
Under consideration for publication in Math. Struct. in Comp. Science

Univalent categories and the
Rezk completion

B E N E D I K T A H R E N S 1, K R Z Y S Z T O F K A P U L K I N2 and M I C H A E L S H U L M A N3†

1 Institut de Recherche en Informatique de Toulouse, Université Paul Sabatier, France
2 University of Pittsburgh, Pittsburgh, PA, USA
3 University of San Diego, San Diego, CA, USA

Received 6 January 2014

We develop category theory within Univalent Foundations, which is a foundational

system for mathematics based on a homotopical interpretation of dependent type theory.

In this system, we propose a definition of “category” for which equality and equivalence

of categories agree. Such categories satisfy a version of the Univalence Axiom, saying

that the type of isomorphisms between any two objects is equivalent to the identity type

between these objects; we call them “saturated” or “univalent” categories. Moreover, we

show that any category is weakly equivalent to a univalent one in a universal way. In

homotopical and higher-categorical semantics, this construction corresponds to a

truncated version of the Rezk completion for Segal spaces, and also to the stack

completion of a prestack.

1. Introduction

Of the branches of mathematics, category theory is one which perhaps fits the least

comfortably into existing “foundations of mathematics”. This is true both at an informal

level, and when trying to be completely formal using a computer proof assistant. One

problem is that naive category theory tends to run afoul of Russellian paradoxes and

has to be reinterpreted using universe levels; we will not have much to say about this.

But another problem is that most of category theory is invariant under weaker notions of

“sameness” than equality, such as isomorphism in a category or equivalence of categories,

in a way which traditional foundations (such as set theory) fail to capture. This problem

becomes especially important when formalizing category theory in a computer proof

assistant.

Our aim in this paper is to show that this problem can be ameliorated using the

new Univalent Foundations of mathematics, a.k.a. homotopy type theory, proposed by

† Ahrens was partially supported by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-
0002-02. Ahrens and Shulman were supported by NSF grant DMS-1128155. Kapulkin was supported

by NSF Grant DMS-1001191 (P.I. Steve Awodey). Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.



B. Ahrens, K. Kapulkin and M. Shulman 2

Voevodsky (2010). It builds on the existing system of dependent type theory (Martin-

Löf 1984; Werner 1994), a logical system that is feasible for large-scale formalization of

mathematics (Gonthier et al. 2012) and also for internal categorical logic. The distinctive

feature of Univalent Foundations (UF) is its treatment of equality inspired by homotopy-

theoretic semantics (Awodey and Warren 2009; Arndt and Kapulkin 2011; Warren 2008;

van den Berg and Garner 2012). Using this interpretation, Voevodsky has extended de-

pendent type theory with an additional axiom, called the Univalence Axiom, which was

originally suggested by the model of the theory in the category of simplicial sets (Ka-

pulkin, Lumsdaine, and Voevodsky 2012), and should also be valid in other homotopical

models such as categories of higher stacks.

The univalence axiom identifies identity of types with equivalence of types. In partic-

ular, this implies that anything we can say about sets is automatically invariant under

isomorphism, because isomorphism is identified with identity. In other words, under the

univalence axiom, the category of sets automatically behaves “categorically”, in that iso-

morphic objects cannot be distinguished. Our goal in this paper is to extend this behavior

to other categories, which requires a more careful analysis of the definition of “category”.

If we ignore size issues, then in set-based mathematics, a category consists of a set of

objects and, for each pair x, y of objects, a set hom(x, y) of morphisms. Under Univa-

lent Foundations, a “naive” definition of category would simply mimic this with a type

of objects and types of morphisms. However, if we allowed these types to contain ar-

bitrary higher homotopy, then we ought to impose higher coherence conditions on the

associativity and unitality axioms, leading to some notion of (∞, 1)-category. Eventually

this should be done, but at present our goal is more modest. We restrict ourselves to

1-categories, and therefore we restrict the hom-types hom(x, y) to be sets in the sense of

UF, i.e. types satisfying the principle UIP of “uniqueness of identity proofs”.

More interesting is whether the type of objects should have any higher homotopy. If

we require it also to be a set, then we end up with a definition that behaves more like the

traditional set-theoretic one. Following Toby Bartels, we call this notion a strict category.

However, a (usually) better option is to require a generalized version of the univalence

axiom, identifying the identity type (x =Obj y) between two objects with the type iso(x, y)

of isomorphisms from x to y. (In particular, this implies that each type (x =Obj y) is a set,

and that therefore the type of objects is a 1-type, containing no higher homotopy above

dimension 1.) This seems to have been first suggested by Hofmann and Streicher (1998)

(who also introduced a precursor of the univalence axiom under the name “universe

extensionality”). We consider it to be the “correct” definition of category in Univalent

Foundations, since it automatically implies that anything we say about objects of a

category is invariant under isomorphism. For emphasis, we may call such a category a

saturated or univalent category.

Most categories encountered in practice are saturated, at least in the presence of the

univalence axiom. Those which are not saturated, such as the category of n-types and

homotopy classes of functions for n ≥ 1, tend to behave much worse than the satu-

rated ones. Thus, in the non-saturated and non-strict case, we use instead the slightly

derogatory word precategory.

A good example of the difference between the three notions of category is provided



Univalent categories and the Rezk completion 3

by the statement “every fully faithful and essentially surjective functor is an equivalence

of categories”, which in classical set-based category theory is equivalent to the axiom of

choice.

(i) For strict categories, this is still equivalent to to the axiom of choice.

(ii) For precategories, there is no axiom of choice which can make it true.

(iii) For saturated categories, it is provable without any axiom of choice.

Saturated categories have the additional advantage that (as conjectured by Hofmann

and Streicher (1998)) they are “univalent as objects” as well. Specifically, just the way

isomorphic objects in a saturated category are equal, equivalent saturated categories are

themselves equal.

When interpreted in Voevodsky’s simplicial set model, our precategories are similar

to a truncated analogue of the Segal spaces of Rezk (2001, Sec. 14), while our saturated

categories correspond to his complete Segal spaces. Strict categories correspond instead to

(a weakened and truncated version of) Segal categories. It is known that Segal categories

and complete Segal spaces are equivalent models for (∞, 1)-categories (see e.g. Bergner

(2009)), so that in the simplicial set model, strict and saturated categories yield “equiva-

lent” category theories—although as mentioned above, the saturated ones still have many

advantages.

However, in the more general categorical semantics of a higher topos, a strict category

corresponds to an internal category (in the traditional sense) in the corresponding 1-topos

of sheaves, while a saturated category corresponds to a stack. Internal categories are not

equivalent to stacks (in fact, stacks form a localization of internal categories (Joyal and

Tierney 1991)), and it is well-known that stacks are generally a more appropriate sort of

“category” relative to a topos.

Besides developing the basic theory of precategories and saturated categories, one of the

main goals of this paper is to describe a universal way of “saturating” a precategory. More

precisely, we show that the obvious inclusion of saturated precategories into categories

has a left adjoint, in the appropriate bicategorical sense. More concretely, from any

precategory A, we construct a saturated category Â, with a universal functor A → Â

(the unit of the adjunction).

With the connection to Rezk’s complete Segal spaces in mind, we call the saturation

of a precategory its Rezk completion. However, with higher topos semantics in mind, it

could also reasonably be called the stack completion: a strict category in the internal type

theory of a higher topos corresponds to an internal category in the 1-topos of sheaves,

and its Rezk completion is essentially its stack completion. Our construction uses a

Yoneda embedding as in (Bunge 1979) rather than a transfinite localization argument as

in (Joyal and Tierney 1991; Rezk 2001), but it is also possible to mimic the latter more

closely in type theory using “higher inductive types” (Lumsdaine and Shulman 2013). A

slightly expanded version of this paper, which includes this alternative proof, is included

in (Univalent Foundations Program 2013, Chapter 9).

The Rezk completion also sheds further light on the notion of equivalence of categories.

For instance, the functor A→ Â is always fully faithful and essentially surjective, hence a

“weak equivalence”. It follows that a precategory is a saturated category exactly when it



B. Ahrens, K. Kapulkin and M. Shulman 4

“sees” all fully faithful and essentially surjective functors as equivalences. (The analogous

facts for complete Segal spaces and stacks are well-known.) In particular, the notion of

saturated category is already inherent in the notion of “fully faithful and essentially

surjective functor”.

Finally, as mentioned above, one of the virtues of Univalent Foundations (and type

theory more generally) is the feasibility of formalizing it in a computer proof assistant. We

have taken advantage of this by verifying large parts of the theory of precategories and

saturated categories in the proof assistant Coq, building on Voevodsky’s Foundations

library for UF (Voevodsky 2013). In particular, the formalization includes the Rezk

completion together with its universal property.

Remark 1.1. Because saturated categories are the “correct” notion of category in UF,

when working internally in UF we drop the adjective “saturated” and speak merely

of categories. The adjective is only necessary when comparing such categories to other

“external” notions of category.

Outline of the paper

In §2 we recall some definitions from Univalent Foundations. Then in §§3–7 we develop

the basic theory of precategories and saturated categories informally, working entirely in-

side of Univalent Foundations. We define functors, natural transformations, adjunctions,

equivalences, and prove the Yoneda lemma. We also show that equivalent categories are

equal. In §8 we construct the Rezk completion which, as described above, universally

saturates any precategory.

Finally, §9 describes the content of our formalization, the organization of the source

files, and the differences between informal presentation and its formal analog. The actual

Coq code is available as a supplement to this paper (Ahrens, Kapulkin, and Shulman

2013).

Acknowledgements

First and foremost, we would like to thank Vladimir Voevodsky for initiating the project

of Univalent Foundations and for much assistance. We are also very grateful to the

organizers of the special year at the Institute for Advanced Study in 2012–2013, where

much of this work was done.

The second-named author dedicates this work to his mother.

2. Review of univalent foundations

Most of this paper is written in an informal style, with the intent of describing mathe-

matics that could be formalized in Univalent Foundations, analogously to the way that

traditional mathematics is discussed informally but is generally accepted to be formaliz-

able in set theory. We do not have space to give an introduction to UF here; instead we

refer the reader to (Pelayo and Warren 2012). However, a brief reminder of the essential

concepts may be helpful.



Univalent categories and the Rezk completion 5

The basic objects are types, which have elements, with the basic judgment of element-

hood denoted a : A. There are the usual constructions on types such as dependent sums

and dependent products, which we generally write about in English according to the

propositions-as-types interpretation: we identify the activity of proving a theorem with

the activity of constructing a term in a type. For instance, a statement like “for all x : A

we have P (x)” indicates that we have an element of the type
∏

(x : A), P (x), while “there

exists an x : A such that P (x)” indicates
∑

(x : A), P (x). Depending on context, we may

also pronounce
∑

(x : A), P (x) as “the type of x : A such that P (x)” and write it as

{ x : A | P (x) }.
For a, b : A there is an identity type a = b (or a =A b for emphasis), which in the

homotopical semantics becomes a path type. It has the universal property that we may

prove things about a general p : a = b by restricting to the special case when a and b

are the same and p is “reflexivity”. We refer to this as path induction or induction on

identity. For instance, in this way we can show that if (P (x))x:A is a family of types

indexed by A, and we have p : a =A b and u : P (a), then we can transport u along p

to obtain an element p∗(u) : P (b). Similarly, we can show that for any f : A → B and

p : x =A y, we have f(p) : f(x) =B f(y), and we can compose paths (written p � q) and

reverse paths (written p−1).

The identity type of many types can be characterized up to equivalence (see below). For

instance, to say (x, u) = (y, v) in
∑

(a : A), P (a) is equivalent to saying that p : x =A y

and p∗(u) =P (y) v. And to say f = g in
∏

(a : A), P (a) is to say that f(x) = g(x) for all

x : A (this is function extensionality, which follows from the univalence axiom below).

A type A is called a mere proposition if for all a, b : A we have a = b. Homotopically,

these are the spaces which, if nonempty, are contractible. With this in mind, we call a

type A contractible if it is a mere proposition and has an element a : A. On the other

hand, we call A a set if for all a, b : A, the type a = b is a mere proposition. Homotopically,

these are the spaces which are equivalent to discrete ones. More generally, A is an n-type

if each a = b is an (n − 1)-type, with the 0-types being the sets, the (−1)-types the

mere propositions, and the (−2)-types the contractible ones. This exactly matches the

traditional notion of homotopy n-type.

A quasi-inverse of a function f : A → B is a function g : B → A such that ηx : x =

g(f(x)) for all x : A and εy : f(g(y)) = y for all y : B. We say f is an equivalence if

it has a quasi-inverse such that f(ηx) � εf(x) = reflf(x) for all x : A. In fact, if f has a

quasi-inverse, then it is an equivalence (by modifying ε or η); this is the usual way that

we construct equivalences. However, the type “f is an equivalence” is better-behaved

than “f has a quasi-inverse”; in particular it is a mere proposition. We write A ' B for

the type
∑

(f : A→ B), isequiv(f) of equivalences from A to B.

In the formalization, we use an equivalent definition that f : A→ B is an equivalence if

for all b : B, its “homotopy fiber”
∑

(x : A), (f(x) = b) is contractible. In some literature

such functions are called “weak equivalences”, but there is nothing weak about them,

since in particular they have quasi-inverses.

The types in UF are stratified in a linearly ordered hierarchy of universes, which are

types whose elements are themselves types. For most of the paper we avoid mentioning

particular universes explicitly: we write simply “Type” to indicate some universe. This



B. Ahrens, K. Kapulkin and M. Shulman 6

is called typical ambiguity : universes are implicitly quantified over. However, in §§7–8 we

will be a little more careful.

All our universes are assumed to satisfy the univalence axiom, which says that for

types A,B : Type in some universe Type, the canonical map (A =Type B) → (A ' B) is

an equivalence.

We write Set for the type
∑

(A : Type), isset(A) of all sets (in some universe Type).

Technically, this is the type of pairs (A, s) where A is a type and s inhabits the type “A

is a set”, but since the latter type is a mere proposition, it is usually easy to ignore the

distinction. Similarly, we write Prop :=
∑

(A : Type), isprop(A) for the type of all mere

propositions.

One type forming operation we use in UF which is not as well-known in type theory is

the propositional truncation of a type A. This is a type ‖A‖ that is a mere proposition,

and has the universal property that whenever we want to prove a type B (i.e. construct

an element of B) assuming ‖A‖, and B is a mere proposition, then we may assume A

instead of ‖A‖. In the formalization, we define ‖A‖ with an impredicative encoding as

‖A‖ :=
∏

(P : Prop), (A→ P )→ P.

This depends for its correctness on an impredicativity axiom for mere propositions (every

mere proposition is equivalent to one living in the smallest universe), and also lives in

a higher universe level than A. However, ‖A‖ can be constructed as a higher inductive

type (Lumsdaine and Shulman 2013), avoiding both of these issues.

In informal mathematical English, we use the adverb merely to indicate the proposi-

tional truncation; thus for instance “there merely exists an x : A such that P (x)” indi-

cates
∥∥∑(x : A), P (x)

∥∥. In contrast to the type-theoretic “there exists” which is strongly

constructive, “mere existence” is more like the usual mathematical sort of “there exists”

which does not imply that any particular choice of such an object has been specified.

The propositional truncation is actually the case n = −1 of a more general n-truncation

operation, which makes any type A into an n-type ‖A‖n in a universal way. However, we

will not have much need of the n-truncation for n ≥ 0.

A function f : A→ B between types is called a monomorphism if for all x, y : A, the

function f : (x = y) → (f(x) = f(y)) is an equivalence. If A and B are sets, then it is

equivalent to say that for all x, y : A, if f(x) = f(y), then x = y; so in this case we also

say that f is injective. Also if A and B are sets, we say that f : A → B is surjective

if for every b : B there merely exists an a : A such that f(a) = b. If in this definition

we leave out the adverb “merely”, we call the resulting notion being split surjective; in

the absence of the axiom of choice the two are different. (Type theorists are accustomed

to use the phrase “the axiom of choice” for a provable statement which is really about

commutation of dependent sums and products; in UF one can state an axiom of choice

that behaves more like the familiar one in set theory. However, we will not need any such

axiom.)



Univalent categories and the Rezk completion 7

3. Categories and precategories

We use a definition of category in which the arrows form a family of types indexed by

the objects. This matches the way hom-types are always used in category theory; for

instance, we never even consider comparing two arrows unless we know their sources and

targets agree. Furthermore, it seems clear that for a theory of 1-categories, the hom-types

should all be sets. This leads us to the following.

Definition 3.1. A precategory A consists of the following.

(i) A type A0 of objects. We write a : A for a : A0.

(ii) For each a, b : A, a set homA(a, b) of arrows or morphisms.

(iii) For each a : A, a morphism 1a : homA(a, a).

(iv) For each a, b, c : A, a function of type

homA(b, c)→ homA(a, b)→ homA(a, c)

denoted infix by g 7→ f 7→ g ◦ f , or sometimes simply by gf .

(v) For each a, b : A and f : homA(a, b), we have f = 1b ◦ f and f = f ◦ 1a.

(vi) For each a, b, c, d : A and f : homA(a, b), g : homA(b, c), h : homA(c, d), we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

The problem with the notion of precategory is that for objects a, b : A, we have two

possibly-different notions of “sameness”. On the one hand, we have a =A0 b. But on the

other hand, there is the standard categorical notion of isomorphism.

Definition 3.2. A morphism f : homA(a, b) is an isomorphism if there is a morphism

g : homA(b, a) such that g ◦ f = 1a and f ◦ g = 1b. We write a ∼= b for the type of such

isomorphisms.

Lemma 3.3. For any f : homA(a, b), the type “f is an isomorphism” is a mere propo-

sition. Therefore, for any a, b : A the type a ∼= b is a set.

Proof. Suppose given g : homA(b, a) and η : (1a = g ◦ f) and ε : (f ◦ g = 1b), and

similarly g′, η′, and ε′. We must show (g, η, ε) = (g′, η′, ε′). But since all hom-sets are

sets, their identity types (in which η and ε live) are mere propositions, so it suffices to

show g = g′. For this we have

g′ = 1a ◦ g′ = (g ◦ f) ◦ g′ = g ◦ (f ◦ g′) = g ◦ 1b = g

using η and ε′.

If f : a ∼= b, then we write f−1 for its inverse, which by Lemma 3.3 is uniquely

determined.

The only relationship between these two notions of sameness that we have in a pre-

category is the following.

Lemma 3.4 (idtoiso). If A is a precategory and a, b : A, then

(a = b)→ (a ∼= b).



B. Ahrens, K. Kapulkin and M. Shulman 8

Proof. By induction on identity, we may assume a and b are the same. But then we

have 1a : homA(a, a), which is clearly an isomorphism.

The intuitive similarity to the univalence axiom should be clear. More precisely, we

have the following:

Example 3.5. There is a precategory Set, whose type of objects is Set, and with

homSet(A,B) := (A→ B). The identity morphisms are identity functions and the compo-

sition is function composition. For this precategory, Lemma 3.4 is equal to the restriction

to sets of the canonical identity-to-equivalence map, which the univalence axiom asserts

to be an equivalence.

Thus, it is natural to make the following definition.

Definition 3.6. A category is a precategory such that for all a, b : A, the function

idtoisoa,b from Lemma 3.4 is an equivalence.

In particular, in a category, if a ∼= b, then a = b.

Example 3.7. The univalence axiom implies immediately that Set is a category. One can

also show, using univalence, that any precategory of set-level structures such as groups,

rings, topological spaces, etc. is a category; see for instance (Coquand and Danielsson

2013).

We also note the following.

Lemma 3.8. In a category, the type of objects is a 1-type.

Proof. It suffices to show that for any a, b : A, the type a = b is a set. But a = b is

equivalent to a ∼= b, which is a set.

We write isotoid for the inverse (a ∼= b)→ (a = b) of the map idtoiso from Lemma 3.4.

The following relationship between the two is important.

Recall the notion of transport along a path, denoted p∗(z). Additionally, if p : a = a′

and q : b = b′, then we write (p, q) for the induced path of type (a, b) = (a′, b′).

Lemma 3.9. For p : a = a′ and q : b = b′ and f : homA(a, b), we have

(p, q)∗(f) = idtoiso(q) ◦ f ◦ idtoiso(p)
−1

(3.10)

Proof. By induction, we may assume p and q are refla and reflb respectively. Then the

left-hand side of (3.10) is simply f . But by definition, idtoiso(refla) is 1a, and idtoiso(reflb)

is 1b, so the right-hand side of (3.10) is 1b ◦ f ◦ 1a, which is equal to f .

Similarly, we can show

idtoiso(p−1) = (idtoiso(p))
−1

(3.11)

idtoiso(p � q) = idtoiso(q) ◦ idtoiso(p) (3.12)

isotoid(f ◦ e) = isotoid(e) � isotoid(f) (3.13)

and so on.



Univalent categories and the Rezk completion 9

Example 3.14. A precategory in which each set homA(a, b) is a mere proposition is

equivalently a type A0 equipped with a mere relation “≤” that is reflexive (a ≤ a) and

transitive (if a ≤ b and b ≤ c, then a ≤ c). We call this a preorder.

In a preorder, a morphism f : a ≤ b is an isomorphism just when there exists some

proof g : b ≤ a. Thus, a ∼= b is the mere proposition that a ≤ b and b ≤ a. Therefore, a

preorder A is a category just when (1) each type a = b is a mere proposition, and (2) for

any a, b : A0 there exists a function (a ∼= b)→ (a = b). In other words, A0 must be a set,

and ≤ must be antisymmetric (if a ≤ b and b ≤ a, then a = b). We call this a (partial)

order or a poset.

Example 3.15. If A is a category, then A0 is a set if and only if for any a, b : A0, the

type a ∼= b is a mere proposition. Classically, a category satisfies this condition if and only

if it is equivalent to one in which every isomorphism is an identity morphism. A category

of the latter sort is sometimes called gaunt (this term was introduced by Barwick and

Schommer-Pries (2011)).

Example 3.16. For any 1-type X, there is a category with X as its type of objects and

with hom(x, y) := (x = y). If X is a set, we call this the discrete category on X. In

general, we call it a groupoid.

Example 3.17. For any type X, there is a precategory with X as its type of objects

and with hom(x, y) := ‖x = y‖0, the 0-truncation of its identity type. We call this the

fundamental pregroupoid of X.

Example 3.18. There is a precategory whose type of objects is Type and with hom(X,Y ) :=

‖X → Y ‖0. We call this the homotopy precategory of types.

Remark 3.19. As suggested in the introduction, if a precategory has the property that

its type A0 of objects is a set, we call it a strict category. We will not have much to

say about strict categories in this paper, however.

4. Functors and transformations

The following definitions are fairly obvious, and need no modification.

Definition 4.1. Let A and B be precategories. A functor F : A→ B consists of

(i) A function F0 : A0 → B0, generally also denoted F .

(ii) For each a, b : A, a function Fa,b : homA(a, b) → homB(Fa, Fb), generally also

denoted F .

(iii) For each a : A, we have F (1a) = 1Fa.

(iv) For each a, b, c : A and f : homA(a, b) and g : homB(b, c), we have

F (g ◦ f) = Fg ◦ Ff.

Note that by induction on identity, a functor also preserves idtoiso.

Definition 4.2. For functors F,G : A → B, a natural transformation γ : F → G

consists of



B. Ahrens, K. Kapulkin and M. Shulman 10

(i) For each a : A, a morphism γa : homB(Fa,Ga).

(ii) For each a, b : A and f : homA(a, b), we have Gf ◦ γa = γb ◦ Ff .

Since each type homB(Fa,Gb) is a set, its identity type is a mere proposition. Thus,

the naturality axiom is a mere proposition, so (invoking function extensionality) identity

of natural transformations is determined by identity of their components. In particular,

for any F and G, the type of natural transformations from F to G is again a set.

Similarly, identity of functors is determined by identity of the functions A0 → B0 and

(transported along this) of the corresponding functions on hom-sets.

Definition 4.3. For precategories A,B, there is a precategory BA defined by

— (BA)0 is the type of functors from A to B.

— homBA(F,G) is the type of natural transformations from F to G.

Proof. We define (1F )a := 1Fa. Naturality follows by the unit axioms of a precategory.

For γ : F → G and δ : G → H, we define (δ ◦ γ)a := δa ◦ γa. Naturality follows by

associativity. Similarly, the unit and associativity laws for BA follow from those for B.

Lemma 4.4. A natural transformation γ : F → G is an isomorphism in BA if and only

if each γa is an isomorphism in B.

Proof. If γ is an isomorphism, then we have δ : G→ F that is its inverse. By definition

of composition in BA, (δγ)a ≡ δaγa and similarly. Thus, δγ = 1F and γδ = 1G imply

δaγa = 1Fa and γaδa = 1Ga, so γa is an isomorphism.

Conversely, suppose each γa is an isomorphism, with inverse called δa, say. We define

a natural transformation δ : G → F with components δa; for the naturality axiom we

have

Ff ◦ δa = δb ◦ γb ◦ Ff ◦ δa = δb ◦Gf ◦ γa ◦ δa = δb ◦Gf.
Now since composition and identity of natural transformations is determined on their

components, we have γδ = 1G and δγ = 1F .

The following result, due originally to Hofmann and Streicher (1998), is fundamental.

Theorem 4.5. If A is a precategory and B is a category, then BA is a category.

Proof. Let F,G : A → B; we must show that idtoiso : (F = G) → (F ∼= G) is an

equivalence.

To give an inverse to it, suppose γ : F ∼= G is a natural isomorphism. Then for any

a : A, we have an isomorphism γa : Fa ∼= Ga, hence an identity isotoid(γa) : Fa = Ga.

By function extensionality, we have an identity γ̄ : F0 =(A0→B0) G0.

Now since the last two axioms of a functor are mere propositions, to show that F = G

it will suffice to show that for any a, b : A, the functions

Fa,b : homA(a, b)→ homB(Fa, Fb) and

Ga,b : homA(a, b)→ homB(Ga,Gb)

become equal when transported along γ̄. By computation for function extensionality,

when applied to a, γ̄ becomes equal to isotoid(γa). But by Lemma 3.9, transporting Ff :



Univalent categories and the Rezk completion 11

homB(Fa, Fb) along isotoid(γa) and isotoid(γb) is equal to the composite γb ◦Ff ◦(γa)
−1

,

which by naturality of γ is equal to Gf .

This completes the definition of a function (F ∼= G) → (F = G). Now consider the

composite

(F = G)→ (F ∼= G)→ (F = G).

Since hom-sets are sets, their identity types are mere propositions, so to show that two

identities p, q : F = G are equal, it suffices to show that p =F0=G0 q. But in the definition

of γ̄, if γ were of the form idtoiso(p), then γa would be equal to idtoiso(pa) (this can easily

be proved by induction on p). Thus, isotoid(γa) would be equal to pa, and so by function

extensionality we would have γ̄ = p, which is what we need.

Finally, consider the composite

(F ∼= G)→ (F = G)→ (F ∼= G).

Since identity of natural transformations can be tested componentwise, it suffices to show

that for each a we have idtoiso(γ̄)a = γa. But as observed above, we have idtoiso(γ̄)a =

idtoiso((γ̄)a), while (γ̄)a = isotoid(γa) by computation for function extensionality. Since

isotoid and idtoiso are inverses, we have idtoiso(γ̄)a = γa.

In particular, naturally isomorphic functors between categories (as opposed to precat-

egories) are equal.

Definition 4.6. For functors F : A→ B and G : B → C, their composite G◦F : A→ C

is given by

— The composite (G0 ◦ F0) : A0 → C0

— For each a, b : A, the composite

(GFa,Fb ◦ Fa,b) : homA(a, b)→ homC(GFa,GFb).

It is easy to check the axioms.

Definition 4.7. For functors F : A→ B and G,H : B → C and a natural transforma-

tion γ : G→ H, the composite (γF ) : GF → HF is given by

— For each a : A, the component γFa.

Naturality is easy to check. Similarly, for γ as above and K : C → D, the composite

(Kγ) : KG→ KH is given by

— For each b : B, the component K(γb).

Lemma 4.8. For functors F,G : A→ B and H,K : B → C and natural transformations

γ : F → G and δ : H → K, we have

(δG)(Hγ) = (Kγ)(δF ).



B. Ahrens, K. Kapulkin and M. Shulman 12

Proof. It suffices to check componentwise: at a : A we have

((δG)(Hγ))a ≡ (δG)a(Hγ)a

≡ δGa ◦H(γa)

= K(γa) ◦ δFa (by naturality of δ)

≡ (Kγ)a ◦ (δF )a

≡ ((Kγ)(δF ))a.

Classically, one defines the “horizontal composite” of γ : F → G and δ : H → K to be

the common value of (δG)(Hγ) and (Kγ)(δF ). We will refrain from doing this, because

while equal, these two transformations are not definitionally equal. This restraint also

has the consequence that we can use the symbol ◦ (or juxtaposition) for all kinds of com-

position unambiguously: there is only one way to compose two natural transformations

(as opposed to composing a natural transformation with a functor on either side).

Lemma 4.9. Composition of functors is associative: H(GF ) = (HG)F .

Proof. Since composition of functions is associative, this follows immediately for the

actions on objects and on homs. And since hom-sets are sets, the rest of the data is

automatic.

The equality in Lemma 4.9 is likewise not definitional. (Composition of functions is

definitionally associative, but the axioms that go into a functor must also be composed,

and this breaks definitional associativity.) For this reason, we need also to know about

coherence for associativity.

Lemma 4.10. Lemma 4.9 is coherent, i.e. the following pentagon of equalities commutes:

K(H(GF ))

ww ''
(KH)(GF )

��

K((HG)F )

��
((KH)G)F (K(HG))Foo

Proof. As in Lemma 4.9, this is evident for the actions on objects, and the rest is

automatic.

We will henceforth abuse notation by writing H ◦G ◦F or HGF for either H(GF ) or

(HG)F , transporting along Lemma 4.9 whenever necessary. We have a similar coherence

result for units.



Univalent categories and the Rezk completion 13

Lemma 4.11. For a functor F : A→ B, we have equalities (1B ◦F ) = F and (F ◦1A) =

F , such that given also G : B → C, the following triangle of equalities commutes.

G ◦ (1B ◦ F ) //

&&

(G ◦ 1B) ◦ F

xx
G ◦ F.

5. Adjunctions

We take as our definition of adjunction the purely diagrammatic one in terms of a unit

and counit natural transformation.

Definition 5.1. A functor F : A→ B is a left adjoint if there exists

— A functor G : B → A.

— A natural transformation η : 1A → GF .

— A natural transformation ε : FG→ 1B .

— (εF )(Fη) = 1F .

— (Gε)(ηG) = 1G.

Lemma 5.2. If A is a category (but B may be only a precategory), then the type “F is

a left adjoint” is a mere proposition.

Proof. Suppose given (G, η, ε) with the triangle identities and also (G′, η′, ε′). Define

γ : G→ G′ to be (G′ε)(η′G), and δ : G′ → G to be (Gε′)(ηG′). Then

δγ = (Gε′)(ηG′)(G′ε)(η′G)

= (Gε′)(GFG′ε)(ηG′FG)(η′G)

= (Gε)(Gε′FG)(GFη′G)(ηG)

= (Gε)(ηG)

= 1G

using Lemma 4.8 and the triangle identities. Similarly, we show γδ = 1G′ , so γ is a

natural isomorphism G ∼= G′. By Theorem 4.5, we have an identity G = G′.

Now we need to know that when η and ε are transported along this identity, they

become equal to η′ and ε′. By Lemma 3.9, this transport is given by composing with γ

or δ as appropriate. For η, this yields

(G′εF )(η′GF )η = (G′εF )(G′Fη)η′ = η′

using Lemma 4.8 and the triangle identity. The case of ε is similar. Finally, the triangle

identities transport correctly automatically, since hom-sets are sets.

In §7 we will mention another way to prove Lemma 5.2.



B. Ahrens, K. Kapulkin and M. Shulman 14

6. Equivalences

It is usual to define an equivalence of categories to be a functor F : A → B for which

there exists a functor G : B → A and natural isomorphisms F ◦ G ∼= 1B and G ◦ F ∼=
1A. However, because of the “proof-relevant” or “constructive” nature of “there exists”

(dependent sum types) in UF, this definition does not produce a well-behaved type of

equivalences between two categories. The solution is not surprising to a category theorist:

whenever equivalences are ill-behaved, it usually suffices to consider adjoint equivalences

instead. (This is exactly the same problem and solution as is encountered in the definition

of equivalence of types in UF.)

Definition 6.1. A functor F : A → B is an equivalence of (pre)categories if it

is a left adjoint for which η and ε are isomorphisms. We write A ' B for the type of

equivalences of categories from A to B.

By Lemma 5.2 and Lemma 3.3, if A is a category, then the type “F : A → B is an

equivalence of precategories” is a mere proposition.

Lemma 6.2. If for F : A→ B there exists G : B → A and isomorphisms GF ∼= 1A and

FG ∼= 1B , then F is an equivalence of precategories.

Proof. We can repeat the standard proof that any equivalence of categories gives rise

to an adjoint equivalence. First note that for any a : A we have

ηGFa = GF (ηa). (6.3)

This follows by cancelling ηa in the naturality condition ηGFa ◦ ηa = GF (ηa) ◦ ηa.

Now, given G and η : FG ∼= 1B and ε : 1A ∼= GF , we define ε′ by

ε′b := εb ◦ F (ηGb)
−1 ◦ (εFGb)

−1.

This is evidently a natural isomorphism. Then we have

ε′Fa ◦ Fηa = εFa ◦ F (ηGFa)−1 ◦ (εFGFa)−1 ◦ Fηa
= εFa ◦ FGF (ηa)−1 ◦ (εFGFa)−1 ◦ Fηa
= εFa ◦ (εFa)−1 ◦ F (ηa)−1 ◦ Fηa
= 1Fa.

using (6.3) and naturality of ε. For the other identity G(εb) ◦ ηGb = 1Gb, it suffices to

show G(εb) ◦GFG(εb) = η−1Gb ◦GFG(εb). But we have

η−1Gb ◦GFG(ε′b) = G(ε′b) ◦ η−1GFGb

= G(ε′b) ◦GF (ηGb)
−1

= G(ε′b) ◦G(ε′FGb)

= G(ε′b) ◦GFG(ε′b)

using naturality of η, (6.3), the previous identity, and naturality of ε′.

We now investigate some alternative definitions of equivalences of categories.



Univalent categories and the Rezk completion 15

Definition 6.4. We say a functor F : A→ B is faithful if for all a, b : A, the function

Fa,b : homA(a, b)→ homB(Fa, Fb)

is injective, and full if for all a, b : A this function is surjective. If it is both (hence each

Fa,b is an equivalence) we say F is fully faithful.

Definition 6.5. We say a functor F : A→ B is split essentially surjective if for all

b : B there exists an a : A such that Fa ∼= b.

The reason for the adjective split is that because of the strong type-theoretic meaning

of “there exists”, such a functor comes with a function assigning a specified a for every

b. This has the following advantage.

Lemma 6.6. For any precategories A and B and functor F : A → B, the following

types are equivalent.

(i) F is an equivalence of precategories.

(ii) F is fully faithful and split essentially surjective.

Proof. Suppose F is an equivalence of precategories, with G, η, ε specified. Then we

have the function

homB(Fa, Fb) → homA(a, b)

g 7→ ηb
−1 ◦G(g) ◦ ηa.

For f : homA(a, b), we have

ηb
−1 ◦G(F (f)) ◦ ηa = ηb

−1 ◦ ηb ◦ f = f

while for g : homB(Fa, Fb) we have

F (ηb
−1 ◦G(g) ◦ ηa) = F (ηb

−1) ◦ F (G(g)) ◦ F (ηa)

= εFb ◦ F (G(g)) ◦ F (ηa)

= g ◦ εFa ◦ F (ηa)

= g

using naturality of ε, and the triangle identities twice. Thus, Fa,b is an equivalence, so F

is fully faithful. Finally, for any b : B, we have Gb : A and εb : FGb ∼= b.

On the other hand, suppose F is fully faithful and split essentially surjective. Define

G0 : B0 → A0 by sending b : B to the a : A given by the specified essential splitting, and

write εb for the likewise specified isomorphism FGb ∼= b.

Now for any g : homB(b, b′), define G(g) : homA(Gb,Gb′) to be the unique morphism

such that F (G(g)) = (εb′)
−1 ◦ g ◦ εb (which exists since F is fully faithful). Finally, for

a : A define ηa : homA(a,GFa) to be the unique morphism such that Fηa = εFa
−1. It

is easy to verify that G is a functor and that (G, η, ε) exhibit F as an equivalence of

precategories.

Now consider the composite (i)→(ii)→(i). We clearly recover the same function G0 :

B0 → A0. For the action of G on hom-sets, we must show that for g : homB(b, b′),

G(g) is the (necessarily unique) morphism such that F (G(g)) = (εb′)
−1 ◦ g ◦ εb. But

this equation holds by the assumed naturality of ε. We also clearly recover ε, while η is



B. Ahrens, K. Kapulkin and M. Shulman 16

uniquely characterized by Fηa = εFa
−1 (which is one of the triangle identities assumed

to hold in the structure of an equivalence of precategories). Thus, this composite is equal

to the identity.

Finally, consider the other composite (ii)→(i)→(ii). Since being fully faithful is a mere

proposition, it suffices to observe that we recover, for each b : B, the same a : A and

isomorphism Fa ∼= b. But this is clear, since we used this function and isomorphism to

define G0 and ε in (i), which in turn are precisely what we used to recover (ii) again. Thus,

the composites in both directions are equal to identities, hence we have an equivalence

(i) ' (ii).

However, if B is not a category, then neither type in Lemma 6.6 may necessarily

be a mere proposition. Moreover, classically, one usually defines “essentially surjective”

without specifying the witnesses in a determinate way. In UF, the appropriate version of

this definition is the following.

Definition 6.7. A functor F : A → B is essentially surjective if for all b : B, there

merely exists an a : A such that Fa ∼= b. We say F is a weak equivalence if it is fully

faithful and essentially surjective.

Being a weak equivalence is always a mere proposition, since a function being an

equivalence of types is such, and the propositional truncation is so by definition. For

categories, however, there is no difference between equivalences and weak ones.

Lemma 6.8. If F : A → B is fully faithful and A is a category, then for any b : B the

type
∑

(a : A), (Fa ∼= b) is a mere proposition. Hence if A and B are categories, then

the types “F is an equivalence” and “F is a weak equivalence” are equivalent (and mere

propositions).

Proof. Suppose given (a, f) and (a′, f ′) in
∑

(a : A), (Fa ∼= b). Then f ′
−1 ◦ f is an

isomorphism Fa ∼= Fa′. Since F is fully faithful, we have g : a ∼= a′ with Fg = f ′
−1 ◦ f .

And since A is a category, we have p : a = a′ with idtoiso(p) = g. Now Fg = f ′
−1 ◦ f

implies ((F0) (p))∗(f) = f ′, hence (by the characterization of equalities in dependent

sums) (a, f) = (a′, f ′).

Thus, for fully faithful functors whose domain is a category, essential surjectivity is

equivalent to split essential surjectivity, and so being a weak equivalence is equivalent to

being an equivalence.

This is an important advantage of our category theory over set-based approaches. As

remarked in the introduction, with a purely set-based definition of category, the statement

“every fully faithful and essentially surjective functor is an equivalence of categories” is

equivalent to the axiom of choice (in the appropriate sense of UF). Here we have it for

free, as a category-theoretic version of the function comprehension principle. We will see

in §8 that this property moreover characterizes categories among precategories.

On the other hand, the following characterization of equivalences of categories is per-

haps even more useful.



Univalent categories and the Rezk completion 17

Definition 6.9. A functor F : A→ B is an isomorphism of (pre)categories if F is

fully faithful and F0 : A0 → B0 is an equivalence of types.

Note that being an isomorphism of precategories is always a mere proposition. Let

A ∼= B denote the type of isomorphisms of (pre)categories from A to B.

Lemma 6.10. For precategories A and B and F : A → B, the following types are

equivalent.

(i) F is an isomorphism of precategories.

(ii) There exist G : B → A and η : 1A = GF and ε : FG = 1B such that

(F ◦ −) (η) = (− ◦ F )
(
ε−1
)
. (6.11)

(iii) There merely exist G : B → A and η : 1A = GF and ε : FG = 1B .

In (6.11), (F ◦ −) (η) denotes application of the function (F ◦ −) (which goes from

functors A → A to functors A → B) to the equality η, and similarly for (− ◦ F )
(
ε−1
)
.

Note that if B0 is not a 1-type, then (6.11) may not be a mere proposition.

Proof. First note that since hom-sets are sets, equalities between equalities of functors

are uniquely determined by their object-parts. Thus, by function extensionality, (6.11)

is equivalent to

(F0) (η0)a = (ε0)
−1

F0a
. (6.12)

for all a : A0. Note that this is precisely the coherence condition for G0, η0, and ε0 to be

a proof that F0 is an equivalence of types.

Now suppose (i). Let G0 : B0 → A0 be the inverse of F0, with η0 : idA0
= G0F0 and

ε0 : F0G0 = idB0
satisfying the triangle identity, which is precisely (6.12). Now define

Gb,b′ : homB(b, b′)→ homA(G0b,G0b
′) by

Gb,b′(g) := (FG0b,G0b′)
−1
(

idtoiso((ε0)
−1

b′) ◦ g ◦ idtoiso((ε0)b)
)

(using the assumption that F is fully faithful). Since idtoiso takes opposites to inverses

and concatenation to composition, and F is a functor, it follows that G is a functor.

By definition, we have (GF )0 ≡ G0F0, which is equal to idA0
by η0. To obtain 1A = GF ,

we need to show that when transported along η0, the identity function of homA(a, a′)

becomes equal to the composite GFa,Fa′ ◦ Fa,a′ . In other words, for any f : homA(a, a′)

we must have

idtoiso((η0)a′) ◦ f ◦ idtoiso((η0)
−1

a)

= (FGFa,GFa′)
−1
(

idtoiso((ε0)
−1

Fa′) ◦ Fa,a′(f) ◦ idtoiso((ε0)Fa)
)
.

But this is equivalent to

(FGFa,GFa′)
(

idtoiso((η0)a′) ◦ f ◦ idtoiso((η0)
−1

a)
)

= idtoiso((ε0)
−1

Fa′) ◦ Fa,a′(f) ◦ idtoiso((ε0)Fa).



B. Ahrens, K. Kapulkin and M. Shulman 18

which follows from functoriality of F , the fact that F preserves idtoiso, and (6.12). Thus

we have η : 1A = GF .

On the other side, we have (FG)0 ≡ F0G0, which is equal to idB0 by ε0. To obtain

FG = 1B , we need to show that when transported along ε0, the identity function of

homB(b, b′) becomes equal to the composite FGb,Gb′◦Gb,b′ . That is, for any g : homB(b, b′)

we must have

FGb,Gb′

(
(FGb,Gb′)

−1
(

idtoiso((ε0)
−1

b′) ◦ g ◦ idtoiso((ε0)b)
))

= idtoiso((ε0
−1)b′) ◦ g ◦ idtoiso((ε0)b).

But this is just the fact that (FGb,Gb′)
−1

is the inverse of FGb,Gb′ . And we have remarked

that (6.11) is equivalent to (6.12), so (ii) holds.

Conversely, suppose given (ii); then the object-parts of G, η, and ε together with (6.12)

show that F0 is an equivalence of types. And for a, a′ : A0, we defineGa,a′ : homB(Fa, Fa′)→
homA(a, a′) by

Ga,a′(g) := idtoiso(η−1)a′ ◦G(g) ◦ idtoiso(η)a. (6.13)

By naturality of idtoiso(η), for any f : homA(a, a′) we have

Ga,a′(Fa,a′(f)) = idtoiso(η−1)a′ ◦G(F (f)) ◦ idtoiso(η)a

= idtoiso(η−1)a′ ◦ idtoiso(η)a′ ◦ f
= f.

On the other hand, for g : homB(Fa, Fa′) we have

Fa,a′(Ga,a′(g)) = F (idtoiso(η−1)a′) ◦ F (G(g)) ◦ F (idtoiso(η)a)

= idtoiso(ε)Fa′ ◦ F (G(g)) ◦ idtoiso(ε−1)Fa

= idtoiso(ε)Fa′ ◦ idtoiso(ε−1)Fa′ ◦ g
= g.

(There are lemmas needed here regarding the compatibility between idtoiso and whisker-

ing, which we leave to the reader to state and prove.) Thus, Fa,a′ is an equivalence, so

F is fully faithful; i.e. (i) holds.

Now the composite (i)→(ii)→(i) is equal to the identity since (i) is a mere proposition.

On the other side, tracing through the above constructions we see that the compos-

ite (ii)→(i)→(ii) essentially preserves the object-parts G0, η0, ε0, and the object-part

of (6.11). And in the latter three cases, the object-part is all there is, since hom-sets are

sets.

Thus, it suffices to show that we recover the action of G on hom-sets. In other words,

we must show that if g : homB(b, b′), then

Gb,b′(g) = GG0b,G0b′

(
idtoiso((ε0)

−1
b′) ◦ g ◦ idtoiso((ε0)b)

)
where G is defined by (6.13). However, this follows from functoriality of G and the other

triangle identity, which is equivalent to (6.12).

Now since (i) is a mere proposition, so is (ii), so it suffices to show they are co-inhabited



Univalent categories and the Rezk completion 19

with (iii). Of course, (ii)→(iii), so let us assume (iii). Since (i) is a mere proposition,

we may assume given G, η, and ε. Then G0 along with η and ε imply that F0 is an

equivalence. Moreover, we also have natural isomorphisms idtoiso(η) : 1A ∼= GF and

idtoiso(ε) : FG ∼= 1B , so by Lemma 6.2, F is an equivalence of precategories, and in

particular fully faithful.

From Lemma 6.10(ii) and idtoiso in functor categories, we conclude immediately that

any isomorphism of precategories is an equivalence. For precategories, the converse can

fail.

Example 6.14. LetX be a type and x0 : X an element, and letXch denote the chaotic or

indiscrete precategory on X. By definition, we have (Xch)0 := X, and homXch
(x, x′) = 1

for all x, x′. Then the unique functor Xch → 1 is an equivalence of precategories, but not

an isomorphism unless X is contractible.

This example also shows that a precategory can be equivalent to a category without

itself being a category. Of course, if a precategory is isomorphic to a category, then it

must itself be a category.

However, for categories, the notions of equivalence and isomorphism coincide.

Lemma 6.15. For categories A and B, a functor F : A → B is an equivalence of

categories if and only if it is an isomorphism of categories.

Proof. Since both are mere properties, it suffices to show they are co-inhabited. So

first suppose F is an equivalence of categories, with (G, η, ε) given. We have already seen

that F is fully faithful. By Theorem 4.5, the natural isomorphisms η and ε yield identities

1A = GF and FG = 1B , hence in particular identities idA = G0 ◦F0 and F0 ◦G0 = idB .

Thus, F0 is an equivalence of types.

Conversely, suppose F is fully faithful and F0 is an equivalence of types, with inverse

G0, say. Then for each b : B we have G0b : A and an identity FGb = b, hence an

isomorphism FGb ∼= b. Thus, by Lemma 6.6, F is an equivalence of categories.

Of course, there is yet a third notion of sameness for (pre)categories: equality. However,

the univalence axiom implies that it coincides with isomorphism.

Lemma 6.16. If A and B are precategories, then the function

(A = B)→ (A ∼= B)

(defined by induction from the identity functor) is an equivalence of types.

Proof. As usual for dependent sum types, to give an element of A = B is equivalent

to giving

—an identity P0 : A0 = B0,

—for each a, b : A0, an identity

Pa,b : homA(a, b) = homB(P0∗(a) , P0∗(b)),

—identities (Pa,a)∗(1a) = 1P0∗(a) and (Pa,c)∗(gf) = (Pb,c)∗(g) ◦ (Pa,b)∗(f).



B. Ahrens, K. Kapulkin and M. Shulman 20

(Again, we use the fact that the identity types of hom-sets are mere propositions.) How-

ever, by univalence, this is equivalent to giving

—an equivalence of types F0 : A0 ' B0,

—for each a, b : A0, an equivalence of types

Fa,b : homA(a, b) ' homB(F0(a), F0(b)),

—and identities Fa,a(1a) = 1F0(a) and Fa,c(gf) = Fb,c(g) ◦ Fa,b(f).

But this consists exactly of a functor F : A → B that is an isomorphism of categories.

And by induction on identity, this equivalence (A = B) ' (A ∼= B) is equal to the

function obtained by induction.

Thus, for categories, equality also coincides with equivalence. We can interpret this

as follows: define a “pre-2-category” to have a type of objects equipped with hom-

precategories, composition functors, and so on. Then categories, functors, and natural

transformations form a pre-2-category whose hom-precategories are categories (this is

Theorem 4.5), and Lemma 6.16 is a categorified version of the saturation property. It

is consistent to use the word 2-category for a pre-2-category satisfying both of these

conditions.

The following corollary was conjectured by Hofmann and Streicher (1998).

Theorem 6.17. If A and B are categories, then the function

(A = B)→ (A ' B)

(defined by induction from the identity functor) is an equivalence of types.

Proof. By Lemma 6.16 and Lemma 6.15.

As a consequence, the type of categories is a 2-type. For since A ' B is a subtype

of the type of functors from A to B, which are the objects of a category, it is a 1-type;

hence the identity types A = B are also 1-types.

7. The Yoneda lemma

In this section we fix a particular universe Type, and write Set for the type of sets in

that universe and Set for the category whose objects are sets in that universe and whose

morphisms are functions between them. Of course, Set and Set do not themselves lie in

the universe Type, but rather in some higher universe.

Define a precategory to be locally small if its hom-sets lie in our fixed universe Type.

We now show that every locally small precategory has a Set-valued hom-functor. First

we need to define opposites and products of (pre)categories.

Definition 7.1. For a precategory A, its opposite Aop is a precategory with the same

type of objects, with homAop(a, b) := homA(b, a), and with identities and composition

inherited from A.



Univalent categories and the Rezk completion 21

Definition 7.2. For precategories A and B, their product A×B is a precategory with

(A×B)0 := A0 ×B0 and

homA×B((a, b), (a′, b′)) := homA(a, a′)× homB(b, b′).

Identities are defined by 1(a,b) := (1a, 1b) and composition by (g, g′)(f, f ′) := ((gf), (g′f ′)).

Lemma 7.3. For precategories A,B,C, the following types are equivalent.

(i) Functors A×B → C.

(ii) Functors A→ CB .

Proof. Given F : A× B → C, for any a : A we obviously have a functor Fa : B → C.

This gives a function A0 → (CB)0. Next, for any f : homA(a, a′), we have for any

b : B the morphism F(a,b),(a′,b)(f, 1b) : Fa(b) → Fa′(b). These are the components of a

natural transformation Fa → Fa′ . Functoriality in a is easy to check, so we have a functor

F̂ : A→ CB .

Conversely, suppose given G : A → CB . Then for any a : A and b : B we have

the object G(a)(b) : C, giving a function A0 × B0 → C0. And for f : homA(a, a′) and

g : homB(b, b′), we have the morphism

G(a′)b,b′(g) ◦Ga,a′(f)b = Ga,a′(f)b′ ◦G(a)b,b′(g)

in homC(G(a)(b), G(a′)(b′)). Functoriality is again easy to check, so we have a functor

F̌ : A×B → C.

Finally, it is also clear that these operations are inverses.

Now for any locally small precategory A, we have a hom-functor

homA : Aop ×A→ Set.

It takes a pair (a, b) : (Aop)0×A0 ≡ A0×A0 to the set homA(a, b). For a morphism (f, f ′) :

homAop×A((a, b), (a′, b′)), by definition we have f : homA(a′, a) and f ′ : homA(b, b′), so

we can define

(homA)(a,b),(a′,b′)(f, f
′) := (g 7→ (f ′gf))

: homA(a, b)→ homA(a′, b′).

Functoriality is easy to check.

By Lemma 7.3, therefore, we have an induced functor y : A → SetA
op

, which we call

the Yoneda embedding. As usual, of course, SetA
op

may not be locally small unless A

is small (i.e. unless A0 lies in our fixed universe Type).

Theorem 7.4 (The Yoneda lemma). For any locally small precategory A, any a : A,

and any functor F : SetA
op

, we have an isomorphism

homSetA
op (ya, F ) ∼= Fa. (7.5)

Moreover, this is natural in both a and F .

Proof. Given a natural transformation α : ya → F , we can consider the component



B. Ahrens, K. Kapulkin and M. Shulman 22

αa : ya(a) → Fa. Since ya(a) ≡ homA(a, a), we have 1a : ya(a), so that αa(1a) : Fa.

This gives a function (α 7→ αa(1a)) from left to right in (7.5).

In the other direction, given x : Fa, we define α : ya→ F by

αa′(f) := Fa′,a(f)(x).

Naturality is easy to check, so this gives a function from right to left in (7.5).

To show that these are inverses, first suppose given x : Fa. Then with α defined as

above, we have αa(1a) = Fa,a(1a)(x) = 1Fa(x) = x. On the other hand, if we suppose

given α : ya→ F and define x as above, then for any f : homA(a′, a) we have

αa′(f) = αa′(yaa′,a(f))

= (αa′ ◦ yaa′,a(f))(1a)

= (Fa′,a(f) ◦ αa)(1a)

= Fa′,a(f)(αa(1a))

= Fa′,a(f)(x).

Thus, both composites are equal to identities. We leave the proof of naturality to the

reader.

Corollary 7.6. The Yoneda embedding y : A→ SetA
op

is fully faithful.

Proof. By Theorem 7.4, we have

homSetA
op (ya,yb) ∼= yb(a) ≡ homA(a, b).

It is easy to check that this isomorphism is in fact the action of y on hom-sets.

Corollary 7.7. If A is a category, then y0 : A0 → (SetA
op

)0 is a monomorphism. In

particular, if ya = yb, then a = b.

Proof. By Corollary 7.6, y induces an isomorphism on sets of isomorphisms. But as

A and SetA
op

are categories and y is a functor, this is equivalently an isomorphism on

identity types, which is the definition of being mono.

Definition 7.8. A functor F : SetA
op

is said to be representable if there exists a : A

and an isomorphism ya ∼= F .

Theorem 7.9. If A is a category, then the type “F is representable” is a mere proposi-

tion.

Proof. By definition “F is representable” is just the fiber of y0 over F . Since y0 is

mono by Corollary 7.7, this fiber is a mere proposition.

In particular, in a category, any two representations of the same functor are equal. We

could use this to give a different proof of Lemma 5.2 by characterizing adjunctions in

terms of representability.



Univalent categories and the Rezk completion 23

8. The Rezk completion

In this section we will give a universal way to replace a precategory by a category. It

relies on the fact that “categories see weak equivalences as equivalences”.

To prove this latter fact, we begin with a couple of lemmas which are completely

standard category theory, phrased carefully so as to make sure we are using the eliminator

for the propositional truncation correctly. One would have to be similarly careful in

classical category theory if one wanted to avoid the axiom of choice: any time we want

to define a function, we need to characterize its values uniquely somehow.

Lemma 8.1. If A,B,C are precategories and H : A → B is an essentially surjective

functor, then (− ◦H) : CB → CA is faithful.

Proof. Let F,G : B → C, and γ, δ : F → G be such that γH = δH; we must show

γ = δ. Thus let b : B; we want to show γb = δb. This is a mere proposition, so since H

is essentially surjective, we may assume given an a : A and an isomorphism f : Ha ∼= b.

But now we have

γb = G(f) ◦ γHa ◦ F (f−1) = G(f) ◦ δHa ◦ F (f−1) = δb.

Lemma 8.2. If A,B,C are precategories and H : A → B is essentially surjective and

full, then (− ◦H) : CB → CA is fully faithful.

Proof. It remains to show fullness. Thus, let F,G : B → C and γ : FH → GH. We

claim that for any b : B, the type∑
(g : homC(Fb,Gb)),

∏
(a : A)

∏
(f : Ha ∼= b), (γa = Gf−1 ◦ g ◦ Ff) (8.3)

is contractible. Since contractibility is a mere property, and H is essentially surjective,

we may assume given a0 : A and h : Ha0 ∼= b.

Now take g := Gh ◦ γa0
◦ Fh−1. Then given any other a : A and f : Ha ∼= b, we must

show γa = Gf−1 ◦g ◦Ff . Since H is full, there merely exists a morphism k : homA(a, a0)

such that Hk = h−1 ◦ f . And since our goal is a mere proposition, we may assume given

some such k. Then we have

γa = GHk−1 ◦ γa0
◦ FHk

= Gf−1 ◦Gh ◦ γa0
◦ Fh−1 ◦ Ff

= Gf−1 ◦ g ◦ Ff.

Thus, (8.3) is inhabited. It remains to show it is a mere proposition. Let g, g′ : homC(Fb,Gb)

be such that for all a : A and f : Ha ∼= b, we have both (γa = Gf−1 ◦ g ◦ Ff) and

(γa = Gf−1 ◦ g′ ◦ Ff). The dependent product types are mere propositions, so all we

have to prove is g = g′. But this is a mere proposition and H is essentially surjective, so

we may assume a0 : A and h : Ha0 ∼= b, in which case we have

g = Gh ◦ γa0
◦ Fh−1 = g′.

This proves that (8.3) is contractible for all b : B. Now we define δ : F → G by

taking δb to be the unique g in (8.3) for that b. To see that this is natural, suppose given



B. Ahrens, K. Kapulkin and M. Shulman 24

f : homB(b, b′); we must show Gf ◦ δb = δb′ ◦ Ff . As before, we may assume a : A and

h : Ha ∼= b, and likewise a′ : A and h′ : Ha′ ∼= b′. Since H is full as well as essentially

surjective, we may also assume k : homA(a, a′) with Hk = h′
−1 ◦ f ◦ h.

Since γ is natural, GHk ◦ γa = γa′ ◦ FHk. Using the definition of δ, we have

Gf ◦ δb = Gf ◦Gh ◦ γa ◦ Fh−1

= Gh′ ◦GHk ◦ γa ◦ Fh−1

= Gh′ ◦ γa′ ◦ FHk ◦ Fh−1

= Gh′ ◦ γa′ ◦ Fh′
−1 ◦ Ff

= δb′ ◦ Ff.

Thus, δ is natural. Finally, for any a : A, applying the definition of δHa to a and 1a, we

obtain γa = δHa. Hence, δ ◦H = γ.

The proof of the theorem itself follows almost exactly the same lines, with the satura-

tion of C inserted in one crucial step, which we have bolded below for emphasis. This is

the point at which we are trying to define a function into objects without using choice,

and so we must be careful about what it means for an object to be “uniquely specified”.

In classical category theory, all one can say is that this object is specified up to unique

isomorphism, but in set-theoretic foundations this is not a sufficient amount of uniqueness

to give us a function without invoking AC. In Univalent Foundations, however, if C is a

category, then isomorphism is equality, and we have the appropriate sort of uniqueness

(namely, living in a contractible space).

Theorem 8.4. If A,B are precategories, C is a category, and H : A → B is a weak

equivalence, then (− ◦H) : CB → CA is an isomorphism.

Proof. By Theorem 4.5, CB and CA are categories. Thus, by Lemma 6.15 it will suffice

to show that (− ◦ H) is an equivalence. But since we know from the preceeding two

lemmas that it is fully faithful, by Lemma 6.8 it will suffice to show that it is essentially

surjective. Thus, suppose F : A → C; we want there to merely exist a G : B → C such

that GH ∼= F .

For each b : B, let Xb be the type whose elements consist of:

(i)An element c : C; and

(ii)For each a : A and h : Ha ∼= b, an isomorphism ka,h : Fa ∼= c; such that

(iii)For each (a, h) and (a′, h′) as in (ii) and each f : homA(a, a′) such that h′ ◦Hf = h,

we have ka′,h′ ◦ Ff = ka,h.

We claim that for any b : B, the type Xb is contractible. As this is a mere proposition and

H is essentially surjective, we may assume given a0 : A and h0 : Ha0 ∼= b. Let c0 := Fa0.

Next, given a : A and h : Ha ∼= b, since H is fully faithful there is a unique isomorphism

ga,h : a → a0 with Hga,h = h0
−1 ◦ h; define k0a,h := Fga,h. Finally, if h′ ◦Hf = h, then

h0
−1 ◦ h′ ◦Hf = h0

−1 ◦ h, hence ga′,h′ ◦ f = ga,h and thus k0a′,h′ ◦ Ff = k0a,h. Therefore,

Xb is inhabited.

Now suppose given another (c1, k1) : Xb. Then k1a0,h0
: c0 ≡ Fa0 ∼= c1. Since C is



Univalent categories and the Rezk completion 25

a category, we have p : c0 = c1 with idtoiso(p) = k1a0,h0
. And for any a : A and

h : Ha ∼= b, by (iii) for (c1, k1) with f := ga,h, we have

k1a,h = k1a0,h0
◦ k0a,h = p∗

(
k0a,h

)
This gives the requisite data for an equality (c0, k0) = (c1, k1), completing the proof that

Xb is contractible.

Now since Xb is contractible for each b, the type
∏

(b : B), Xb is also contractible. In

particular, it is inhabited, so we have a function assigning to each b : B a c and a k.

Define G0(b) to be this c; this gives a function G0 : B0 → C0.

Next we need to define the action of G on morphisms. For each b, b′ : B and f :

homB(b, b′), let Yf be the type whose elements consist of:

(iv)A morphism g : homC(Gb,Gb′), such that

(v)For each a : A and h : Ha ∼= b, and each a′ : A and h′ : Ha′ ∼= b′, and any

` : homA(a, a′), we have

(h′ ◦H` = f ◦ h)→ (ka′,h′ ◦ F` = g ◦ ka,h).

We claim that for any b, b′ and f , the type Yf is contractible. As this is a mere proposition,

we may assume given a0 : A and h0 : Ha0 ∼= b, and each a′0 : A and h′0 : Ha′0
∼= b′. Then

since H is fully faithful, there is a unique `0 : homA(a0, a
′
0) such that h′0 ◦H`0 = f ◦ h0.

Define g0 := ka′0,h′0 ◦ F`0 ◦ (ka0,h0
)
−1

.

Now for any a, h, a′, h′, and ` such that (h′ ◦H` = f ◦h), we have h−1 ◦h0 : Ha0 ∼= Ha,

hence there is a unique m : a0 ∼= a with Hm = h−1 ◦ h0 and hence h ◦ Hm = h0.

Similarly, we have a unique m′ : a′0
∼= a′ with h′ ◦ Hm′ = h′0. Now by (iii), we have

ka,h ◦ Fm = ka0,h0 and ka′,h′ ◦ Fm′ = ka′0,h′0 . We also have

Hm′ ◦H`0 = (h′)
−1 ◦ h′0 ◦H`0

= (h′)
−1 ◦ f ◦ h0

= (h′)
−1 ◦ f ◦ h ◦ h−1 ◦ h0

= H` ◦Hm

and hence m′ ◦ `0 = ` ◦m since H is fully faithful. Finally, we can compute

g0 ◦ ka,h = ka′0,h′0 ◦ F`0 ◦ (ka0,h0
)
−1 ◦ ka,h

= ka′0,h′0 ◦ F`0 ◦ Fm
−1

= ka′0,h′0 ◦ (Fm′)
−1 ◦ F`

= ka′,h′ ◦ F`.

This completes the proof that Yf is inhabited. To show it is contractible, since hom-sets

are sets, it thankfully suffices to take another g1 : homC(Gb,Gb′) satisfying (v) and show

g0 = g1. However, we still have our specified a0, h0, a
′
0, h
′
0, `0 around, and (v) implies

both g0 and g1 must be equal to ka′0,h′0 ◦ F`0 ◦ (ka0,h0
)
−1

.

This completes the proof that Yf is contractible for each b, b′ : B and f : homB(b, b′).

Therefore, there is a function assigning to each such f its unique inhabitant; denote



B. Ahrens, K. Kapulkin and M. Shulman 26

this function Gb,b′ : homB(b, b′) → homC(Gb,Gb′). The proof that G is a functor is

straightforward.

Finally, for any a0 : A, defining c := Fa0 and ka,h := Fg, where g : homA(a, a0) is

the unique isomorphism with Hg = h, gives an element of XHa0
. Thus, it is equal to

the specified one; hence GHa = Fa. Similarly, for f : homA(a0, a
′
0) we can define an

element of YHf by transporting along these equalities, which must therefore be equal to

the specified one. Hence, we have GH = F , and thus GH ∼= F as desired.

Therefore, if a precategory A admits a weak equivalence functor A→ Â where Â is a

category, then that is its “reflection” into categories: any functor from A into a category

will factor essentially uniquely through Â. We now construct such a weak equivalence.

Theorem 8.5. For any precategory A, there is a category Â and a weak equivalence

A→ Â.

Proof. The hom-sets of A must lie in some universe Type, so that A is locally small

with respect to that universe. Write Set for the category of sets in Type, and let Â0 :={
F : SetA

op
∣∣∣ ∥∥∑(a : A), (ya ∼= F )

∥∥ }, with hom-sets inherited from SetA
op

. In other

words, Â is the full subcategory of SetA
op

determined by the functors that are merely

representable. Then the inclusion Â → SetA
op

is fully faithful and a monomorphism on

objects. Since SetA
op

is a category (by Theorem 4.5, since Set is a category by univalence),

Â is also a category.

Let A → Â be the Yoneda embedding. This is fully faithful by Corollary 7.6, and

essentially surjective by definition of Â0. Thus it is a weak equivalence.

Remark 8.6. Note, however, that even if A itself is a “small category” with respect

to some universe Type (that is, both A0 and all its hom-sets lie in Type), then Â as we

have constructed it will lie in the next higher universe. One could imagine a “resizing

axiom” that could deal with this. It is also possible to give a direct construction of Â

using higher inductive types (Lumsdaine and Shulman 2013), which leaves its universe

level unchanged; see (Univalent Foundations Program 2013, Chapter 9).

We call the construction A 7→ Â the Rezk completion, although as mentioned in the

introduction, there is also an argument for calling it the stack completion.

We have seen that most precategories arising in practice are categories, since they are

constructed from Set, which is a category by the univalence axiom. However, there are a

few cases in which the Rezk completion is necessary to obtain a category.

Example 8.7. Recall from Example 3.17 that for any type X there is a pregroupoid

with X as its type of objects and hom(x, y) := ‖x = y‖0. Its Rezk completion is the

fundamental groupoid of X. Under the equivalence between groupoids and 1-types, we

can identify this groupoid with the 1-truncation ‖X‖1.

Example 8.8. Recall from Example 3.18 that there is a precategory whose type of

objects is Type and with hom(X,Y ) := ‖X → Y ‖0. Its Rezk completion may be called

the homotopy category of types. Its type of objects can be identified with the 1-truncation

of the universe, ‖Type‖1.



Univalent categories and the Rezk completion 27

Finally, the Rezk completion allows us to show that the notion of “category” is deter-

mined by the notion of “weak equivalence of precategories”. Thus, insofar as the latter

is inevitable, so is the former.

Theorem 8.9. A precategory C is a category if and only if for every weak equivalence

of precategories H : A→ B, the induced functor (− ◦H) : CB → CA is an isomorphism

of precategories.

Proof. “Only if” is Theorem 8.4. In the other direction, let H be I : A→ Â. Then since

(− ◦ I)0 is an equivalence, there exists R : Â → A such that RI = 1A. Hence IRI = I,

but again since (− ◦ I)0 is an equivalence, this implies IR = 1Â. By Lemma 6.10(iii), I

is an isomorphism of precategories. But then since Â is a category, so is A.

9. The Formalization

Large chunks of the material presented above have been formalized in the proof assistant

Coq. The version of Coq used is Coq 8.3pl5, patched according to the instructions given

by Voevodsky (2013). Our formalization is based on Voevodsky’s Foundations library

(Voevodsky 2013), and is available online (Ahrens, Kapulkin, and Shulman 2013).

Design principles

Our general design principles largely follow the conventions established by Voevodsky

(2013) with a few departures. Both use only three type constructors, namely Π, Σ, Id,

and avoid most of the syntactic sugar of Coq (such as record types). Both do use implicit

arguments and, quite extensively, coercions.

We restrict ourselves to these basic type constructors since they have a well-understood

semantics in various homotopy-theoretic models. Implicit arguments and coercions are

crucial to manage structures of high complexity. Furthermore, they reflect familiar math-

ematical practice.

As for the differences, the use of notations, especially with infix symbols (for example,

f ;; g for the composition of morphisms of a precategory) plays an important role in

our formalization. We also use the section mechanism of Coq when several hypotheses

are common to a series of constructions and lemmas, e.g., when constructing particular

examples of complex structures.

Reading the code

Since informal type theory, used in the previous sections, is supposed to match its formal

equivalent quite closely, the statements of the formalization are very similar to the cor-

responding statements of the informal type theory. For example, our formal statement

correponding to Definition 4.7 looks as follows:

Lemma is_nat_trans_pre_whisker (A B C : precategory) (F : functor A B)

(G H : functor B C) (gamma : nat_trans G H) :

is_nat_trans (G o F) (H o F) (fun a : A => gamma (F a)).



B. Ahrens, K. Kapulkin and M. Shulman 28

The major differences occur when we split a large definition in parts as, for example,

for the definition of a precategory. We first define:

Definition precategory_ob_mor := total2 (

fun ob : UU => ob -> ob -> hSet).

Given an element C of the above type, we write a : C for an inhabitant a of its first

component (using the coercion mechanism of Coq) and a --> b for the value of the

second component on a b : C.

We complete the data of a precategory by:

Definition precategory_data := total2 (

fun C : precategory_ob_mor =>

dirprod (forall c : C, c --> c)

(forall a b c : C, a --> b -> b --> c -> a --> c)).

In the following we write identity c for the identity morphism on an object c and

f ;; g for the composite of morphisms f : a --> b and g : b --> c.

We define a predicate expressing that this data constitutes a precategory:

Definition is_precategory (C : precategory_data) :=

dirprod (dirprod (forall (a b : C) (f : a --> b),

identity a ;; f == f)

(forall (a b : C) (f : a --> b),

f ;; identity b == f))

(forall (a b c d : C)

(f : a --> b)(g : b --> c) (h : c --> d),

f ;; (g ;; h) == (f ;; g) ;; h).

As the last step, we say that a precategory is given by the data of a precategory satisfying

the necessary axioms:

Definition precategory := total2 is_precategory.

Contents of the formalization

In this part of the project we aimed on formalizing the Rezk completion together with

its universal property. The formalization consists of 10 files:

— precategories.v which roughly covers section 3.

— functors transformations.v which roughly covers section 4.

— sub precategories.v where we define sub-precategories and the image factoriza-

tion of a functor. This is not a separate part of the paper, but it is used (in less

generality) in Theorem 8.5.

— equivalences.v where we cover parts of section 6 needed for Theorem 8.4.

— category hset.v where we define the precategory of sets and show that it is a

category.

— yoneda.v where we cover the main parts of Theorem 7.4.



Univalent categories and the Rezk completion 29

— whiskering.v where we define the whiskering, see Definition 4.7.

— precomp fully faithful.v that covers Lemma 8.1 and 8.2.

— precomp ess surj.v that covers Theorem 8.4.

— rezk completion.v that puts the previous files together exhibiting Theorem 8.5.

Formalization vs informal definitions

The formalization deviates very little from the informal definitions given in the previous

sections. We shall mention here the only example of such a deviation, resulting in a

slicker definition. In Definition 5.1 the natural transformations (εF ) and (Fη) (similarly,

(Gε) and (ηG)) are actually not composable! We have εF : (FG)F → 1BF and Fη :

F1A → F (GF ). However, (FG)F and F (GF ) are not convertible, i.e. not definitionally

equal, which would be necessary for the composition to typecheck. So in order to state the

equality in question we would have to insert a transport along propositional equality—see

Lemma 4.9 and the subsequent discussion.

We overcome this issue by rephrasing the axiom: instead of requiring an equality of

natural transformations, we require it to hold pointwise. These statements are logically

and type-theoretically equivalent, but for the latter we have the desired convertibility:

for any a : A, the term
(
F (GF )

)
(a) is convertible to

(
(FG)F

)
(a).

Statistics

Our library comprises ten files with ca. 180 definitions and 170 lemmas altogether. The

coqwc tool counts 1200 lines of specification—definitions and statements of lemmas and

theorems—and 2700 lines of proof script overall.

10. Conclusions and further work

We have presented a new foundation for category theory, based on the general system of

Univalent Foundations, with the following advantages:

— All category-theoretic constructions and proofs are automatically invariant under

isomorphism of objects and under equivalence of categories (when performed with

saturated categories).

— In the rare case when we want to treat categories less invariantly, there is a separate

notion available to use (strict categories). This allows both approaches to category

theory to coexist simultaneously, with a type distinction making clear which one we

are using at any given time.

— There is a universal way to make a strict category (or, more generally, a precategory)

into a saturated category, thereby passing to the invariant world in a very precise

way. In higher-topos-theoretic semantics, this operation corresponds to the natural

and well-known notion of stack completion.

— The basic theory has all been formalized in a computer proof assistant.

One obvious direction for future work is to push forward the development of basic cate-

gory theory in this system. Another is to move on to higher category theory: a theory of



B. Ahrens, K. Kapulkin and M. Shulman 30

pre-2-categories and saturated 2-categories, at least, should be within reach. Ideally, we

would like a full theory of (∞, 1)-categories, but it has proven difficult to formalize such

infinite structures in currently available type theories.

References

Ahrens, B., Kapulkin, K., and Shulman, M. (2013). “Univalent categories and the Rezk

completion in Coq”. Git repository of Coq files. url: https://github.com/benediktahrens/

rezk_completion (cit. on pp. 4, 27).

Arndt, P. and Kapulkin, K. (2011). “Homotopy-theoretic models of type theory”. In:

Typed lambda calculi and applications. Vol. 6690. Lecture Notes in Comput. Sci. Hei-

delberg: Springer, pp. 45–60. doi: 10.1007/978-3-642-21691-6_7 (cit. on p. 2).

Awodey, S. and Warren, M. A. (2009). “Homotopy theoretic models of identity types”.

In: Math. Proc. Cambridge Philos. Soc. 146.1, pp. 45–55. issn: 0305-0041. doi: 10.

1017/S0305004108001783. arXiv:0709.0248 (cit. on p. 2).

Barwick, C. and Schommer-Pries, C. (2011). “On the Unicity of the Homotopy Theory

of Higher Categories”. In: arXiv:1112.0040 (cit. on p. 9).

Bergner, J. E. (2009). “A survey of (∞, 1)-categories”. In: Towards Higher Categories.

Ed. by J. C. Baez and J. P. May. Vol. 152. The IMA Volumes in Mathematics and its

Applications. Springer, pp. 69–83. arXiv:math.CT/0610239 (cit. on p. 3).

Bunge, M. (1979). “Stack completions and Morita equivalence for categories in a topos”.

In: Cahiers Topologie Géom. Différentielle 20.4, pp. 401–436. issn: 0008-0004 (cit. on

p. 3).

Coquand, T. and Danielsson, N. A. (2013). “Isomorphism is equality”. http://www.

cse.chalmers.se/~nad/publications/coquand-danielsson-isomorphism-is-

equality.html (cit. on p. 8).

Gonthier, G. et al. (2012). Math Components team: formalization of the Feit–Thompson

theorem. website. url: http : / / www . msr - inria . inria . fr / Projects / math -

components/feit-thompson (cit. on p. 2).

Hofmann, M. and Streicher, T. (1998). “The groupoid interpretation of type theory”.

In: Twenty-five years of constructive type theory (Venice, 1995). Vol. 36. Oxford Logic

Guides. New York: Oxford Univ. Press, pp. 83–111 (cit. on pp. 2, 3, 10, 20).

Joyal, A. and Tierney, M. (1991). “Strong stacks and classifying spaces”. In: Category

theory (Como, 1990). Vol. 1488. Lecture Notes in Math. Berlin: Springer, pp. 213–236

(cit. on p. 3).

Kapulkin, K., Lumsdaine, P. L., and Voevodsky, V. (2012). “The Simplicial Model of

Univalent Foundations”. In: arXiv:1211.2851 (cit. on p. 2).

Lumsdaine, P. L. and Shulman, M. (2013). “Higher inductive types”. In preparation (cit.

on pp. 3, 6, 26).

Martin-Löf, P. (1984). Intuitionistic type theory. notes by Giovanni Sambin. Vol. 1. Stud-

ies in Proof Theory. Lecture Notes. Naples: Bibliopolis, pp. iv+91. isbn: 88-7088-105-9

(cit. on p. 2).

Pelayo, A. and Warren, M. A. (2012). “Homotopy type theory and Voevodsky’s univalent

foundations”. In: arXiv:1210.5658 (cit. on p. 4).

https://github.com/benediktahrens/rezk_completion
https://github.com/benediktahrens/rezk_completion
http://dx.doi.org/10.1007/978-3-642-21691-6_7
http://dx.doi.org/10.1017/S0305004108001783
http://dx.doi.org/10.1017/S0305004108001783
http://arxiv.org/abs/0709.0248
http://arxiv.org/abs/1112.0040
http://arxiv.org/abs/math.CT/0610239
http://www.cse.chalmers.se/~nad/publications/coquand-danielsson-isomorphism-is-equality.html
http://www.cse.chalmers.se/~nad/publications/coquand-danielsson-isomorphism-is-equality.html
http://www.cse.chalmers.se/~nad/publications/coquand-danielsson-isomorphism-is-equality.html
http://www.msr-inria.inria.fr/Projects/math-components/feit-thompson
http://www.msr-inria.inria.fr/Projects/math-components/feit-thompson
http://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1210.5658


Univalent categories and the Rezk completion 31

Rezk, C. (2001). “A model for the homotopy theory of homotopy theory”. In: Trans.

Amer. Math. Soc. 353.3, 973–1007 (electronic). issn: 0002-9947. arXiv:math . AT /

9811037 (cit. on p. 3).

Univalent Foundations Program, T. (2013). Homotopy type theory: Univalent foundations

of mathematics. http://homotopytypetheory.org/book (cit. on pp. 3, 26).

van den Berg, B. and Garner, R. (2012). “Topological and simplicial models of identity

types”. In: ACM Trans. Comput. Log. 13.1, Art. 3, 44. issn: 1529-3785. doi: 10.1145/

2071368.2071371 (cit. on p. 2).

Voevodsky, V. (2010). “Univalent Foundations Project”. url: http://www.math.ias.

edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_

project.pdf (cit. on p. 2).

– (2013). “Experimental library of univalent formalization of mathematics”. In: arXiv:1401.

0053 (cit. on pp. 4, 27).

Warren, M. A. (2008). “Homotopy Theoretic Aspects of Constructive Type Theory”.

PhD thesis. Carnegie Mellon University (cit. on p. 2).

Werner, B. (May 1994). “Une théorie des constructions inductives”. PhD thesis. Univer-

sité Paris 7 (Denis Diderot) (cit. on p. 2).

http://arxiv.org/abs/math.AT/9811037
http://arxiv.org/abs/math.AT/9811037
http://homotopytypetheory.org/book
http://dx.doi.org/10.1145/2071368.2071371
http://dx.doi.org/10.1145/2071368.2071371
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_project.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_project.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_project.pdf
http://arxiv.org/abs/1401.0053
http://arxiv.org/abs/1401.0053

	Introduction
	Review of univalent foundations
	Categories and precategories
	Functors and transformations
	Adjunctions
	Equivalences
	The Yoneda lemma
	The Rezk completion
	The Formalization
	Conclusions and further work

