UNIVALENCE IN SIMPLICIAL SETS

CHRIS KAPULKIN, PETER LEFANU LUMSDAINE,
AND VLADIMIR VOEVODSKY

ABSTRACT. We present an accessible account of Voevodsky’s construc-
tion of a univalent universe of Kan fibrations.

Our goal in this note is to give a concise, self-contained account of the
results of [Voell, Section 5]: the construction of a homotopically universal
small Kan fibration 7: [Nla —U,; the proof that U, is a Kan complex; and
the proof that 7 is univalent.

We assume some background knowledge of the homotopy theory of simpli-
cial sets, and category theory in general; [Hov99] and [ML98] are canonical
and sufficient references. Other good sources include [May67], [GJ09], and
[Joy09].

In Section 1, we construct 7: ﬁa — U,, and prove that it is a weakly
universal a-small Kan fibration. In Section 2, we prove further that the base
U, is a Kan complex.

Section 3 is dedicated to constructing the fibration of weak equivalences
between two fibrations over a common base. In Section 4 we define univa-
lence for a general fibration, and prove our main theorem: that 7 is univa-
lent. Finally, in Section 5, we derive from this a statement of “homotopical
uniqueness” for the universal property of U,.

Overall, we largely follow Voevodsky’s original presentation, with some
departures: some proofs in Sections 2 and 4 are simplified based on a result
of André Joyal ([Joyll, Lemma 0.2], cf. our Lemmas 17, 18); and Section 3
also is somewhat modified and reorganised.

A recurring theme throughout is that when a map is defined by a “right-
handed” universal property, showing that it is a fibration (resp. trivial fi-
bration) corresponds to showing that the objects it represents extend along
trivial (resp. all) cofibrations.

An alternative construction of 7: Uy —> U, can be found in [Str11], and
an alternative proof of univalence in [Moell].
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1. REPRESENTABILITY OF FIBRATIONS

Definition 1. Let X be a simplicial set. A well-ordered morphism f: Y—=X
is a pair consisting of a morphism into X (also denoted by f) and a func-
tion assigning to each simplex z € X, a well-ordering on the fiber Y, :=
fHz) C Y,

If f: V—X, f: Y/ — X are well-ordered morphisms into X, an iso-
morphism of well-ordered morphisms from f to f’ is an isomorphism Y = Y’
over X preserving the well-orderings on the fibers.

Remark 2. Since we require no compatibility conditions, there are infinitely
many (specifically, 2¢) well-orderings even on the map 1111 —=1. The
well-orderings are haphazard beasts, and not of intrinsic interest; they are
essentially just a technical device to obtain Lemma 5.

Proposition 3. Given two well-ordered sets, there is at most one isomor-
phism between them. Given two well-ordered morphisms over a common
base, there is at most one isomorphism between them.

Proof. The first statement is classical, and immediate by induction; the
second follows from the first, applied in each fiber. O

Definition 4. Fix (once and for all) a regular cardinal o. Say a map
f:1Y — X is a-small if each of its fibers Y, has cardinality < a.

Given a simplicial set X we define W (X) to be the set of isomorphism
classes of a-small well-ordered morphisms f: Y — X. Given a morphism
t: X' — X we define W, (t): W,(X) — W,(X') by W,(t) = t* (the
pullback functor). This gives a contravariant functor W, : sSets®® —Sets.

Lemma 5. W, preserves all limits.

Proof. Suppose I': T — sSets is some diagram, and X = colimz F' is its
colimit, with injections v;: F(i) —= X. We need to show that the canonical
map Wy (X)— limz W, (F(7)) is an isomorphism.

To see that it is surjective, suppose we are given [f;: Y; — F(i)] €
limy W (F(7)). For each x € X,,, choose some i and Z € F (i) with v(z) = x,
and set Y, := (Y;)z. By Proposition 3, this is well-defined up to canonical
isomorphism, independent of the choices of representatives i, , Y;, f;. The
total space of these fibers then defines a well-ordered morphism f: Y —X,
with fibers smaller than «, and with pullbacks isomorphic to f; as required.

For injectivity, suppose f, f' are well-ordered morphisms over X, and
v} f = v} f' for each i. By Proposition 3, these isomorphisms agree on each
fiber, so together give an isomorphism f = f’. O
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Define the simplicial set W, by
Wq := WooyP: A? — Sets,
where y denotes the Yoneda embedding A — sSets.
Lemma 6. The functor W, is representable, represented by W,.
Proof. Given X € sSets, we have isomorphisms, natural in X:
W, (X) = Wa(colime Aln))
= lim p x Wa(A[n])
=limp x (Wa)n
= lim x sSets(Aln], Wa)
= sSets(colim [ x Aln], Wa)
= sSets(X, W,). O

Notation 7. Given an a-small well-ordered map f: Y —=X € W, (X), the
corresponding map X — W, will be denoted by " f™.

Applying the natural isomorphism above to the identity map Wo—=W,
gives a universal a-small well-ordered simplicial set W, — W,. Explicitly,
n-simplices of W, are pairs

(f: Y%A[n]ﬂg S fﬁl(l[n]))

i.e. the fiber of Wa over an n-simplex " f7 € W, is exactly (an isomorphic
copy of) the main fiber of f. So, by construction:

Proposition 8. The canonical projection Wa — W, is universal for a-
small well-ordered morphisms.

Corollary 9. The canonical projection Wa — W, is weakly universal for
a-small morphisms of simplicial sets; that is, any such morphism can be
given (not necessarily uniquely) as a pullback of the projection.

Proof. By the well-ordering principle and the axiom of choice, one can well-
order the fibers, and then use the universal property of W,,. O

Definition 10. Let U, C W, (respectively, U, € W) be the subobject

consisting of a-small well-ordered fibrations'; and define 7: U, — U, as

the pullback:

Ga — W,
o
UOLCH' W,

Lemma 11. The map 7: ﬁa —> Uy s a fibration.

Here and throughout, by “fibration” we always mean “Kan fibration”.
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Proof. Consider a horn to be filled

Akfn] —— U,
Aln] —=Ua

T

for some 0 < k < n. It factors through the pullback

kn ° 7
T
Aln] Aln] —=U

(6%
rm—l

where by the definition of U,, x is a fibration. Thus the left square admits
a diagonal filler, and hence so does the outer rectangle. O

Lemma 12. An a-small well-ordered morphism f: Y —X € Wy (X) is a
fibration if and only if " f1: X — W, factors through U,.

Proof. For ‘=’ assume that f: Y — X is a fibration. Then the pullback
of f to any representable is certainly a fibration:

° Y
1
Aln]| — X

so "f(x) = z*f € Uy, and hence " f7 factors through U,,.

Conversely, suppose " f factors through U,. Then we obtain:

Y —->U, ——=W,

_
]
X —U,“——W,,
where the lower composite is " f7, and the outer rectangle and the right

square are pullbacks. Hence so is the left square, so by Lemma 11 f is a
fibration. O

As an immediate consequence we obtain the following corollary.

Corollary 13. The functor U, is representable, represented by Uq. The
map 7: Uya—>=Uy, is universal for a-small well-ordered fibrations, and weakly
universal for a-small fibrations.
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2. FiBRANCY OF U,
Our next goal is to prove the following theorem.
Theorem 14. The simplicial set U, is a Kan complex.

Before proceeding with the proof we will gather four useful lemmas. The
first two, on the theory of minimal fibrations, come originally from [Qui68]
and [BGM59]. Since these two lemmas contain all that we need to know
about minimal fibrations, we treat the notion as a black box, and refer the
interested reader to [May67] for more.

Lemma 15 (Quillen’s Lemma, [Qui68]). Any fibration f: Y — X may be
factored as f = pg, where p is a minimal fibration and g is a trivial fibration.

Lemma 16 ([BGM59, II1.5.6]; see also [May67, Cor. 11.7]). Suppose X is
contractible, with xog € X, and p: Y — X is a minimal fibration with fiber
F :=Y,,. Then there is an isomorphism

g

Y FxX

N

over X.

For the last outstanding lemma, the proof we give is due to André Joyal,
somewhat simpler than Voevodsky’s original proof. We include details here
since the original [Joy11] is not currently publicly available. For this, and
again for Theorem 28 below, we make crucial use of exponentiation along
cofibrations; so we pause first to establish some facts about this.

Lemma 17 (Cf. [Joyll, Lemma 0.2]). Suppose i: A— B is a cofibration.
Let iy and iy denote respectively the right and the left adjoint to the pullback
functor i*: sSets/B —sSets/A. Then:

1. iy: sSets/A—sSets/B preserves trivial fibrations;
2. the counit 1*i, —= lggets/a 15 an isomorphism;
3. if p: E—= A is a-small, then so is i.p.

Proof.

1. By adjunction, since ¢* preserves cofibrations.

2. Since i is mono, ") = lggets/a; S0 by adjointness, i, = lggets/a-

3. For any n-simplex x: A[n]—=B, we have (i.p); = Homggets/p ("7, p). As
a subobject of A[n], i*z has only finitely many non-degenerate simplices,
so (i+p), injects into a finite product of fibers of p and is thus of size
< a. O

Lemma 18 ([Joyll, Lemma 0.2]). Ift: Y — X s a trivial fibration and
j: X—=X'is a cofibration, then there exists a trivial fibration t': Y —= X'
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and a pullback square of the form:

Y >Y’
_J
tl t/
N
)(CH X/.
J

If t is a-small, then t' may be chosen to also be.

Proof. Take (Y’ t') := j.(Y,t). By part 1 of Lemma 17, this is a trivial
fibration; by part 2, 7*Y’ = Y; and by part 3, it is small. O

We are now ready to prove that U, is a Kan complex.

Proof of Theorem 14. We need to show that we can extend any horn in U,
to a simplex:

By Corollary 13, such a horn corresponds to an a-small well-ordered fibra-
tion q: Y —= AF[n]. To extend "¢ to a simplex, we just need to construct
an a-small fibration Y’ over A[n| which restricts on the horn to Y:

Y =Y’

S
Ak[n](—> A[vn]

By the axiom of choice one can then extend the well-ordering of ¢ to ¢/, so
the map "¢'7: A[n]— U, gives the desired simplex.
By Quillen’s Lemma, we can factor ¢q as

Y —> Yo —% AF[n],

where ¢; is a trivial fibration and g, is a minimal fibration. Both are still
a-small: each fiber of ¢; is a subset of a fiber of ¢, and since a trivial fibration
is onto, each fiber of g, is a quotient of a fiber of ¢.

By Lemma 16, we have an isomorphism Yy = F' x A¥[n], and hence a
pullback diagram:

YOL—> F x Aln]
-

A*[n]—— A[n]
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By Lemma 18, we can then complete the upper square in the following
diagram, with both right-hand vertical maps a-small fibrations:
Y Y’
_
Qtl l
Yo&—— F x A[n]
I
gm

AF[n]c— A[n]

Since « is regular, the composite of the right-hand side is again a-small;
so we are done. O

3. REPRESENTABILITY OF WEAK EQUIVALENCES

To define univalence, we first need to construct the object of weak equiv-
alences between fibrations p1: F1 —= B and py: Fo —= B over a common
base. In other words, we want an object representing the functor sending
(X, f) € sSets/B to the set Eqx(f*E1, f*E2). As we did for U,, we pro-
ceed in two steps, first exhibiting it as a subfunctor of a functor more easily
seen (or already known) to be representable.

For the remainder of the section, fix fibrations Fy, E5 as above over a base
B. Since sSets is locally Cartesian closed, we can construct the exponential
object between them:

Definition 19. Let Homp(F1, E2) — B denote the internal hom from Ej
to Fs in sSets/B.

Then for any X, a map X — Homp(F;, E2) corresponds to a map
f: X — B, together with a map u: f*E; — f*FE5 over X.

Together with the Yoneda lemma, this implies the explicit description:
an n-simplex of Homp(E1, E2) is a pair

(b: Aln]— B,u: b*E; —b"E»).
Lemma 20. Homp(E1, E2) — B is a Kan fibration.

Proof. The functor (=) xp E: sSets/B —sSets/B preserves trivial cofi-
brations (since sSets is right proper); so its right adjoint Homp(E;, —)
preserves fibrant objects. ([

Within Homp(E1, E3), we now want to construct the subobject of weak
equivalences.

Lemma 21. Let f: B — E5 be a weak equivalence over B, and suppose
g: B'—= B. Then the induced map between pullbacks g*F1 —= g*Esy is a
weak equivalence.

Proof. The pullback functor ¢g*: sSets/B —= sSets/B’ preserves trivial fi-
brations; so by Ken Brown’s Lemma [Hov99, Lemma 1.1.12], it preserves all
weak equivalences between fibrant objects. O
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Thus, weak equivalences from Ey to FEs form a subfunctor of the functor
of maps from FE; to E5. To show that this is representable, we need just to
show:

Lemma 22. Let f: E1 — Eo be a morphism over B. If for each simplex
b: Aln]|— B the induced map fy: b*E1—=b*FE5 is a weak equivalence, then
f is a weak equivalence.

Proof. Without loss of generality, B is connected; otherwise, apply the result
over each connected component separately. Take some vertex b: A[0]— B,
and set F; := b*E;.

Now mo(f) factors as mo(E1) = mo(F1) mo(F) = mo(Es), so is
an isomorphism, since by hypothesis mo(fp) is. Similarly, for any vertex
e: A[0]— F}, we have by the long exact sequence for a fibration:

70 (fb)

Tnt1(B,b) —= mp(F1, ) — mp(E1, e) — 7, (B, b) — 7,1 (F1, €)

I\L ﬂn(fb)l Wn(f)l il iﬂ'n—l(fb)

Tnt1(B,0) —= mn(Fy, f(€)) — mn(E2, f(€)) —= mn (B, b) — mn—1(F2, f(€))

Each 7, (fp) is an isomorphism, so by the Five Lemma, so is each m,(f).
Thus f is a weak equivalence. O

Definition 23. Let Eqg(E1, E2) be the simplicial subset of Homp(E1, E2)
consisting of the n-simplices of the form:

(b: Aln]— B,w: b*E; —=b"E»)

such that w is a weak equivalence. (By Lemma 21, this indeed defines a
simplicial subset.)

From Lemma 22, we immediately have:

Corollary 24. Let (f,u): X — Homp(E1, E3). Then u is a weak equiva-
lence if and only if (f,u) factors through Eqg(E1, E2).
Thus, maps X —=Eqg(E1, E2) correspond to pairs of maps

(f: X—>B,w: f*El —>f*E2>,
where w s a weak equivalence. O

While Lemma 22 was stated just as required by representability, its proof
actually gives a slightly stronger statement:

Lemma 25. Let f: F1 — Es be a morphism over B. If for some vertex
b: A[0]—=B in each connected component the map of fibers fy,: b* E1—=b*Es
is a weak equivalence, then f is a weak equivalence. O

Corollary 26. The map Eqg(F1, E2) — B is a fibration.
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Proof. Suppose we wish to fill a square:

A¥ln] —— Eqp(E1, E»)

B

By the universal property of Eqg(FE1, F2) this corresponds to showing that
we can extend a weak equivalence w: i*b* E1 —=i*b* Eo over A¥[n] to a weak
equivalence w: b*Ey —=b*Ey over A[n).

By Lemma 20, we can certainly find some map w extending w. But then
since A[n] is connected, Lemma 25 implies that w is a weak equivalence. [

4. UNIVALENCE

Let p: E— B be a fibration. We then have two fibrations over B x B,
given by pulling back F along the projections. Call the object of weak equiv-
alences between these Eq(F) := Eqpp(niE,m3E). Concretely, simplices
of Eq(F) are triples

(b1,b2 € By, w: bjE—=b3E).

By Corollary 24, a map f: X — Eq(F) corresponds to a pair of maps
f1, f2: X — B together with a weak equivalence f{'E — f5E over X. In
particular, there is a diagonal map ¢6: B — Eq(FE), corresponding to the
triple (1p,1p,1g), and sending a simplex b € B, to the triple (b, b, 1g,).

There are also source and target maps s,t: Eq(E) — B, given by the

composites Eq(E)— B x B—> B, sending (b1, bz, w) to by and by respec-
tively. These are both retractions of §; and by Corollary 26, if B is fibrant
then they are moreover fibrations.

Definition 27. A fibration p: FE— B is called univalent if §: B—Eq(FE)
is a weak equivalence.

Since § is always a monomorphism (thanks to its retractions), this is
equivalent to saying that B — Eq(E) — B x B is a (trivial cofibration,
fibration) factorisation of the diagonal A: B—= B x B, i.e. that Eq(FE) is a
path object for B.

Theorem 28. The fibration 7: 6@ — U, is univalent.

Proof. We will show that ¢ is a trivial fibration. Since it is a retraction of 4,
this implies by 2-out-of-3 that § is a weak equivalence.
So, we need to fill a square

— EQ(Ua)
-

[

Ua
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where i: A “— B is a cofibration. _

By the universal properties of U, and Eq(U,), these data correspond to a
weak equivalence w: E1— FE5 between small well-ordered fibrations over A,
and an extension Ey of Ey to a small, well-ordered fibration over B; and a
filler corresponds to an extension E; of E1, together with a weak equivalence
w extending w:

Bi B g
E2 S \AEQ
s Y
/ \ /
A B

_As usual, it is sufficient to construct this first without well-orderings on
FE5; these can then always be chosen so as to extend those of Fs.

Recalling Lemmas 17-18, we define Fy and w as the pullback

El —_— ’i*El

0

EQ 7> 1+ o

in sSets/B, where 7 is the unit of * -4, at FE5. To see that this construction
works, it remains to show:

(a) i*E1 =& Fy in sSets/A, and under this, i*w corrsponds to w;

(b) E is small over B;

(c) E1 is a fibration over B, and W is a weak equivalence.

For (a), pull the defining diagram of E; back to sSets/A; by Lemma 17
part 2, we get a pullback square

i*El — E

_J
T
1E

Ey —2> Fy

in sSets/A, giving the desired isomorphism.

For (b), Lemma 17 part 3 gives that i,F; is a-small over B, so Ej is a
subobject of a pullback of a-small maps.

For (c), note first that by factoring w, we may reduce to the cases where
it is either a trivial fibration or a trivial cofibration.

In the former case, by Lemma 17 part 1 ¢,w is also a trivial fibration, and
hence so is w; so E; is fibrant over Es, hence over B.

In the latter case, F; is then a deformation retract of Fy over A; we will
show that F; is also a deformation retract of E5 over B. Let H: Ey X
A[l] — E3 be a deformation retraction of Fy onto E;. We want some
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homotopy H: E3 x A[l] —= Fy extending H on Ey x A[l], 15, x A[l] on
Ey x A[l], and 15, on Ey x {0}. Since these three maps agree on the
intersections of their domains, this is exactly an instance of the homotopy
lifting extension property, i.e. a square-filler

HU1U1

(By x A1) U (B x A[1]) U (B x {0}) B,

Fa x All] — B

which exists since the left-hand map is a trivial cofibration. o o
For H to be a deformation retraction, we need to see that Hy: Eo—=FEs

factors through E;. By the definition of Fq, a map f: X — E over
b: X — B factors through E; just if the pullback i*f: i*X — E»y fac-
tors through F;. In the case of ﬁ{l}, the pullback is by construction
Z*<F{1}) = (Z*F){l} = H{l}: EQ — EQ, which factors thI‘OUgh E1 since
H was a deformation retraction onto Ej.

So w embeds F; as a deformation retract of Ey over B; thus E; is a
fibration over B and w a weak equivalence, as desired. O

5. UNIQUENESS IN THE UNIVERSAL PROPERTY OF U,

Finally, as promised, we will give a uniqueness statement for the repre-
sentation of a small fibration as a pullback of 7: U, — U,: we show that
the space of such representations is contractible.

Let p: E— B be any fibration. We define a functor

P,: sSets’” — Sets

taking P,(X) to be the set of pairs of a map f: X x B—U,, and a weak
equivalence w: X x E— f*U, over X x B; equivalently, the set of squares

xxEl -7,

XXB?UQ

such that the induced map X x F—f *ﬁa is a weak equivalence. Lemma 21
ensures that this is functorial in X, by pullback.

Lemma 29. The functor P, is representable, represented by the simplicial
set (Pp)n :=Pp(Aln]).

Proof. Let Qp(X) be the set of all commutative squares (f, f') from p to

U, — Ug,; we know that Q,, is represented by Q) := EVe x gy, BYe.
Now, P, is a subfunctor of Q,. By Lemma 22, an element (f, f') € Q,(X)

lies in P,(X) if and only if for each x: A[n]—X, the pullback z*(f, ) lies

in P,(X); that is, if its representing map X — Q,, factors through P,. O
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Proposition 30. Let p be an a-small fibration. Then P, is contractible.

Proof. By Corollary 13, take some map "p': B—=U, such that £/ =2 rpj*ﬁa.
Now, for any X, maps X —=P,, correspond by definition to pairs of maps
f: X XxXB—Ug,, w: X x E%f*ﬁa But X x F = (l—p—l'ﬂ'g)*ﬁa over
X; so such pairs also correspond to maps f: X x B %Eq(ﬁa) such that
s-f="pl-my: X x B—U,.
From this, we conclude that P, —1 is a trivial fibration: filling a square

Y —=P,

X ——1

corresponds to filling the square

Y x B——=Eq(U,)

p -T2

X x B U,
but if Y —=X is a cofibration, then so is Y x B—=X x B; and by univalence,
s is a trivial fibration; so a filler exists. O
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