
MODELS FOR (∞, 1)-CATEGORIES: PART 1

MARCO VERGURA

These are notes for a talk given by the author at a seminar on Higher Category Theory, organized
by D. Christensen and C. Kapulkin at the University of Western Ontario during Fall 2016 (http:
//www-home.math.uwo.ca/~kkapulki/seminars/higher-cats.html).

Introduction: beyond quasi-categories

Roughly speaking, a homotopy theory H consists of the following data:

(H1) a homotopy category Ho(H);
(H2) for objects x, y ∈ Ho(H), a mapping space (orhomotopy function complex ) MapH(x, y) ∈

sSet.

A presentation (or a model) for a homotopy theory is then any mathematical object which gives
rise to a homotopy theory, e.g. quasi-categories. Many presentations of homotopy theories do not
commonly arise as quasi-categories but, rather, in other ways, like relative categories or simplicial
categories. So, even if the category QCat of quasi-categories allows a formal, well-studied treatment
of homotopy theories, it does not really include many of the natural examples.

To address this issue, one can follow a general leading principle.

Principle (Homotopy Invariance). To each presentation X of a homotopy theory H, (functo-
rially) associate a quasi-category RX presenting the same underlying homotopy theory H.

If this is the case, we can be sure that:

• there is a way to see each presentation X of a homotopy theory H as a quasi-category,
without losing any homotopical information;
• up to equivalence of associated homotopy theories, one is free to work in X or in the

associated quasi-category, as convenience suggests.

Often one can organize all presentations of the same sort for homotopy theories (such as relative or
simplicial categories) in a category HMod which is, itself, a model for a homotopy theory. In this
case we would like to get a functor R : HMod→ QCat inducing equivalences between the data (H1)
and (H2) for HMod and QCat.

The goal of these notes is to show that, for several instances of HMod (namely, for complete Segal
spaces, simplicial categories and relative categories), one can

(a) endow HMod with a model category structure;
(b) find a functor R′ : HMod→ (sSet)Joyal which is the right adjoint in a Quillen equivalence.

Since the right derived functor of right Quillen functors automatically induces weak equivalences
at the level of homotopy function complexes, we can take our functor R to be the right derived
functor of R′.
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1. Complete Segal Spaces: the bisimplicial model

Complete Segal spaces are certain kinds of bisimplicial sets introduced in [Rez01]. They are the
fibrant objects of a model category CSs which is Quillen equivalent to (sSet)Joyal, thus they present
(∞, 1)−categories. This presentation has some remarkable properties.

(1) CSs is a simplicial model category. This is not the case for (sSet)Joyal
1. Here is an easy way

to see this. If the Joyal model structure was simplicial, since ∆[0] is cofibrant,

MapsSet(∆[0], •) : (sSet)Joyal → (sSet)Quillen

would be a right Quillen functor. But then, any quasi-category X would also be a Kan
complex because MapsSet(∆[0], X) ∼= X.

(2) There are sectionwise criteria to detect weak equivalences between complete Segal spaces.
In fact, a map g : X → Y between complete Segal spaces is a weak equivalence in CSs if
and only if it induces Kan-Quillen equivalences between the columns or Joyal equivalences
between the rows of X and Y .

Following the work of [Rez01], in §1.1, we define the fundamental notion of Segal space, give a
sketch of how it presents a homotopy theory and introduce the completeness condition. After
[JT07], in §1.2, we exhibit two ways in which the model category structure CSs presenting complete
Segal spaces is Quillen equivalent to the Joyal model structure on sSet presenting quasi-categories.
The Appendix (§2) gathers the facts we need about (some of) the homotopy theories available for
bisimplicial sets.

1.1. Segal spaces. Segal spaces homotopically generalize categories via the Segal condition; up
to a specified weak equivalence, the m-th column space of a Segal space X is an iterated pullback
of its first column space. In this way, one recovers the fact that an m-simplex of the nerve of a
category is just determined by the chain of 1-simplices connecting the vertices of the m-simplex.
A Segal space has a set of objects, (homotopic) maps between them and composite of those. There
are two natural notions of “sameness” for objects x, y of a Segal space X. Namely, one could ask
that x and y are in the same path-component of X0, or that there is a homotopy equivalence from
x to y. Those Segal spaces for which these two notions coincide are called complete Segal space.

1.1.1. From categories to Segal spaces. We start with an observation about ordinary categories.
Let C be a small category and NC ∈ sSet be its nerve. For every m ∈ N≥1, we can consider the
iterated pullback

N(C)1 ×N(C)0 · · · ×N(C)0 N(C)1 := lim(NC1
d0→ NC0

d1← NC1
d0→ · · · d0→ NC0

d1← NC1)

with m copies of NC1 on both sides of the definition. There is a map

(1) N(C)m → N(C)1 ×N(C)0 N(C)1 ×N(C)0 · · · ×N(C)0 N(C)1,

sending a string of m composable arrows in C to the m−tuple of those arrows. This map is clearly
an isomorphism. If we look at NC as a discrete bisimplicial set, the map in (1) becomes a Kan-
Quillen equivalence of (discrete) simplicial sets. One could try to define a similar map for a general
bisimplicial set and ask whether it is a Kan-Quillen equivalence. Since some care is needed in
doing this, the construction we will present here only gives the homotopical generalization of (1)
for vertically fibrant bisimplicial sets.

For every m ∈ N≥1 and every 0 ≤ i ≤ m− 1, consider the following map in ∆:

(2) αi : [1]→ [m], 0 7→ i, 1 7→ i+ 1.

1 At least with respect to the self-enrichment of sSet as a cartesian closed category.
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Each αi can be seen as a map αi : ∆[1]→ ∆[m] of discrete bisimplicial sets. We set

I(m) :=
m−1⋃
i=0

Im(αi) ⊆ ∆[m]

and let

(3) ϕm : I(m)→ ∆[m]

be the inclusion. For every m ∈ N≥1, there is an isomorphism

(4) Maps2Set(I(m), X) ∼= X1 ×X0 · · · ×X0 X1,

natural in X ∈ s2Set, where the right-hand side is

(5) lim(X1
d0→ X0

d1← X1
d0→ X0

d1← X1 · · ·
d0→ X0

d1← X1).

Under the isomorphisms Maps2Set(∆[m], X) ∼= Xm and (4), we can then define

(6) ϕm = Maps2Set(ϕ
m, X) : Xm → X1 ×X0 · · · ×X0 X1.

Definition 1.1. A bisimplicial set X is a Segal space if it is vertically fibrant and, for every m ≥ 1,
the m−th Segal map ϕm is a Kan-Quillen equivalence of simplicial sets.

Remark 1.2.

(a) The map ϕm can also be described as

ϕm\X : ∆[m]\X → I(m)\X

(see Appendix, (28)), since I(m)\X ∼= X1 ×X0 · · · ×X0 X1.
(b) Since ϕm is a cofibration of bisimplicial sets, if X is vertically fibrant, then ϕm is a Kan

fibration. Hence, if X is a Segal space, ϕm is a trivial Kan fibration.
(c) IfX is vertically fibrant, the degeneracies d0, d1 : X1 → X0 are Kan fibrations (see Lemma 2.14),

so the limit X1 ×X0 · · · ×X0 X1 is actually a homotopy limit.

Remark 1.3. The Segal condition is so called because it firstly appeared in [Seg74] as a condition
to understand when a space (simplicial set) has the homotopy type of a loop space (delooping
problem). Segal’s result says that, if X is a Segal space such that X0 is contractible and X1 is
connected (although this last condition can be relaxed), then X1 has the homotopy type of Ω|X|,
where |X| = diag(X) is the diagonal of the bisimplicial set X.

Note that Definition 1.1 says that a bisimplicial set X is a Segal space if and only if it is an S-local
bisimplicial set, where S is the set of all maps ϕm in (3) (see §2.5). We can then give the following

Definition 1.4. The Segal space model category is the model category Ss obtained as the left
Bousfield localization of (s2Set)v at the set S of maps ϕm : I(m) → ∆[m] of discrete bisimplicial
sets.

Remark 1.5. By definition (and by Theorem 2.23), the fibrant objects of Ss are precisely the
Segal spaces, a vertical weak equivalence of bisimplicial sets is a weak equivalence in Ss and a map
between Segal spaces is a weak equivalence (resp. a fibration) in Ss if and only if it is a vertical
weak equivalence (resp. a vertical fibration).

Theorem 2.23 ensures that Ss is a simplicial, left proper and combinatorial model category. It has
a further important property:

Proposition 1.6 ([Rez01], Thm 7.1). Ss is a cartesian closed model category. In particular, for
every Segal space X and every bisimplicial set Y , the internal hom XY is a Segal space.
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1.1.2. The main example. Let (C,W) be a small relative category (see ?? below). For n ∈ N,
the functor category C[n] inherits a natural structure of relative category with weak equivalences
given by the natural transformations which are sectionwise weak equivalences in C. We denote the
resulting relative category by (C[n],W(C[n])).

Definition 1.7. Let (C,W) be a small relative category. The classification diagram of (C,W) is
the bisimplicial set NRzk(C,W) defined by

NRzk(C,W)m := N(W(C[m])), m ∈ N

The action of NRzk on maps f : [m] → [k] in the simplex category is obtained by functoriality of
N , since f induces a map W(C[k])→W(C[m]).

The assignment (C,W) 7→ NRzk(C,W) extends to a functor

(7) NRzk : RelCat→ s2Set, (C,W) 7→ NRzk(C,W).

We will talk more extensively about this functor later on. As for now, note that the (m,n)−bisimplices
of NRzk(C,W) look like this

A0,0 A1,0
// A1,0 · · ·// · · · Am,0//A0,0

A0,1

∼

OO

A1,0

A1,1

∼

OO

Am,0

Am,1

∼

OO
A0,1 A1,1

// A1,1 · · ·// · · · Am,1//A0,1

...

∼

OO

A1,1

...

∼

OO

Am,1

...

∼

OO
...

A0,n

∼
OO

...

A1,n

∼
OO

...

Am,n

∼
OO

A0,n A1,n
// A1,n · · ·// · · · Am,n//

where all the A′i,js are objects of C and all the vertical maps are in W.

Given a small category C we can regard it as a relative category by taking the subcategory of weak
equivalences to be the core of C, i.e. the maximal subgroupoid of C, consisting of all objects of C

and all isomorphisms among them. We denote the core of C by core(C).

Definition 1.8. Let C be a small category. The classifying diagram of C (or the Rezk nerve of C

or the bisimplicial nerve of C) is

NRzk(C) := NRzk(C, core(C)).

Remark 1.9. For every C ∈ Cat and every m ∈ N, NRzk(C)m = N(core(C[m])) and NRzk(C)•,0 =
NC (see Convention 2.2).

For every n ∈ N, let E[n] be the (nerve of the) groupoid having n+ 1 distinct objects and precisely
one isomorphism between any two of them:

(8) E[n] : 0 1
!!

0 1aa
∼= 1 2

!!
1 2aa
∼= 2 · · ·

  
2 · · ·aa
∼= · · · n

  
· · · naa

∼=

In other words, E[n] is the fundamental groupoid of ∆[n]. Let [n] → E[n] be the inclusion iden-
tifying [n] with the top chain of arrows in E[n]. The definition of NRzk gives immediately the
following
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Lemma 1.10. There is an isomorphism

(9) (NRzk(C))m,n ∼= Cat([m]× E[n],C),

natural in [m], [n] ∈ ∆ and C ∈ Cat.

Proposition 1.11 ([Rez01], Lemma 3.9). For every C ∈ Cat, each m− th Segal map for NRzk(C)
is an isomorphism and NRzk(C) is a Segal space.

Taking the ordinary nerve of a functor which is not an equivalence of categories can still produce
a Kan-Quillen equivalence. This can not happen with NRzk.

Theorem 1.12. The classifying diagram functor

NRzk : Cat→ s2Set

is a fully faithful, cartesian closed functor. Furthermore, a map f : C −→ D is an equivalence of
categories if and only if NRzk(f) is a vertical equivalence of bisimplicial sets.

Proof. A map NRzk(C)→ NRzk(D) is completely determined by its actions on the 0−th and on the
first columns. Fully faithfulness of NRzk follows. NRzk preserves products by (9). Now,

NRzk(DC)m,n ∼= Cat([m]× E[n],DC) ∼= Cat([m]× C,DE[n])

and

(NRzk(D)NRzk(C))m,n ∼= s2Set(∆[m]× ch(∆[n]), NRzk(D)NRzk(C))

We have natural isomorphisms

s2Set(∆[m]× ch(∆[n]), NRzk(D)NRzk(C)) ∼= s2Set(∆[m]×NRzk(C), NRzk(D)ch(∆[n])) ∼=

∼= s2Set(NRzk([m]× C), NRzk(DE[n])).

The last isomorphism follows because NRzk([m] × C) ∼= NRzk([m]) × NRzk(C) ∼= ∆[m] × NRzk(C)
and, for any category C (hence also for C = D[m]), core(CE[n]) ∼= core(C)E[n] ∼= core(C)[n], so that
N(core(CE[n])) ∼= N(core(C))∆[n]. Since NRzk is fully faithful, we have

Cat([m]× C,DE[n]) ∼= s2Set(NRzk([m]× C), NRzk(DE[n])).

Thus, the canonical map NRzk(DC)→ NRzk(D)NRzk(C) is an isomorphism.
For the last claim, naturally isomorphic functors from C to D produce simplicially homotopic maps
from NRzk(C) to NRzk(D), because two isomorphic functors give rise to a map C × E[1] → D in
Cat and NRzk(CE[1]) ∼= NRzk(C)ch(∆[1]). Therefore, if f : C → D is an equivalence of categories,
then NRzk(f) is a vertical equivalence of bisimplicial sets. On the other hand, if NRzk(f) is a
vertical equivalence, since both NRzk(C) and NRzk(D) are fibrant-cofibrant objects in (s2Set)v, it
is also a simplicial homotopy equivalence. A simplicial homotopy inverse for f is a 0-simplex g
of NRzk(CD)0, whereas the simplicial homotopies witnessing this fact are 1-simplices of NRzk(CD)0

and NRzk(DC)0. By the above, these correspond exactly to a functor g : D → C and to natural
isomorphisms fg ∼= idD and gf ∼= idC. �

1.1.3. Homotopy Theory in a Segal space. Segal spaces are presentations of homotopy theories in
the sense of the Introduction.

Definition 1.13. Let X be a Segal space.

(1) The set of objects of X is the set Ob(X) := X0,0.
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(2) For every x, y ∈ Ob(X), the mapping space between x and y is the Kan complex mapX(x, y) =
map(x, y) fitting in the pullback square

∆[0] X0 ×X0
(x,y)

//

map(x, y)

∆[0]
��

map(x, y) X1
// X1

X0 ×X0

(d1,d0)

��

The 0-th simplices of map(x, y) are called maps (or morphisms) from x to y in X and
denoted as x→ y.

(3) For every x ∈ Ob(X), s0(x) ∈ map(x, x) is called the identity map on x and denoted by
idx.

(4) Two maps f, g : x → y in X are homotopic if they belong to the same path-component of
map(x, y). We write f ∼ g to indicate that f and g are homotopic maps in X.

Remark 1.14. map(x, y) is both the fiber and the homotopy fiber of (d1, d0) over (x, y) ∈ X0 ×
X0, because (d1, d0) is a Kan fibration. In particular, if (x, y) and (x′, y′) are in the same path-
component of W0 ×W0, then map(x, y) and map(x′, y′) are weakly equivalent Kan complexes.

In order to define composition of maps in a Segal space X, consider, for m ≥ 1 and 0 ≤ i ≤ m, the
morphisms

βi : [0]→ [m], 0 7→ i

and let βi = X(βi) : Xm → X1. We get an induced map

(β0, . . . , βm) : Xm → Xm+1
0 .

We can think to this map as the one which associates to each m-simplex of X the ordered
(m + 1)-tuple of its vertices. We denote by map(x0, x1, . . . , xm) the fiber of (β0, . . . , βm) over
(x0, x1, . . . , xm) ∈ Ob(X)m+1. There is a commutative diagram of maps over Xm+1

0

Xm X1 ×X0 × · · · ×X0 X1
ϕm //Xm

Xm+1
0

(β0,...,βm)

��?
??

??
??

??
??

? X1 ×X0 × · · · ×X0 X1

Xm+1
0

����
��

��
��

��
��

Since the Segal map ϕm is a trivial fibration, there is an induced trivial Kan fibration between
fibers

ϕx0,x1,...,xm : map(x0, x1, . . . , xm)
∼
� map(xm−1, xm)× · · · ×map(x0, x1)

We will abuse of notation and again call such a map ϕm.

Definition 1.15. Let X be a Segal space and f ∈ map(x, y), g ∈ map(y, z) be two maps in
X. A composite of f and g is any map x → z of the form d1(σ), for σ ∈ map(x, y, z) such that
ϕ2(σ) = (g, f).

Because ϕm is a trivial fibration, every two composites of f and g as above are homotopic, so we
will denote any such composite by g ◦ f . Composition is associative and unital up to homotopy.

Proposition 1.16 ([Rez01], Prop 5.4). Let f : w → x, g : x→ y and h : y → z be maps in a Segal
space X. Then

(i) (h ◦ g) ◦ f ∼ h ◦ (g ◦ f);
(ii) f ◦ idw ∼ f ∼ idx ◦f .

For f : x→ y in a Segal space, denote by [f ] its class in π0(map(x, y)).
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Definition 1.17. Let X be a Segal space.

(1) The homotopy category of X is the category Ho(X) such that:
• Ob(Ho(X)) := Ob(X);
• for all x, y ∈ Ob(Ho(X)), Ho(X)(x, y) := π0(map(x, y));
• for all f : x→ y and g : y → z in X, [g] ◦ [f ] := [g ◦ f ].

(2) A map f : x→ y is a homotopy equivalence in X if [f ] is invertible in Ho(X).

The following result shows that “being a homotopy equivalence” is homotopically invariant in a
rather strong sense.

Proposition 1.18 ([Rez01], Lemma 5.8). Let f : x → y be a homotopy equivalence in a Segal
space X. Then all the 0-simplices of X1 which belong to the same path-component of f in X1 are
themselves homotopy equivalences in X.

In particular, since, for every x ∈ Ob(X), idx is a homotopy equivalence, the path-components of
the identity maps in X1 are all made of homotopy equivalences.

1.1.4. The completeness condition. Let X be a Segal space. We denote by Xhoequiv the subsimplicial
set of X1 generated by those path-components of X1 containing homotopy equivalences. Since, for
all x ∈ Ob(X), idx = s0(x) is a homotopy equivalence, we get

(10) s0 : X0 → Xhoequiv

Definition 1.19. A bisimplicial set X is called a complete Segal space if it is a Segal space and
the map (10) is a Kan-Quillen equivalence of simplicial sets.

So, in a complete Segal space, looking at the path-components of the identity maps exhausts all
homotopy equivalences.

Our main examples of Segal spaces are, in fact, complete:

Proposition 1.20 ([Rez01], Prop 6.1). The classifying diagram NRzk(C) of a small category C is
a complete Segal space.

Proof. A map in the Segal space NRzk(C) is a homotopy equivalence if and only if it is an isomor-
phism in C, so that NRzk(C) ∼= ch(N(core(CE[1])) (see (8)). The inclusion map core(C)→ core(CE[1])
is an equivalence of categories. Upon taking ordinary nerves, we get that (10) is a Kan-Quillen
equivalence. �

We now give several characterizations of the completeness condition for a Segal space. Recall from
(8) that E[1] denotes the nerve of the groupoid having exactly one isomorphism 0 → 1. We let
t : E[1] → ∆[0] be the map into the terminal simplicial set and u0, u1 : ∆[0] → E[1] be the maps
picking the vertices 0 and 1 respectively. For X ∈ s2Set, we have

E[1]\X ∼= Maps2Set(E[1], X).

(See Appendix, (25) and (28)). Given a Segal space X, and x, y ∈ Ob(X), we have Kan complexes
hoequiv(x, y) and X0(x, y) fitting into the pullback squares

∆[0] X0 ×X0
(x,y)

//

hoequiv(x, y)

∆[0]
��

hoequiv(x, y) Xhoequiv
// Xhoequiv

X0 ×X0

(d1,d0)

��
∆[0] X0 ×X0

(x,y)
//

X0(x, y)

∆[0]
��

X0(x, y) X
∆[1]
0

// X
∆[1]
0

X0 ×X0

��
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Here hoequiv(x, y) is the subsimplicial set of map(x, y) generated by those path-components that
contain homotopy equivalences, whereas X0(x, y) is the simplicial set of paths in X0 starting at x
and ending at y. We are now ready to state the following

Proposition 1.21 ([Rez01], Prop 6.4). The following are equivalent for a Segal space X.

(1) X is a complete Segal space.
(2) the map t\X : ∆[0]\X → E[1]\X is a Kan-Quillen equivalence.
(3) either u0\X : E[1]\X → ∆[0]\X or u1\X : E[1]\X → ∆[0]\X is a Kan-Quillen equiva-

lences.
(4) (Univalence) For all x, y ∈ Ob(X), hoequiv(x, y) is naturally weakly equivalent to X0(x, y)

in (sSet)Quillen.

Remark 1.22. We named condition (4) in the above Proposition as “univalence” because it says
that, for the type of objects modelled by the ∞-groupoid X0, the notion of homotopy equivalence
is equivalent to the notion of path. So the “universe of objects” for the homotopy theory presented
by X is, indeed, univalent.

By Proposition 1.21, a Segal space is complete if and only if it is an {u0 : ∆[0] → E[1]}-local
bisimplicial set (see §2.5).

Definition 1.23. The complete Segal space model category is the model category CSs obtained as
the left Bousfield localization of (s2Set)v at the set S consisting of the maps ϕm of (3) and the map
u0 : ∆[0]→ E[1] of discrete bisimplicial sets.

Remark 1.24. By definition (and by Theorem 2.23), the fibrant objects of CSs are precisely the
complete Segal spaces, a vertical weak equivalence of bisimplicial sets is a weak equivalence in CSs
and a map between complete Segal spaces is a weak equivalence (resp. a fibration) in CSs if and
only if it is a vertical weak equivalence (resp. a vertical fibration).

As for Ss, we also get the following

Proposition 1.25 ([Rez01], Prop 7.2). CSs is a cartesian closed model category. In particular, if
X is a complete Segal space and Y is any bisimplicial set, then XY is a complete Segal space.

The model category CSs is defined as a left Bousfield localization of (s2Set)v. One could have
instead considered the horizontal model category structure on s2Set (see §2.4).

Proposition 1.26 ([JT07], Thm 4.5). The complete Segal space model category structure CSs is a
left Bousfield localization of the horizontal model structure on s2Set. Furthermore, a horizontally
fibrant bisimplicial set is a complete Segal space if and only if it is categorically constant (see
Definition 2.17).

In particular, every horizontal equivalence is a weak equivalence in CSs.

Remark 1.27. By the above, in order to check that a map f : X → Y between complete Segal
spaces is a weak equivalence in CSs, it is enough to show it induces Kan-Quillen equivalence between
the columns or Joyal equivalences between the rows. This is one of the strongpoints of complete
Segal spaces, which we will use to establish Quillen equivalences between CSs and (sSet)Joyal.

1.2. Quillen equivalence between CSs and (sSet)Joyal. Following [JT07], we present two Quillen
equivalences between CSs and (sSet)Joyal. The flavour of the discussion will be quite categorically
inclined
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1.2.1. Numerous adjunctions. Consider the functor

(11) k : ∆→ sSet, [n] 7→ ∆′[n],

where ∆′[n] is (the nerve of) the free groupoid on the category [n]. The universal property of the
Yoneda embedding y : ∆→ sSet gives

(12)

∆ sSet
y //∆

sSet

k

&&

sSet

sSet

k!:=Lany(k)

��

sSet

sSet

``

sSet(k(−),•)=:k!a

∼=

k! is obtained as a colimit-preserving extension of k to sSet.

Proposition 1.28 ([JT07], Prop 1.19). There is a Quillen pair

(sSet)Quillen (sSet)Joyal

k!

''
(sSet)Quillen (sSet)Joyalgg

k!

⊥

In a similar fashion, consider the functor

(13) t : ∆×∆→ sSet, ([m], [n]) 7→ ∆[m]×∆′[n].

The same yoga as above gives

(14)

∆×∆ s2Set
y //∆×∆

sSet

t

&&

s2Set

sSet

t!:=Lany(t)

��

s2Set

sSet

``

s2Set(t(−),•)=:t!a

∼=

Since ∆[m]�∆[n] ∼= (∆×∆)(−, ([m], [n])),

t!(∆[m]�∆[n]) ∼= ∆[m]×∆′[n].

We gather several useful interactions of k! a k! and t! a t! in the following

Lemma 1.29 ([JT07], Lemma 2.11). There are isomorphisms

(15) t!(K�L) ∼= K × k!(L), K\t!(X) ∼= k!(XK) and t!(X)/L ∼= Xk!(L)

natural in K,L ∈ sSet and X ∈ s2Set.

Proof. Both functors
(K,L) 7→ t!(K�L) and (K,L) 7→ K × k!(L)

are cocontinuous in each variable and coincide on the pairs (∆[m],∆[n]). The first natural isomor-
phism follows. The second isomorphism follows from the first one because, for a fixed K ∈ sSet,
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X 7→ k!(XK) is right adjoint to L 7→ K×k!(L) and X 7→ K\t!(X) is right adjoint to L 7→ K×k!(L),
since right adjoints compose. In the same way, the third isomorphism holds because the two sides
of it are right adjoint to the naturally isomorphic functors K 7→ t!(K�L) and K 7→ K × k!(L) (for
a fixed L ∈ sSet). �

We can say more about the adjoint pair t! a t!.

Theorem 1.30 ([JT07], Thm 2.12). There is a Quillen pair

s2Set (sSet)Joyal

t!

''
s2Set (sSet)Joyalee

t!

⊥

where s2Set is given either the horizontal or the vertical model category structure.

Proof. The proof of this result is a nice example of categorical homotopy theory in action. We treat
the cases of the horizontal and the vertical model category structure on s2Set separately.

(a) Let us first establish that (t!, t!) is a Quillen pair when s2Set has the horizontal model cat-
egory structure. We need to check that t! preserves cofibrations and t! preserves fibrations.

– To show that t! sends monomorphism to monomorphism, by Proposition 2.11 it suf-
fices to prove that t!(δm�′δn) is a monomorphism, where δm : ∂∆[m] ↪→ ∆[m] is the
boundary inclusion and (•)�′(?) is the functor defined in Appendix, (31). But the map
t!(δm�′δn) is isomorphic to δm×k!(δn) with k!(δn) being a mono by Proposition 1.28.

– To show that t!(f) is a horizontal fibration for every Joyal fibration f : X → Y , it is
enough to show that

〈
t!(f)/u

〉
is a Joyal fibration for every mono u : K → L in s2Set,

by the definition of horizontal fibrations (see Theorem 2.15). But now, from (15), the
map 〈

t!(f)/u
〉

: t!(X)/L→
(
t!(Y )/L

)
×(t!(Y )/K)

(
t!(X)/K

)
is isomorphic to the map

〈k!(u), f〉 : Xk!(L) → Y k!(L) ×Y k!(K) Xk!(K).

Since k!(u) is a monomorphism, f is a Joyal fibration and (sSet)Joyal is a cartesian
closed model category, we get that 〈k!(u), f〉 is indeed a monomorphism.

This finishes the proof that (t!, t!) is a Quillen pair for the horizontal model category struc-
ture.

(b) Let us now consider the case where s2Set has the vertical model category structure. We
only need to show that if f : X → Y is a Joyal fibration, then t!(f) is a vertical fibration.
By Proposition 2.13, it is enough to show that〈

u\t!(X)
〉

: L\t!(X)→
(
L\t!(Y )

)
×(K\t!(Y ))

(
K\t!(X)

)
is Kan fibration for every mono u : K → L in sSet. But, again by (15), that map is
isomorphic to

k! 〈u, f〉 : k!(XL)→ k!(Y L)×k!(Y K) k
!(XK)

which is a monomorphism, because 〈u, f〉 is a Joyal fibration and we can use Proposi-
tion 1.28.

�
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Theorem 1.31 ([JT07], Thm 3.3). The Quillen pair of Theorem 1.30 descends to a Quillen pair

Ss (sSet)Joyal

t!

##
Ss (sSet)Joyalbb

t!

⊥

Proof. In light of Theorem 1.30, it suffices to show that t! takes a quasi-category to a Segal space.
For, if this is the case, t! : (sSet)Joyal → Ss takes fibrant objects to fibrant objects and we already
know that it takes Joyal fibrations to vertical fibrations. Hence, t! takes fibrations between fibrant
objects in (sSet)Joyal to fibrations between fibrant objects in Ss.
Take then a quasi-category X. We know that t!(X) is vertically fibrant by Theorem 1.30, so it is
enough to show that, for every m ∈ N, ϕm\t!(X) is a trivial Kan fibration (see Remark 1.2). This
map is isomorphic to k!(Xϕm

) by (15). Now, ϕm is a trivial cofibration in (sSet)Joyal, so Xϕm
is a

trivial Kan fibration and therefore so is k!(Xϕm
) by Proposition 1.28. This concludes our proof. �

Finally, there is an adjoint pair

∆×∆ ∆

p1

##
∆×∆ ∆cc

i1

⊥

where p1 is the projection functor onto the first factor and i1 sends [n] ∈ ∆ to ([n], [0]) ∈ ∆ ×∆.
Precomposition gives then an adjoint pair

(16) sSet s2Set

p∗1=(−)◦p1
%%

sSet s2Setbb

i∗1=(−)◦i1

⊥

We get

(17) p∗1(−) ∼= (−)�∆[0] ∼= cv(−) and i∗1(−) = (−)•,0

(see Appendix, (24) for the definition of the functor cv).

1.2.2. Two equivalences, in two directions. We want to show that there are Quillen equivalences

(18) (sSet)Joyal CSs

p∗1

$$
(sSet)Joyal CSs

ee

i∗1

CSs (sSet)Joyal

t!

$$
CSs (sSet)Joyalbb

t!

⊥ ⊥

We start by addressing the leftmost adjoint pair.

Lemma 1.32. There is a Quillen pair

(sSet)Joyal CSs

p∗1

##
(sSet)Joyal CSs

dd

i∗1

⊥

11



Proof. Since p∗1 = cv, it sends monomorphisms to monomorphisms, hence it preserves cofibrations.
On the other hand, by Proposition 1.26 every fibration in CSs is a horizontal fibration and horizontal
fibrations are row-wise Joyal fibrations. Since i∗1(−) = (−)•,0, it then preserves fibrations. �

In order to show p∗1 a i∗1 is a Quillen equivalence, we need to consider a special fibrant replacement
in CSs of p∗1(X), for X a quasi-category.

Recall that there is a functor
J : QCat→ Kan

from the full subcategory of sSet spanned by quasi-categories to the full subcategory of sSet spanned
by Kan complexes. It associates to each quasi-category its largest sub-Kan complex and takes Joyal
equivalences (resp. Joyal fibrations) between quasi-categories to Kan-Quillen equivalences (resp.
Kan fibrations) between Kan complexes (see [JT07], Prop 1.16). We then define a functor

(19) Γ: QCat→ s2Set, X 7→ ([m] 7→ J(X∆[m]))

Remark 1.33. Γ is the quasi-categorical generalization of the classifying diagram functor (see
Definition 1.8).

For X a quasi-category, we have
i∗1Γ(X) = Γ(X)•,0 ∼= X,

By adjointness, we have a map p∗1(X)→ Γ(X). This is the sought fibrant approximation to p∗1(X).

Proposition 1.34 ([JT07], Prop 4.10). Given a quasi-category X, Γ(X) is a complete Segal space
and the natural map p∗1(X)→ Γ(X) is a weak equivalence in CSs.

We are now ready to prove the

Theorem 1.35 ([JT07], Thm 4.11). There is a Quillen equivalence

(20) (sSet)Joyal CSs

p∗1

##
(sSet)Joyal CSs

dd

i∗1

⊥

Proof. By Lemma 1.32, (20) is a Quillen pair. Since every object in (sSet)Joyal is cofibrant, in order
to conclude we need to show that

(a) for every complete Segal space X, the counit map ε : p∗1i
∗
1X → X is a weak equivalence in

CSs;
(b) for every quasi-category K, the map K → i∗1Rp

∗
1K (induced by the unit map) is a Joyal

equivalence, where p∗1K → Rp∗1K is a fibrant replacement of p∗1K in CSs.

Since CSs is a left Bousfield localization of the horizontal model structure on s2Set (see Proposi-
tion 1.26), (a) follows if we can show that ε•,n : X•,0 → X•,n is a Joyal equivalence for all n ∈ N
((p∗1i

∗
1X)•,n = (cv(X•,0))•,n = X•,0). But ε•,n is just the map X•,0 → X•,n obtained from the unique

map [n] → [0], so it is a Joyal equivalence because a (complete) Segal space is vertically fibrant,
hence categorically constant by Proposition 2.18. Thus (a) holds. As for (b), a fibrant replacement
of p∗1K in CSs can be taken as Γ(K) by Proposition 1.34. In this case, Rp∗1K ∼= K and K → i∗1Rp

∗
1K

is (isomorphic to) the identity map. This concludes the proof. �

We are also now ready to show that the right adjunction in (18) is a Quillen equivalence.
12



Theorem 1.36 ([JT07], Thm 4.12). There is a Quillen equivalence

(21) CSs (sSet)Joyal

t!

##
CSs (sSet)Joyalbb

t!

⊥

Proof. It is enough to show that (t!, t!) as in (21) is a Quillen pair. For, the composite t!p∗1 : sSet→
sSet is isomorphic to the identity functor since, for all K ∈ sSet,

t!p
∗
1(K) ∼= t!(K�∆[0]) ∼= K × k!(∆[0]) ∼= K,

thanks to (15) and the fact that k!(∆[0]) ∼= ∆0. By adjointness, i∗1t
! is also isomorphic to the

identity functor. So, if (t!, t!) is a Quillen pair, then it is a Quillen equivalence because Quillen
equivalences satisfies the 2-out-of-3 property among Quillen pairs.
To show that (t!, t!) in (21) is a Quillen pair, it is enough to show that t! carries quasi-categories
to complete Segal spaces. If X is a quasi-category, then t!(X) is a Segal space, so we need to show
that the map u0\t!(X) is a trivial Kan fibration (see Proposition 1.21). But now, by (15), u0\t!(X)
is isomorphic to k!(Xu0) and this is a trivial Kan fibration thanks to Proposition 1.28 (since u0 is
a trivial cofibration). This completes the proof. �

2. Appendix: on bisimplicial sets

We collect here a lot of facts about bisimplicial sets and their homotopy theories.

2.1. Generalities. Let s2Set be the category of bisimplicial sets. It can be described as:

• the category sPrSh(∆) of functors ∆op → sSet;
• the category PrSh(∆×∆) of set-valued presheaves over the product category ∆×∆.

Given X ∈ s2Set and m,n ∈ N, we write

Xm := X([m]) and Xm,n := (Xm)(n).

The elements of the set Xm,n are the (m,n)−bisimplices of X. The simplicial sets

(22) Xm,• := Xm and X•,n : [m] 7→ Xm,n

are called the m-th column and the n-th row of X respectively .

There are embeddings

(23) ch : sSet −→ s2Set, K 7→ ([m] 7→ K)

(24) cv : sSet −→ s2Set, K 7→ (([m], [n]) 7→ Km)

They see a simplicial set as a bisimplicial set constant in horizontal degree and as a bisimplicial set
constant in vertical degree respectively.

Definition 2.1. A bisimplicial set X is called discrete if there is a simplicial set K such that
cv(K) ∼= X.

Convention 2.2. We will always consider a simplicial set K as a vertically constant bisimplicial
set and just write K instead of cv(K).

13



2.2. The vertical model category structure for s2Set. Since (sSet)Quillen is a simplicial, proper
and combinatorial model category, we can consider the injective model category structure on
(sSet)∆op

Quillen. We thus get the following

Theorem 2.3. The category s2Set of bisimplicial sets has a simplicial, proper and combinatorial
model category structure for which a map f : X → Y of bisimplicial set is:

• a weak equivalence if and only if it is a vertical weak equivalence. This means that, for all
m ∈ N, the induced map fm : Xm → Ym of vertical simplicial sets is a weak equivalence in
(sSet)Quillen;
• a cofibration if and only if it is a monomorphism;
• a fibration if and only if it has the right lifting property with respect to all maps that are

weak equivalences and cofibrations.

For X,Y ∈ s2Set, the simplicial mapping space Maps2Set(X,Y ) has n-simplices given by

(25) Maps2Set(X,Y )n = s2Set(X × ch(∆[n]), Y )

Definition 2.4. We call the model structure on bisimplicial sets of Theorem 2.3, the vertical model
structure on s2Set and denote it by (s2Set)v. We call the fibrations and the trivial fibrations of
(s2Set)v the vertical fibrations and the vertical trivial fibrations respectively.

Remark 2.5. A vertical (trivial) fibration f : X → Y of bisimplicial set is a column-wise (trivial)
Kan fibration, i.e. each map fm,• is a (trivial) fibration in (sSet)Quillen.

s2Set is cartesian closed: given X,Y ∈ s2Set, the internal hom Y X can be described as

(26) (Y X)m = Maps2Set(X ×∆[m], Y ),

for all m ∈ N (recall Convention 2.2). Notice that (Y X)0
∼= Maps2Set(X,Y ).

Proposition 2.6. The category of bisimplicial sets with the vertical model structure of Theorem 2.3
is a cartesian closed model category. This means that the terminal object in (s2Set)v is cofibrant
and, for every pair of cofibrations i : A � B and j : C � D and for every fibration p : X � Y in
(s2Set)v, the following equivalent properties hold:

(1) the pushout-product map

(A×D)
∐
A×C

(B × C)→ B ×D

is a cofibration. It is also a weak equivalence if either of i or j is;
(2) the pullback-exponential map

Y B → Y A ×XA XB

is a fibration. It is also a weak equivalence if either i or p is.

2.3. On vertical (trivial) fibrations. The simplex category ∆ is an elegant Reedy category (see
[BR11], Def 3.5) and the model structure (s2Set)v is also the Reedy model structure on (sSet)∆op

Quillen.
Practically speaking, this means we can rely on a nice(r) description of the vertical (trivial) fibra-
tions and get more information about the vertically fibrant objects.

Definition 2.7. Let K and L be simplicial sets. We define their box product (or external product)
to be the bisimplicial set K�L given by

(K�L)m,n := Km × Ln,

with the obvious action on maps.
14



The assignment (K,L) 7→ K�L extends to a functor

(27) (•)�(?) : sSet× sSet→ s2Set

Note that, for k, l ∈ N, ∆[k]�∆[l] ∼= (∆×∆)(−, ([k], [l])).

The box product bifunctor has right adjoints in both variables. Namely, let K be a simplicial set;
then:

• the functor K�(•) : sSet→ s2Set has a right adjoint

(28) K\(•) : s2Set→ sSet, X 7→ s2Set(K�∆[−], X).

Note that, for X ∈ s2Set and m ∈ N, ∆[m]\X ∼= Xm,•, the m−th column of X.

• the functor (•)�K : sSet→ s2Set has a right adjoint

(29) (•)/K : s2Set→ sSet, X 7→ s2Set(∆[−]�K,X).

Note that, for X ∈ s2Set and n ∈ N, X/∆[n] ∼= X•,n, the n−th row of X.

Thus, for K,L ∈ sSet and X ∈ s2Set, we have natural isomorphisms

(30) s2Set(K�L,X) ∼= s2Set(L,K\X) ∼= s2Set(A,X/B).

Remark 2.8. We actually get bifunctors

(•)\(?) : sSetop × s2Set→ sSet and (?)/(•) : s2Set× sSetop → sSet.

We can now run the Leibniz construction machinery (see [RV14]) to obtain a bifunctor

(•)�′(?) : sSet•→• × sSet•→• → s2Set
•→•

(u : K → L, v : S → T ) 7→ (K�T qK�S L�S → L�T )
(31)

where C•→• denotes the arrow category of a category C. For a fixed map u : K → L of simplicial
sets, we can similarly define functors

(32) 〈u\(•)〉 : s2Set
•→• → sSet•→•, (f : X → Y ) 7→

(
L\X → L\Y ×K\Y K\X

)
and

(33) 〈(•)/u〉 : s2Set
•→• → sSet•→•, (f : X → Y ) 7→

(
X/L→ Y/L×Y/K X/K

)
As above, we get adjoint pairs

u�
′
(•) a 〈u\(•)〉 and (•)�′u a 〈(•)/u〉 .

Remark 2.9. Let X ∈ s2Set, K ∈ sSet, g : Y → Z a map in s2Set and v : S → T a map in sSet. It
follows that

X/v ∼= 〈(X → 1)/v〉 and K\g ∼= 〈(∅ → K)\g〉
where ∅ and 1 denote the initial simplicial set and the terminal bisimplicial set respectively.

A somewhat standard adjointness argument proves the following

Lemma 2.10. For maps u, v ∈ sSet and f ∈ s2Set,

(u�
′
v) � f ⇐⇒ u� 〈f/v〉 ⇐⇒ v � 〈u\f〉

Let us denote by δn the boundary inclusion ∂∆[n] ⊆ ∆[n] and by hkn the horn inclusion Λk[n] ⊆ ∆[n].

Proposition 2.11. The saturations of the sets of maps

(34) δm�′hkn, m ≥ 0, k ≥ n ≤ 0

and

(35) δm�′δn, m, n ≥ 0

are given by the class of trivial cofibrations and of cofibrations in (s2Set)v respectively.
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The above Proposition together with Lemma 2.10 imply the following characterizations of vertical
(trivial) fibrations.

Proposition 2.12 ([JT07], Prop. 2.3). The following are equivalent, for a map f : X → Y of
bisimplicial set.

(i) f is a vertical trivial fibration;
(ii) f has the right lifting property with respect to the maps in (35);

(iii) 〈δm\f〉 is a trivial Kan fibration for every m ∈ N;
(iv) 〈u\f〉 is a trivial Kan fibration for every monomorphism u in sSet;
(v) 〈f/δn〉 is a trivial Kan fibration for every n ∈ N;

(vi) 〈f/v〉 is a trivial Kan fibration for every monomorphism v ∈ sSet.

Proposition 2.13 ([JT07], Prop. 2.5). The following are equivalent, for a map f : X → Y of
bisimplicial set.

(i) f is a vertical fibration;
(ii) f has the right lifting property with respect to the maps in (34);

(iii) 〈δm\f〉 is a Kan fibration for every m ∈ N;
(iv) 〈u\f〉 is a Kan fibration for every monomorphism u in sSet;
(v)

〈
f/hkn

〉
is a trivial Kan fibration for every n ∈ N;

(vi) 〈f/v〉 is a trivial Kan fibration for every trivial cofibration v ∈ (sSet)Quillen.

Lemma 2.14. If X is a vertically fibrant bisimplicial set, then each Xm is a Kan complex and the
map

(d0, d1) : X1 → X0 ×X0

is a Kan fibration. In particular, each of the maps d0, d1 : X1 → X0 are Kan fibrations.

2.4. The horizontal model category structure for s2Set. Maps of bisimplicial sets which give
row-wise weak equivalences in the Joyal model structure on sSet (see [Joy], Chapter 6) are the weak
equivalences for a model structure on s2Set.

Theorem 2.15 ([JT07], Prop 2.10). s2Set admits a model structure (s2Set)h for which a map
f : X → Y of bisimplicial sets is

• a weak equivalence if and only if it is a horizontal equivalence. This means that, for all
n ∈ N, the map f•,n : X•,n → Y•,n is a weak equivalence in (sSet)Joyal, i.e. a weak categorical
equivalence;
• a cofibration if and only if it is a monomorphism;
• a fibration if and only if it is a horizontal fibration, that is if 〈f/δn〉 is a Joyal fibration for

every n ∈ N (here δn : ∂∆[n] ↪→ ∆[n] is the boundary inclusion).

The model structure (s2Set)h is left proper and cartesian closed.

Definition 2.16. We call the model structure of Theorem 2.15 the horizontal model structure on
s2Set and call its fibrant objects horizontally fibrant bisimplicial sets.

There is some interplay between the vertical and the horizontal model structure on s2Set.

Definition 2.17. A bisimplicial set X is categorically constant if the canonical map

X•,n → X•,0,

induced by [n]→ [0], is a Joyal equivalence for all n ∈ N.

Proposition 2.18 ([JT07], Prop 2.8 & Prop 2.9).

(i) A vertically fibrant simplicial set is categorically constant.
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(ii) A map f : X → Y of vertically fibrant simplicial set is a horizontal equivalence if and only
if it induces a Joyal equivalence between the first rows.

Proof. Recall that, for every n ∈ N and every X ∈ s2Set, X/∆[n] is isomorphic to the n-th row of
X. If X is vertically fibrant, by Proposition 2.12 and Remark 2.9, the map

X/(∆[0] ↪→ ∆[n]) : X/∆[n]→ X/∆[0]

is a trivial Kan fibration, hence also a trivial fibration in the Joyal model structure (see Example 2.20
below). Since

(∆[n]→ ∆[0]) ◦ (∆[0] ↪→ ∆[n]) = id∆[0],

the same is true after applying X/(•), with X/ id∆[0] = idX/∆[0]. By 2-out-of-3, X/(∆[n] ↪→ ∆[0])
is a Joyal equivalence. This shows (i). The second claim is obtained by looking at the commutative
diagrams, for every n ∈ N,

X•,n Y•,n
f•,n

//

X•,0

X•,n
��

X•,0 Y•,0
f•,0 // Y•,0

Y•,n
��

where the vertical maps are canonically induced by ∆[n]→ ∆[0]. �

2.5. Left Bousfield Localizations.

Definition 2.19. Let M, M′ be model categories with the same underlying category. LetW, F and
C be the classes of weak equivalences, fibrations and cofibrations in M respectively. Similary, denote
byW ′, F ′ and C′ the classes of weak equivalences, fibrations and cofibrations in M′ respectively. We
say that the model category M′ is a left Bousfield localization of the model category M if W ⊆W ′
and C = C′.

Example 2.20. The Kan-Quillen model structure on simplicial sets is a left Bousfield localization
of the Joyal model structure on simplicial sets (see [JT07], Prop 1.15).

Keeping the same notations as in Definition 2.19, we need to have F ′ ⊆ F , whereas the trivial
fibrations must be the same in M and in M′. The difference between the fibrations and the weak
equivalences in M and in M′ is only witnessed by the non-fibrant objects of the latter, as explained
by the following

Proposition 2.21 ([JT07], Prop 7.21). Let M′ be a left Bousfield localization of a model category
M. Then a map between M′-fibrant objects is a fibration (resp. a weak equivalence) in M′ if and
only if it is a fibration (resp. a weak equivalence) in M.

There is a general machinery to produce left Bousfield localizations out of sets of maps in a model
category M. We describe it here in the specific case when M is (s2Set)v. The general theory can
be found in [Hir03], Chapter 3.

Given a set S of maps in s2Set, we say that a bisimplicial set Z is (vertically) S-local if it is vertically
fibrant and, for every map s : U → V in S, the induced map on function complexes

(36) Maps2Set(s, Z) : Maps2Set(V,Z)→ Maps2Set(U,Z)

is a Kan-Quillen equivalence of simplicial sets. Furthermore, we say that a map f : X → Y of
bisimplicial sets is a (vertical) S-local equivalence if, for all S−local bisimplicial set Z, the induced
map

(37) Maps2Set(f, Z) : Maps2Set(Y, Z)→ Maps2Set(X,Z)

is a Kan-Quillen equivalence of simplicial sets.
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Remark 2.22. All maps in S and all vertical equivalences are S-local equivalences.

Theorem 2.23. Let S be a set of maps of bisimplicial sets. Then there is a left proper, simplicial
and combinatorial model category, denoted by LS((s2Set)v), having s2Set as the underlying category.
A map f : X → Y of bisimplicial sets is:

• a weak equivalence in LS((s2Set)v) if and only if it is an S−local equivalence;
• a cofibration in LS((s2Set)v) if and only if it is a monomorphism;
• a fibration in LS((s2Set)v) if and only if it has the right lifting property with respect to all
S−local equivalences which are also cofibrations.

The above result is a special case of [Hir03], Thm 4.1.1.

We call the model category LS((s2Set)v) the left Bousfield localization of (s2Set)v at S. By Re-
mark 2.22, LS((s2Set)v) is indeed a left Bousfield localization of (s2Set)v (in the sense of Defini-
tion 2.19).

Proposition 2.24 ([Hir03], Prop. 3.4.1)). Let S be a set of maps of bisimplicial sets and let
LS(s2Setv) be the left Bousfield localization at S. Then:

• a bisimplicial set X is fibrant in LS((s2Set)v) if and only if it is an S−local object;
• a map f : X → Y of S−local objects is a weak equivalence (resp. a fibration) in LS(s2Setv)

if and only if it is a weak equivalence (resp. a fibration) in (s2Set)v;
• for X,Y ∈ s2Set,

MapLS((s2Set)v)(X,Y ) = Maps2Set(X,Y ).
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