,A′ ∈ Ty(Γ), and

maps f, gl, gr, αl, αr constituting an equivalence Γ.A ' Γ.A′ in C//Γ.
• 〈〈Γ ` e : IdA(a, a′) 〉〉CwA is freely generated by Γ, A as above, and a section of the

iterated projection Γ.A.A.IdA Γ.

Again, we disambiguate as e.g. 〈〈Γ ` A 〉〉CwA
Id,1,Σ when necessary; but it is never necessary.

Definition 4.11. Take I and J to be the following sets of maps in CwAId,1,Σ(,Πext):

• I consists of the inclusions 〈〈Γ 〉〉CwA 〈〈Γ ` A 〉〉CwA and 〈〈Γ ` A 〉〉CwA 〈〈Γ `
a : A 〉〉CwA;
• J consists of the inclusions 〈〈Γ ` A 〉〉CwA 〈〈Γ ` A ' A′ 〉〉CwA and 〈〈Γ ` a :
A 〉〉CwA 〈〈Γ ` p : IdA(a, a′) 〉〉CwA.
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Thus the sets I and J contain just two maps each, in contrast with the generating left
maps for CxlCatId,1,Σ(,Πext), where we required infinitely many maps due to the grading of
objects.

Definition 4.12. A map F : C D in CwAId,1,Σ (resp. CwAId,1,Σ,Πext) is a local fi-
bration (resp. local trivial fibration) if it is right-orthogonal to the maps I (resp. J) of
Definition 4.11.

Just as in the case of contextual categories (Definition 3.11), one may unwind this or-
thogonality to describe local (trivial) fibrations explicitly in terms of type/term lifting.
Specifically, a map F : C D of CwA’s is a local fibration exactly when

• given any Γ ∈ C, A ∈ TyCΓ, B ∈ TyD(FΓ), and structured equivalence w : FA '
B over FΓ, there exists a lift B̄ ∈ TyCΓ together with a structured equivalence
w̄ : A ' B̄ over Γ such that Fw̄ = w;
• given any Γ ∈ C, A ∈ TyCΓ, a section a of the projection pA in C, a section a′ of
pFA in D, and a section e of pIdFA(Fa,a′), there exist lifts of a′, e to C.

and a local trivial fibration just when types and terms lift along it on the nose.
Several useful facts follow immediately from this description:

Proposition 4.13.

(1) a contextual functor is a (trivial) fibration in the sense of Definition 3.11 exactly if,
viewed as a map of CwA’s, it is a local (trivial) fibration;

(2) a map F : C D of CwA’s is a local (trivial) fibration exactly if all its slice
functors F//Γ : C//Γ D//FΓ are (trivial) fibrations;

(3) the functors core : CwAId,1,Σ(,Πext) CxlCatId,1,Σ(,Πext) send local (trivial) fibrations
to (trivial) fibrations;

(4) the inclusion functors CxlCatId,1,Σ(,Πext) CwAId,1,Σ(,Πext) perserve the correspond-
ing left classes (by adjunction from the previous statement). �

Remark 4.14. Note that we use the word local here in the sense of a property defined
slice-wise, rather than in its more common homotopy-theoretic sense of a property defined
homset-wise. We avoid calling them just “(trivial) fibrations” since they do not behave the
way one would expect such classes to behave, as their lifting properties are only for terms
and types, not for arbitrary objects. In particular, local trivial fibrations do not satisfy
“relative 2-out-of-3” among local fibrations. To see this, consider some map F : C C′,
and another CwA D. Then the inclusions D C + D and D C′ + D are local trivial
fibrations, and F + idD : C+D C′+D is a local fibration; but F + idD is a local trivial
fibration only if F was.

As mentioned at the end of Section 3, the definition of a (local) fibration is slightly
tedious to check directly, as it involves lifting structured equivalences. Happily, this can be
simplified:

Lemma 4.15. Let F : C D be a map of CwA’s with Id-types, satisfying the path-lifting
property for local fibrations, i.e. orthogonal to 〈〈Γ ` a : A 〉〉CwA 〈〈Γ ` p : IdA(a, a′) 〉〉CwA.
Then the following are equivalent:

(a) f satisfies the equivalence-lifting property of a local fibration, i.e. is orthogonal to 〈〈Γ `
A 〉〉CwA 〈〈Γ ` A ' A′ 〉〉CwA;

(b) for any A ∈ TyC(Γ), A′ ∈ TyD(FΓ), and (unstructured) equivalence f : FΓ.FA ∼

FΓ.A′ over Γ, there are lifts Ā′ ∈ TyC(Γ) of A′ and f̄ : Γ.A ∼ Γ.Ā′ of f ;
(c) for any A ∈ TyC(Γ), A′ ∈ TyD(FΓ), and (unstructured) equivalence g : FΓ.A′ ∼

FΓ.FA over Γ, there are lifts Ā′ ∈ TyC(Γ) of A′ and ḡ : Γ.Ā′ ∼ Γ.A of g.

Proof. (a) ⇒ (b), (c) is immediate.
(b)⇒ (a): given A ∈ TyC(Γ), A′ ∈ TyD(FΓ), and a structured equivalence (f, g1, η, g2, ε)

from FA to A′ over FΓ, we need to lift the whole structured equivalence, on the nose. By
(b), f lifts to an equivalence f̄ : A Ā′, for which we may choose weak inverse data
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(g′l, η
′, g′2, ε

′). Then (Fg′l, Fη
′, Fg′2, Fε

′) give alternate weak inverse data for f . By essential
uniqueness of such data, Fg′l is propositionally equal to g1, so by the path-lifting property,
we can lift g1 (and the connecting equality) on the nose, and similarly for η, g2, ε in turn.

(c) ⇒ (b): suppose g : FΓ.A′ ∼ FΓ.FA is as in (b). Choose some weak inverse
f : FΓ.FA FΓ.A′ for g over Γ. By (c), lift A′, f to some Ā′ ∈ TyC(Γ), f̄ : Γ.A ∼ Γ.Ā′.
Choose some weak inverse g′ for f̄ . Now g and Fg′ are both weak inverses for f , so are
propositionally equal; so by the path-lifting property, we can lift g, as desired. �

Corollary 4.16. A map F : C D of CwA’s with Id-types is a local fibration (so, if C,
D are contextual, a fibration) if and only if it satisfies the path-lifting property from the defi-
nition, together with any one of the equivalent equivalence-lifting properties of Lemma 4.15.

5. The Reedy span-equivalences construction

In this section, from a given CwA C with Id-types, we construct three new CwA’s:

• CEqv, the span-equivalences in C;
• CEqvRefl, the category of trivial auto-(span-)equivalences in C;
• CEqvComp, the category of homotopy-commutative triangles of (span-)equi-

valences.

Each of these is constructed as the CwA of homotopical diagrams in C on a suitable
inverse category. Recall that a homotopical category is a category with weak equivalence,
satisfying the 2-out-of-6 property. A homotopical diagram in a CwA C is therefore a functor
from a small homotopical category (I,W) to C taking W to the equivalences in C in the
sense of the Definition 4.5.

The general construction of CwA’s of homotopical diagrams on inverse categories, and
logical structure on them, will be given in [KL16]. The types in these CwA’s are analogous
to Reedy fibrations of diagrams in a fibration category; their construction is thus in large
part translating constructions of [Shu15b] from the language of fibration categories to the
language of CwA’s (and more generally comprehension categories).

For each of our three constructions, we therefore set up the appropriate homotopical
inverse category on which to take diagrams; give an explicit description of the resulting
CwA; and note a few facts about the result.

Precisely, the facts from [KL16] we require are:

Proposition 5.1 ([KL16], forthcoming).

(1) For any CwA C with Id-types, and any homotopical inverse category (I,W), there
is a CwA CIh, whose objects are homotopical I-diagrams in C, and whose types are
“homotopical Reedy I-types” in C.

(The general construction of CIh is somewhat involved to state; in the cases we
use, we recall the resulting CwA explicitly.)

(2) CI carries Id-types; and if C carries 1- and Σ-types, so does CI .
(3) If C carries Πext-types, and additionally all maps of I are equivalences and there

is a set of epis that generates all equivalences under 2-out-of-3, then CI carries
Πext-types.

(4) A CwA map F : C D induces a CwA map F I : CI DI , preserving whatever
logical structure F preserved, and functorially in F .

(5) A homotopical discrete opfibration f : I J induces a map Cf : CJ CI ,
preserving all logical structure, and functorially in F ,

(6) If f : I J is moreover injective, then Cf is a local fibration; and if f is a simple
equivalence, then Cf is a local trivial fibration.

Remark 5.2. In the individual instances we consider, the proofs of the above results are
all straightforward verifications, albeit rather lengthy. As such, we originally planned to
give them individually in the present paper, before realizing they were sufficiently tedious
that it was better to develop the construction in generality.

For the whole of this section, fix some CwA C with Id-types.
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The CwA of Reedy Spans

Definition 5.3. Span is the inverse category (0) (01) (1).
Eqv is Span considered as a homotopical category, with all maps considered as weak

equivalences.

Definition 5.4. CEqv is the CwA of homotopical diagrams on Eqv in C. Concretely, it
can be described as follows:

• objects ~Γ are “span-equivalences”: spans Γ0
l0 Γ01

l1 Γ1 in C, in which both l0,
l1 are equivalences (in the sense of Definition 4.5;

• maps ~f : ~∆ ~Γ are natural transformations between span-equivalences

Γ0 Γ1

Γ01

∆0 ∆1

∆01

f0

f1

f01

• types over an object ~Γ = (Γ0
l0 Γ01

l1 Γ1) are triples ~A = (A0, A1, A01), where
A0 ∈ Ty(Γ0), A1 ∈ Ty(Γ1), and A01 ∈ Ty(Γ01.l

∗
0A0.π

∗
l∗0A0

l∗1A1), with the context

extension (Γ0
l0 Γ01

l1 Γ1).(A0, A1, A01) and projection map as given by the
following diagram:

Γ0 Γ1

Γ01

Γ0.A0

Γ01.l
∗
0A0

p

Γ1.A1

Γ01.l
∗
1A1

y

Γ01.l
∗
0A0.π

∗
l∗0A0

l∗1A1

y

Γ01.l
∗
0A0.π

∗
l∗0A0

l∗1A1.A01

such that the resulting context extension is again a span-equivalence, or equivalently
such that the maps Γ01.l

∗
0A0.π

∗
l∗0A0

l∗1A1.A01 Γ01.l
∗
iAi are both equivalences.

• the reindexing of a type (A0, A1, A01) along a map (f0, f1, f01) as in the diagram
above is taken to be (f∗0A0, f

∗
1A1, (f01.l

∗
0A0.π

∗
l∗0A0

l∗1A1)∗A01), with the connecting

map (f0, f1, f01).(A0, A1, A01) taken as (f0.A0, f1.A1, (f01.l
∗
0A0.π

∗
l∗0A0

l∗1A1).A01).

There are evident forgetful functors P0, P1 : CEqv C, taking a span to its left and
right feet respectively; and since the structure on these components is defined pointwise, P0

and P1 are moreover maps of CwA’s.

Remark 5.5. In more syntactic language, a closed type of CSpan consists of three closed
types in C:

1 ` A0 type 1 ` A1 type x0 :A0, x1 :A1 ` A01 type

More generally, a type over a context ~Γ consists of three types of the original model

Γ0 ` A0 type Γ1 ` A1 type Γ01, x0 :l∗0A0, x1 :l∗1A1 ` A01 type

and the context extension is the evident span of projections

Γ0, x0 :A0 Γ01, x0 :l∗0A0, x1 :l∗1A1, x01 :A01 Γ1, x1 :A1.
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Such a span is a (span-)equivalence—so lies in CEqv—exactly if it additionally satisfies
the judgements that the context extensions

Γ01, x0 :l∗0A0 ` (x1 :l∗1A1, x01 :A01) cxt

Γ01, x1 :l∗1A1 ` (x0 :l∗0A0, x01 :A01) cxt

are both contractible (where contractibility of context extensions is defined in the evident
way using their identity contexts).

Remark 5.6. A closely related model is studied by Tonelli [Ton13]. There, it is given
syntactically, as the relation model of type theory. Precisely, Tonelli’s model may be seen
as the contextual core of the CwA CT

Span, where CT is the syntactic category of the type
theory set out there.

Remark 5.7. It may seem surprising that we use the mere property of being an equivalence,
rather than equipping the maps involved with data witnessing this.

One certainly could try building a CwA of such structured equivalences (and that would
obviate the need to use spans). However, the present approach seems to simplify many
proofs and constructions, since everything fits into the general framework of homotopical
inverse diagrams; for instance, all logical structure is simply inherited from CSpan.

This approach also ensures that CEqv depends just on the class of equivalences in C, not
on the specific choice of Id-types. This is not needed for the purposes of the present paper,
but may (we expect) be useful in other applications.

Proposition 5.8.

• CEqv is naturally equipped with Id-types;
• if C additionally carries Σ- types (resp. unit types) then so does CEqv;
• if C has Π-types and functional extensionality, then so does CEqv;
• moreover, in all these cases, the maps Pi : CEqv C preserve such structure.

Proof. Id, 1, and Σ are immediate from Proposition 5.1. For Πext, we need a set of epis in
Eqv generating the equivalences under 2-out-of-3; but since Eqv is posetal, all maps are
epis. �

Remark 5.9. A direct construction of the structure for Proposition 5.8 consists roughly of
showing that each constructor preserves equivalences of types. This is why extensionality
is required for the Π-types.

Proposition 5.10. The evident map CEqv C × C is a local fibration of CwA’s, pre-
serving whatever logical structure is present. Similarly, the maps Pi : CEqv C are local
trivial fibrations preserving the logical structure.

Proof. Again, an immediate application of Proposition 5.1, noting for the second part that
the inclusion of either (0) or (1) into Eqv is a simple equivalence. �

Reflexivity spans

We would like to use CEqv as some kind of path object construction. Most notions of
“path object”, however, include at least a “reflexivity” map C PC over the diagonal
C C × C; and unfortunately, CEqv does not in general seem to admit such a map.3

There is an evident functor on underlying categories, sending an object to the constant
span on it; and this lifts suitably to a map on the presheaves of types, sending a type to
its identity type span. However, this commutes only laxly with context extension, and does
not commute at all with the logical structure; so it does not define a map of CwA’s, let
alone structured ones.

3We do not know of any obstruction to the existence of such a map; but it seems unlikely to us that such
maps exist in general.
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In lieu of a reflexivity map, therefore, we instead give reflexivity as a “weak map”; that
is, a span whose left leg is a local trivial fibration:

CEqvRefl CEqv

C C×C∆

This suffices for the purposes of Section 6 below (and for various other applications).
Roughly speaking, a type in CEqvRefl consists of a type A0 of C equipped with an auto-

(span-)equivalence A∗ A0 that is in some sense trivial, i.e. homotopic to the identity

equivalence.
One’s first thought might be to express triviality of the auto-equivalence by a reflexivity

map r : A0 A∗ over ∆A. However, this does not (it seems) yield a CwA; so once again,
we replace this map by a weak map.

Precisely, CEqvRefl is constructed as another CwA of homotopical inverse diagrams:

Definition 5.11. EqvRefl is the homotopical inverse category

C ∗ 0
p l0

l1
l0p = l1p

with all maps equivalences. (We write lp for the common composite l0p = l1p.)

Definition 5.12. CEqvRefl is the CwA of homotopical diagrams on EqvRefl in C. Call such
diagrams trivial auto-(span-)equivalences in C

Γc

Γ∗

Γ0

p

lp

l0 l1

General object

Ac

∆∗AA∗ A∗

A0 A0 ×A0

(lp,p)

p

lp y
(l0,l1)

∆A

Closed type

Remark 5.13. In traditional type-theoretic notation, suppose ~Γ is a diagram on EqvRefl:

Γc Γ∗ Γ0
p

l0

l1

Then a type over ~Γ in CEqvComp consists of types

• Γ0 ` A0 type
• Γ∗, x0 :l∗0A0, x1 :l∗1A0 ` A∗(x0, x1) type
• Γc, x0 :(lp)∗A0, x∗ :X∗(x0, x0) ` Ac(x0, x∗) type

such that the following context extensions are contractible:

• Γ∗, x0 :l∗0A0 ` x1 :l∗1A0, x∗ :A∗(x0, x1) cxt
• Γc, x0 :(lp)∗A0 ` x∗ :X∗(x0, x0), xc :Ac(x0, x∗) cxt.

(Contractibility of these contexts corresponds to Γ.A sending p0 and lp to equivalences;
this suffices for homotopicality since these maps generate the equivalences of EqvRefl under
2-out-of-3.)

Example 5.14. Any type A ∈ TyC(Γ) gives rise to a type in CEqvRefl over the constant
diagram on Γ:

• Γ ` A type
• Γ, x0, x1 :A ` IdA(x0, x1) type
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• Γ, x0 :A, x∗ :IdA(x0, x0) ` IdIdA(x0,x0)(x∗, r(x0)) type

Proposition 5.15.

• CEqvRefl carries Id-types;
• if C additionally carries Σ- types (resp. unit types) then so does CEqvRefl;
• if C has Π-types and functional extensionality, then so does CEqv;
• moreover, in all these cases, the natural map CEqvRefl CEqv preserves such

structure.

Proof. Again, a direct application of Proposition 5.1. For the Πext-types, a generating set
of epis is given by l0 and pl. �

Finally, we show that CEqvRefl can be viewed as a weak map from C to CEqv as promised.

Proposition 5.16. The projection map ev0 : CEqvRefl C is a local trivial fibration.

Proof. By Propositon 5.1, since the inclusion of (0) in EqvRefl is an injective simple equiv-
alence. �

Composites of spans

As with reflexivity, one would hope for a “composition” map on span-equivalences, of the
form:

C
C

C

CEqv
CEqv

CEqv ×C CEqv

CEqv

Again, however, it seems difficult to define such a map in general, so we construct it as
a weak map, i.e. a left-trivial span over C×C:

CEqvComp CEqv

CEqv ×C CEqv C×C

Roughly, an object of CEqvComp should consist of a pair of “input” equivalences; an
“output” equivalence; and a homotopy from the composite of the input pair to the output
pair. Translated entirely into span-equivalences, this becomes a diagram

Γ0

Γ1

Γ2

Γ01

Γ12

Γ02

Γ012

in which all maps are equivalences.
(Think of Γ012 as a span from Γ01 ×Γ1 Γ12 to Γ02 over Γ0 × Γ2, but expressed in a way

that doesn’t assume existence of that pullback.)
Flattened out, the domain of the above diagram is a familiar object: the category of faces

of the 2-simplex. Concretely,
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Definition 5.17. EqvComp is the posetal category generated by the graph

(0)

(01)

(1)

(12)

(2)
(02)

(012)

We consider it as a homotopical inverse category, with all maps weak equivalences.

Definition 5.18. CEqvComp is the CwA of homotopical diagrams on EqvComp in C.

Remark 5.19. In more traditional type-theoretic notation, suppose ~Γ is a homotopical
diagram on EqvComp, with objects and maps denoted as e.g. p01̂2 : Γ012 Γ02. Then a

type over ~Γ in CEqvComp consists of types

Γ0 ` A0 type Γ1 ` A1 type Γ2 ` A2 type Γ01, x0 :l∗
01̂
A0, x1 :l∗

0̂1
A1 ` A01(x0, x1) type

Γ12, x1 :l∗
12̂
A1, x2 :l∗

1̂2
A2 ` A12(x1, x2) type Γ02, x0 :l∗

02̂
A0, x2 :l∗

0̂2
A2 ` A02(x0, x2) type

Γ012, x0 :l∗
01̂2̂
A0, x1 :l∗

0̂12̂
A1, x2 :l∗

0̂1̂2
A2, x01 :l∗

012̂
A01(x0, x1),

x12 :l∗
0̂12
A12(x1, x2), x02 :l∗

01̂2
A02(x0, x2) ` A012(x0, x1, x2, x01, x12, x02) type

such that the following context extensions are all contractible:

Γ01, x0 :l∗
01̂
A0 ` x1 :l∗

0̂1
A1, x01 :A01(x0, x1) cxt

Γ01, x1 :l∗
0̂1
A1 ` x0 :l∗

01̂
A0, x01 :A01(x0, x1) cxt

Γ12, x1 :l∗
12̂
A1 ` x2 :l∗

1̂2
A2, x12 :A12(x1, x2) cxt

Γ12, x2 :l∗
1̂2
A2 ` x1 :l∗

12̂
A1, x12 :A12(x1, x2) cxt

Γ02, x0 :l∗
02̂
A0 ` x2 :l∗

0̂2
A2, x02 :A02(x0, x2) cxt

Γ012, x0 :l∗
01̂2̂
A0, x1 :l∗

0̂12̂
A1, x2 :l∗

0̂1̂2
A2, x01 :l∗

012̂
A01(x0, x1), x12 :l∗

0̂12
A12(x1, x2)

` x02 :l∗
01̂2
A02(x0, x2), x012 :A012(x0, x1, x2, x01, x12, x02) cxt

(Again, these form a minimal subclass ensuring that all maps in the resulting context
extension are equivalences.)

Proposition 5.20.

• CEqvComp carries Id-types;
• if C additionally carries Σ- types (resp. unit types) then so does CEqvComp;
• if C has Π-types and functional extensionality, then so does CEqv;
• moreover, in all these cases, the natural map CEqvComp CEqv preserves such

structure.

Proof. Once again, a direct application of Proposition 5.1. For the Πext-types, since EqvComp
is posetal, all maps are epis. �

Finally, we once again must show that CEqvComp can be viewed as a weak map as intended.

Proposition 5.21. The projection map ev0 : CEqvComp CEqv×C CEqv is a local trivial
fibration.

Proof. By Proposition 5.1, since CEqv×CCEqv ∼= CEqv+1Eqv
h , and the inclusion of Eqv+1Eqv

into EqvComp is a simple equivalence. �

Remark 5.22. Astute readers may notice that the final propositions of these subsections
have effectively shown:

• CEqv forms a Reedy span-equivalence from C to itself;
• CEqv together with CEqvRefl forms a trivial auto-equivalence of C;
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• CEqv together with CEqvComp forms a commuting triangle of equivalences over C.

The authors did not notice this until quite late in the preparation of this article.

6. The left semi model structure on contextual categories

We now have all the main ingredients prepared to deduce that the three classes of maps
introduced in Section 3 form a left semi-model structure.

In this section, we first bring the span-equivalences construction back to the contextual
world, and use it to define homotopy between maps of contextual categories. We then recall
the definition of left semi-model structure, and show with just a little diagram chasing that
we have one on our hands.

Returning to the contextual world

The CwA’s (−)Eqv, (−)EqvRefl and (−)EqvComp of the previous section will almost never be
contextual. To bring them back to the contextual setting, we take their cores.

Making liberal use of Proposition 4.13 (that core sends local (trivial) fibrations to (trivial)
fibrations), together with the fact that core is a coreflection (so it preserves limits, and
core C ∼= C when C is contextual), we sum up the result:

Proposition 6.1. For each C in CxlCatId,1,Σ,Πext, we have diagrams as follows, all in
CxlCatId,1,Σ,Πext, and functorial in C:

core CEqv

C C×C C

core CEqvRefl core CEqv

C C×C∆

core CEqvComp core CEqv

core CEqv ×coreC core CEqv C×C

P02

(P01,P12)

(P0,P2)

�

For readability, for the remainder of this section, we will omit the “core” and write just
CEqv and so on, since we have no further need of the CwA versions.

The right homotopy relation

Using (−)Eqv as a path-object construction, we can define a notion of right homotopy
between maps in CxlCatId,1,Σ(,Πext), which will be well-behaved under cofibrant domains.

Definition 6.2. Say F0, F1 : C D in CxlCatId,1,Σ(,Πext) are right homotopic (F0 ∼r F1)

if they factor jointly through DEqv:

D×D

DEqv

(P0,P1)

C
(F0,F1)

H

Proposition 6.3. When C is cofibrant, right homotopy is an equivalence relation on
CxlCatId,1,Σ(,Πext)(C,D).

Proof. Reflexivity: by Proposition 5.16 and cofibrancy of C, any map F : C D lifts to
a map C DEqvRefl; composing this with the forgetful map DEqvRefl DEqv yields a
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reflexivity homotopy for F :

C D

DEqvRefl

F
D×D

DEqv

(P0,P1)

∆D

Symmetry is immediate (and does not require the cofibrancy of C), using the obvious
symmetry automorphism on DEqv.

Transitivity is similar to reflexivity. Given F0, F1, F2 : C D, and homotopies H01,
H02, we get an induced map (H01, H02) : C DEqv ×D DEqv. By Proposition 5.21
and cofibrancy of C, we can lift this to a map C DEqvComp; composing this with
P02 : DEqvComp DEqv gives a homotopy F0 ∼r F2. �

Proposition 6.4. Right homotopy is stable under pre- and post-composition.

Proof. Let H : C DEqv be a homotopy F0 ∼r F1. Then for any G : C′ C, HG
is a homotopy F0G F1G; and similarly, for any K : D D′, KEqvH is a homotopy
KF0 ∼r KF1. �

Proposition 6.5. Any map right homotopic to an equivalence is an equivalence.

Proof. By Proposition 5.10, the maps Pi : DEqv D are equivalences. So by 2-out-of-3,
if H : C DEqv is a homotopy F0 ∼r F1, we have that H is an equivalence if and only if
each/either Fi = PiH is one. �

Putting it all together: the semi model structure

Finally, we show that the classes of maps on CxlCatId,1,Σ(,Πext) fit together to form a left

semi-model structure.4

Roughly, this means three classes of maps as in a model structure, except that the
(C ∩W,F) factorization system only works for maps with cofibrant domains.

Definition 6.6 (cf. [Spi01, Def. 1(I)]). A left semi-model structure on a bicomplete
category E consists of three classes of maps: W, F , C, subject to the axioms:

(1) all three classes are closed under retracts; W satisfies the 2-out-of-3 property; and
fibrations and trivial fibrations are preserved under pullback;

(2) cofibrations have the left lefting property with respect to trivial fibrations; and
trivial cofibrations with cofibrant source have the left lifting property with respect
to fibrations;

(3) every map can be functorially factored into a cofibration followed by a trivial fibra-
tion; every map with cofibrant source can also be functorially factored into a trivial
cofibration followed by a fibration.

(Left semi-model categories first appeared in Hovey [Hov98, Thm. 3.3], and were further
developed by Spitzweck [Spi01, Def. 1] and Barwick [Bar10, Def. 1.4].)

In practice, one usually has just a little more structure:

Lemma 6.7. Suppose E is a bicomplete category, equipped with

• a class of maps W, including all identities, and closed under 2-out-of-6 and retracts;
• two weak factorization systems (A,F) and (C, T F);
• such that T F = F ∩W, and
• when A ∈ E is cofibrant (i.e. the map 0 A is in C), a map i : A B is in A if

and only if it is in C ∩W.

Then the classes (W, C,F) form a left semi-model structure on E. �

4We do not know whether it also forms a full model structure; we have no specific obstruction or
counterexample.
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For the remainder of this section, we fix the ambient category as either CxlCatId,1,Σ or
CxlCatId,1,Σ,Πext (the two cases are exactly parallel), and work to establish the hypotheses
of Lemma 6.7.

Proposition 6.8. A map in CxlCatId,1,Σ(,Πext) is a trivial fibration if and only if it is both
a fibration and a weak equivalence.

Proof. It is clear that any trivial fibration is both a weak equivalence and a fibration.
For the converse, suppose F : C D is a weak equivalence and a fibration.
Given a context Γ in C and type A over FΓ in D, we may find (since F is a weak

equivalence) some type A′ over Γ in C, together with an equivalence w : F (A′) ' A over Γ
in D. Choose left and right quasi-inverses for w. Since F is a fibration, we may now lift A
and w together to C. In particular, we have succeeded in lifting A on the nose, as required.

Strict lifting of terms is entirely analogous: first lift the term up to equivavalence (since
F ∈ W), and then use that equivalence to lift the original term on the nose (by F ∈ F). �

Proposition 6.9. Let C be cofibrant in CxlCatId,1,Σ(,Πext). Then a map F : C D in
CxlCatId,1,Σ(,Πext) is anodyne precisely if it is both a weak equivalence and a cofibration.

Proof. A ⊆ C: this does not require the cofibrant domain assumption. We noted above that
T F ⊆ F , so dually, A ⊆ C.

A ⊆ W: suppose j : A B is anodyne, with A cofibrant. By fibrancy of A (Proposi-
tion 3.13), we can take a left inverse r for j:

A A

B 1

1A

j
r

But then r is also a homotopy right inverse for j, by filling the square

A BEqv

B B×B

cj

j

(1B ,jr)

H

where cj is a reflexivity homotopy on j, supplied by Proposition 6.3 since A is cofibrant.
So rj = 1A, and jr ∼r 1B; so by 2-out-of-6 and Proposition 6.5, j is an equivalence.

W ∩ C ⊆ A: suppose j : A B is in W and C, with A cofibrant.
We want to show that j is orthogonal to all fibrations. It is enough to show this for

fibrations over B, since any other lifting problem can first be pulled back to B. So assume
p : Y B is some fibration, with a map h : A Y over B; we want to fill the square

A Y

B B.

h

j p

1B

Proposition 6.3 gives a reflexivity homotopy ch : A YEqv for h. Write (h, 1Y)Eqv for

the pullback (h, 1Y)∗YEqv, with projection maps (Q0, Q1) : (h, 1Y)Eqv A×Y. Then ch
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factors through (h, 1Y)Eqv by a map c′h:

(h, 1Y)Eqv YEqv

A A×Y Y ×Y

A Y

(Q0,Q1)

y
(P0,P1)

c′h

(1A,h)

1A

(h,1Y)

π0

y
π0

h

Now Q0 : (h, 1Y)Eqv A is a pullback of P0 : YEqv Y; so by Proposition 5.10, it is
a trivial fibration. So by 2-of-3, c′h is an equivalence, since Q0c

′
h = 1A, and by 2-of-3 again,

so is pQ1, since pQ1c
′
h = ph = j.

But pQ1 is also a fibration (as a composite of two fibrations); so by Proposition 6.8, it is
a trivial fibration. So (since j is a cofibration) we can extend c′h along j, filling the left-hand
square below; composing the resulting filler with Q1 then solves the original lifting problem.

A (h, 1Y)Eqv Y

B B B

c′h

j

h

Q1

pQ1
p

1B 1B

�

This completes the main result:

Theorem 6.10. On each of CxlCatId,1,Σ and CxlCatId,1,Σ,Πext, the classes W, F , C of
Section 3 form a left semi-model structure.

Proof. Propositions 6.8 and 6.9 supply the hypotheses of Proposition 6.7. �

Corollary 6.11. The cofibrant objects of CxlCatId,1,Σ(,Πext) form a cofibration category.
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