
MODELS FOR (∞, 1)-CATEGORIES: PART 2

MARCO VERGURA

These are notes for a talk given by the author at a seminar on Higher Category Theory, organized
by D. Christensen and C. Kapulkin at the University of Western Ontario during Fall 2016 (http:
//www-home.math.uwo.ca/~kkapulki/seminars/higher-cats.html).

1. Simplicial Categories: the natural model

For every n ∈ N, an ∞-category should come equipped with (at least):

• a notion of n-morphism;
• a composition rule for n-morphisms;
• identity n-morphisms.

Simplicial categories (meaning simplicially enriched categories) are a natural way to accomplish
this. Indeed, if C is a simplicial category, one has, for every n ∈ N, (n+ 1)-morphisms given by the
n-simplices of the mapping spaces MapC(x, y) (for x, y ∈ Ob(C)) and C carries a composition law.
A simplicial category C is also a natural example of a homotopy theory (in the sense specified in the
Introduction) because it automatically comes with mapping spaces, whose set of path components
can be used to define the homotopy category of C.

If C is locally Kan, i.e. each mapping space MapC(x, y) is a Kan complex, then:

• all n−morphisms of C are (homotopically) invertible, for n ≥ 2;
• C is enriched over ∞-Gpd = (∞, 0)-Cat.

Thus, locally Kan simplicial categories ought to be models for (∞, 1)-categories. The work of
[Ber07] and [Lur09] shows that there is a model category structure on the category SCat of sim-
plicial categories for which the fibrant objects are exactly the locally Kan simplicial categories.
Furthermore, SCat with this model structure is Quillen equivalent to (sSet)Joyal.

1.1. The model category structure on SCat.

Definition 1.1. A simplicial category is a (sSet,×,∆[0])-enriched category.

A small simplicial category C comes with a set of objects Ob(C) and, for x, y ∈ Ob(C), with a
mapping space MapC(x, y). We also have a composition ◦ : MapC(z, y)×MapC(x, y)→ MapC(x, z)
and an identity map idx : x→ x, for every x, y, z ∈ Ob(C).

Small simplicial categories and simplicial functors between them form a category, denoted by SCat.

Proposition 1.2 ([Ber07], Prop 3.3). SCat is a complete and cocomplete category. Furthermore,
the object functor Ob: SCat→ Set commutes with (co)limits.

Recall the canonical model structure on Cat.

Theorem 1.3. There is a model category structure on the category Cat of small categories, called
the canonical model category structure on Cat, for which a functor f : C→ D is
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(1) a weak equivalence if and only if it is an equivalence of categories;
(2) a cofibration if and only if it is injective on objects;
(3) a fibration if and only if it is an isofibration, that is, for every object c ∈ C and every

isomorphism t : f(c)→ d in D, there is an isomorphism i : c→ c′ in C such that f(i) = t.

This result is folklore.1 Note that in this model category structure every small category is both
fibrant and cofibrant. There are adjunctions

(1) Cat SCat
zz

(−)0

Cat SCatD //Cat SCatcc

π0

⊥

⊥

Here:

• D sees every small category C as a discrete simplicial category. This functor is fully faithful,
so we will just write C in place of DC;
• for C ∈ SCat, C0 is the category having the same objects and the same maps of C;
• π0 assigns to C ∈ SCat its category of path-components.

Definition 1.4. The category of (path-)components of C ∈ SCat is the category π0(C) with

• Ob(π0(C)) := Ob(C);
• for every x, y ∈ Ob(π0(C)), π0(C)(x, y) := π0(MapC(x, y));
• composition inherited from the composition law of C, since π0 : sSet→ Set preserves binary

products.

Definition 1.5. A map t : x→ y in a simplicial category C is a homotopy equivalence if it becomes
an isomorphism in π0(C).

Definition 1.6. A simplicial functor f : C → D between simplicial categories is a Dwyer-Kan
equivalence (or a DK equivalence for short) if the following two conditions are satisfied:

(DK1) for every x, y ∈ Ob(C), fx,y : MapC(x, y)→ MapD(fx, fy) is a Kan-Quillen equivalence;
(DK2) the induced functor on categories of components π0(f) : π0(C) → π0(D) is essentially sur-

jective.

Remark 1.7. (DK1) says that f is homotopically fully faithful. In presence of (DK1), condition
(DK2) implies that π0(f) is an equivalence of categories.

Remark 1.8. If f : C → D is a functor between ordinary categories, then (DK1) says that f is
fully faithful, whereas (DK2) says that π0(f) ∼= f is essentially surjective.

Theorem 1.9 ([Ber07], Thm 1.1). There is a right proper and cofibrantly generated model category
structure on SCat for which a simplicial functor f : C→ D is:

• a weak equivalence if and only if it is a Dwyer-Kan equivalence;
• a fibration if and only if it satisfies the following two properties:

(F1) for every x, y ∈ C, fx,y : MapC(x, y)→ MapD(fx, fy) is a Kan fibration;
(F2) π0(f) : π0(C)→ π0(D) is an isofibration;

1 Still, the reader can look at https://ncatlab.org/nlab/show/canonical+model+structure+on+Cat for a de-
tailed account.

2

https://ncatlab.org/nlab/show/canonical+model+structure+on+Cat


• a cofibration if and only if it has the left lifting property with respect to all simplicial functors
wich are both weak equivalences and fibrations.

We call the model category structure of Theorem 1.9 above the Bergner model category structure
on SCat.

Remark 1.10. Since every functor f : C → D between ordinary categories satisfies (F1), (F2)
ensures that f is a fibration in Cat if and only if it is a fibration in SCat. Thus, the model category
structure induced on Cat ⊆ SCat by the adjoint pair (−)0 a D is the canonical one (see also
Remark 1.7).

Remark 1.11. A small simplicial category C is fibrant in the model category of Theorem 1.9 is
fibrant if and only if it is locally Kan in the sense that, for all x, y ∈ Ob(C), MapC(x, y) is a Kan
complex.

The proof of Theorem 1.9 is slightly technical, so we will omit it. Let us instead take a look at
what the generating cofibrations for SCat should be. There is a functor

(2) U : sSet→ SCat

where, for K ∈ sSet, UK is the simplicial category with Ob(UK) := {0, 1}, MapUK(0, 1) := K,
MapUK(0, 0) := MapUK(1, 1) := ∆[0] and MapUK(1, 0) := ∅.

Remark 1.12. U has the property that, for any simplicial category C and any simplicial set K,
the data of a simplicial functor UK → C amount exactly to the choice of objects x, y in C and of
a map K → MapC(x, y) in sSet.

Suppose now that f : C→ D is a trivial fibration in SCat. Then, for every x, y ∈ C and any n ∈ N,
every solid diagram below in sSet admits a dotted lift

∂∆[n] MapC(x, y)// MapC(x, y)

MapD(fx, fy)

fx,y

��

∂∆[n]

∆[n]
��

∆[n] MapD(fx, fy)//∆[n]

MapC(x, y)
88qqqqqq

because fx,y is a trivial Kan fibration. Equivalently, every solid diagram below in SCat admits a
dotted lift

U∂∆[n] C// C

D

f

��

U∂∆[n]

U∆[n]
��

U∆[n] D//U∆[n]

C<<y
y

y
y

y

so that f must have the right lifting property with respect to all maps U∂∆[n]→ U∆[n], for n ∈ N.
Since f is a DK equivalence for all objects d ∈ D there is a homotopy equivalence s : fx → d in
D, for some x ∈ C. By (F2), there is a homotopy equivalence t : x → x′ in C such that f(t) = s.
In particular, d = fx′, so f must be onto on objects. Equivalently, f must have the right lifting
property with respect to the unique map ∅ → 1, where ∅ and 1 denote the initial and the terminal
simplicial category respectively. We then get the following

Lemma 1.13 ([Ber07], Prop 3.2). A map f : C → D is a trivial fibration in SCat if and only if
it has the right lifting property with respect to ∅ → 1 and to all the maps U∂∆[n] → U∆[n], for
n ∈ N.

One can give a similar characterization for a set of generating acyclic cofibrations in SCat, though
this is slightly more convoluted. See [Ber07], Section 2.
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1.2. SCat as a presentation of (∞, 1)-categories. Recall the construction of the homotopy
coherent nerve functor that we saw in Alex’s talk. There is a cosimplicial object

C : ∆→ SCat

such that, for n ∈ N, Cn := C([n]) is the simplicial category with:

• Ob(Cn) = {0, · · · , n};
• for every 0 ≤ i, j ≤ n, if i > j, then MapCn(i, j) = ∅, otherwise MapCn(i, j) is the nerve of

the poset

Pij := {I ⊆ {0, . . . , n} : i, j ∈ I and ∀l ∈ I (i ≤ l ≤ j)};

• when i ≤ k ≤ j in {0, . . . , n}, the composition law on Cn is given by

Pi,k × Pk,j → Pi,j , (I1, I2) 7→ I1 ∪ I2.

We then get an induced adjunction

(3)

∆ sSet
y //∆

SCat

C

%%

sSet

SCat

C=Lany(C)

  

sSet

SCat

``

SCat(C(−),•)=:Ncoha

∼=

The right adjoint Ncoh = SCat(C(−), •) is the homotopy coherent nerve functor, whereas the left
adjoint C : sSet → SCat is the categorification (or rigidification) functor. Following [Lur09] and
[DS11], the goal is now to show C a Ncoh is a Quillen equivalence for the Joyal model category
structure on sSet.

For every C ∈ SCat, let us denote by

ε = εC : CNcohC→ C

the counit map for the adjunction (3). There is a crucial property of this counit map that we saw
in Aji’s talk:

Theorem 1.14. For every fibrant C ∈ SCat, the counit map

εC : CNcohC→ C

is a Dwyer-Kan equivalence of simplicial categories.
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Proof. [Lur09], Thm 2.2.0.1 implies that εC satisfies (DK1). (DK2) then follows because ε is the
identity on objects:

Ob(CNcohC) ∼= Ob
(
colim∆[n]→NcohC C(∆[n])

)
∼= colim∆[n]→NcohC Ob(C(∆[n]))
∼= colim∆[n]→NcohC [n] = colim∆[n]→NcohC(∆[n])0

∼=
(
colim∆[n]→NcohC ∆[n]

)
0

∼= (NcohC)0

∼= Ob(C).

�

Alex showed that, if C is a locally Kan simplicial category, then Ncoh(C) is a quasi-category. The
same proof he gave also shows the following

Proposition 1.15 ([Lur09], Prop 1.1.5.10 & Rmk 1.1.5.11). The homotopy coherent nerve

Ncoh : SCat→ sSet

sends every fibration f : C→ D in SCat to a Joyal fibration.

Proposition 1.16 ([DS11], Thm 8.1). The following are equivalent for a map g : K → L of
simplicial sets:

(1) g is an equivalence in (sSet)Joyal;
(2) C(g) is a Dwyer-Kan equivalence of simplicial categories.

We are now ready to prove

Theorem 1.17. The adjoint pair

sSet SCat

C

##
sSet SCatbb

Ncoh

⊥

is a Quillen equivalence between the Joyal model category structure on simplicial sets and the
Bergner model category structure on SCat.

Proof. Let us first show that C a Ncoh is Quillen pair. By Proposition 1.15, the right adjoint Ncoh

sends fibrations to fibrations. Thus, it suffices to show that, for every n ∈ N, C∂∆[n]→ C∆[n] is a
cofibration in SCat. If n = 0, C∂∆[n]→ C∆[n] is isomorphic to the map ∅ → 1, which is one of the
generating cofibrations in SCat. For the case n > 0, if ∆[−1] := ∅, there is a coequalizer diagram
in sSet ∐

0≤i<j≤n
∆[n− 2]

∐
0≤i<j≤n

∆[n− 1]
//∐

0≤i<j≤n
∆[n− 2]

∐
0≤i<j≤n

∆[n− 1]//
∐

0≤i<j≤n
∆[n− 1] ∂∆[n]//

We then obtain a coequalizer diagram in SCat∐
0≤i<j≤n

C∆[n− 2]
∐

0≤i<j≤n
C∆[n− 1]

//∐
0≤i<j≤n

C∆[n− 2]
∐

0≤i<j≤n
C∆[n− 1]//

∐
0≤i<j≤n

C∆[n− 1] C∂∆[n]//

By the way colimits are computed in SCat, we get that:

• Ob(C∂∆[n]) = Ob(C∆[n]) = [n];
• for every 0 ≤ i ≤ j ≤ n, MapC∂∆[n](i, j) = Map∆[n](i, j), unless i = 0 and j = n, in which

case MapC∂∆[n](0, n) is isomorphic to the boundary of the cube ∆[1]n−1 ∼= MapC∆[n](0, n).
5



It follows that there is a pushout diagram in SCat:

U∆[1]n−1 C∆[n]//

U∂(∆[1]n−1)

U∆[1]n−1
��

U∂(∆[1]n−1) C∂∆[n]// C∂∆[n]

C∆[n]
��

where U is the functor (2) and the top map picks the objects 0, n of C∂∆[n] and the isomorphism
∂(∆[1]n−1) ∼= MapC∂∆[n](0, n). Since U∂(∆[1]n−1)→ U∆[1]n−1 is in the saturation of the generat-
ing cofibration of SCat (see Lemma 1.13), so is C∂∆[n]→ C∆[n].
For every K ∈ sSet and every fibrant C ∈ SCat, if f : K → NcohC, its adjoint f ] : CK → C is the
composite εC ◦C(f) and εC is a DK equivalence by Theorem 1.14. By Proposition 1.16, f is a Joyal
equivalence if and only if C(f) is a DK equivalence. Thus, C a Ncoh is a Quillen equivalence. �

2. Relative categories: the minimal model

In a model category M, weak equivalences are often enough to describe homotopical information
and constructions, but cofibrations and fibrations are useful in practice. For example:

(1) the homotopy category Ho(M) = M[W−1] only depends upon the underlying category and
the weak equivalences of M, but cofibrations and fibrations allow a better description of its
hom-sets;

(2) as shown in [DHKS04], homotopy (co)limits can be defined in an essentially unique way
using just the weak equivalences in M. However, the most common models of homotopy
(co)limits (via the Bousfield-Kan formula or the derived functor approach) use the rest of
the structure of M as well.

The idea that specifying weak equivalences should suffice to determine a homotopy theory is made
concrete by relative categories. A relative category (C,W) is a minimal presentation for the cat-
egorical localization C[W−1], but the hammock localization functor also provides mapping spaces
for it ([DK80]). Moreover, the category RelCat of small relative categories admits a model category
structure which is Quillen equivalent to the complete Segal space model category structure on s2Set
([BK12]). Hence:

(1) RelCat presents the homotopy theory of (∞, 1)−categories.
(2) Being a relative category (with weak equivalences given by the ones coming from the model

category structure), RelCat itself is a homotopy theory for (the homotopy theory of) (∞, 1)-
categories.

Thus, relative categories provide a natural internal model2 for the homotopy theory of (∞, 1)-
categories.

2.1. Generalities and Hammock Localization. Let us start by recalling what we mean by a
relative category.

Definition 2.1.

(1) A relative category is a pair (C,W), where C is a category and W is a wide subcategory of
C3. Maps in W are called weak equivalences of (C,W).

(2) A relative functor from the relative category (C,W) to the relative category (C′,W ′) is a
functor f : C→ C′ such that f(W) ⊆ W ′.

2 Up to size issues.
3 This means that W is a subcategory of C containing all the objects of C.

6



Small relative categories and relative functors form a category, denoted by RelCat. There are
adjoints

(4) Cat RelCat
zz

min

Cat RelCatund //Cat RelCatcc

max

⊥

⊥

Here, for (C,W) ∈ RelCat and C ∈ Cat:

• und(C,W) := C, the underlying category to (C,W);
• min(C) := (C,Ob(C)), the minimal relative category associated to C;
• max(C) := (C,C), the maximal relative category associated to C.

Definition 2.2. The homotopy category of (C,W) ∈ RelCat is the category Ho(C,W) given by the
localization C[W−1].

Remark 2.3. For C ∈ Cat, Ho(min(C)) ∼= C, whereas Ho(max(C)) ∼= 1, the terminal category.

To each relative category (C,W), we can associate a whole simplicial category, thus providing
mapping spaces for (C,W).

Proposition 2.4 ([DK80], Prop 3.1 & Prop 3.3). There is a functor

(5) LH : RelCat→ SCat

called the hammock localization functor having the following properties, for every small relative
category (C,W):

(1) there is an equivalence of categories

π0(LH(C,W)) ' Ho(C,W),

where π0(LH(C,W)) is the category of components of LH(C,W) (see Definition 1.4);
(2) if f : X → Y is a map in C, then, for all Z ∈ Ob(C), there are induced maps

f∗ : MapLH(C,W)(Z,X)→ MapLH(C,W)(Z, Y )

and
f∗ : MapLH(C,W)(Y,Z)→ MapLH(C,W)(X,Z),

which are Kan-Quillen equivalences if f is in W.

An explicit construction of LH was given in Alex’s talk and can be found in [DK80], Section 2.1.

2.2. The induced model structure from CSs. Consider the functor

K : ∆×∆→ RelCat, ([m], [n]) 7→ min([m])×max([n]).

Extending it along the Yoneda embedding y : ∆×∆→ s2Set gives an adjoint pair

(6) s2Set RelCat

K=Lany(K)

''
s2Set RelCatee

NRzk

⊥

where NRzk is the classifying diagram functor. Thus, the (m,n)-bisimplices of NRzk(C,W) can be
described as the relative functors

min([m])×max([n])→ (C,W).
7



Analogously to what happens for the Thomason model structure on Cat (see [Tho80]), it turns out
that, in order to transfer the complete Segal space model structure to a Quillen equivalent one on
RelCat, one needs to modify the above adjunction. For this purpose, we introduce some operations
on relative posets, i.e. relative categories (C,W) in which C is a poset.

Definition 2.5. Let (P,W) be a relative poset.

(1) The terminal subdivision of (P,W) is the relative poset ξt(P,W) defined as follows:
• the underlying poset of ξt(P,W) has elements given by the poset monomorphisms

[n] → P (for every n ∈ N) and, for two such monomorphisms x1 : [n1] → P and
x2 : [n2]→ P,

x1 ≤ x2 ⇐⇒ ∃ s : [n1]→ [n2] (x2s = x1)4;

• x1 ≤ x2 is a weak equivalence in ξt(P,W) if and only if x1(n1) ≤ x2(n2) is a weak
equivalence in (P,W).

(2) The initial subdivision of (P,W) is the relative poset ξi(P,W) defined as follows:
• the underlying poset of ξi(P,W) is the opposite of the underlying poset of ξt(P,W);
• x2 ≤ x1 is a weak equivalence in ξi(P,W) if and only if x2(0) ≤ x1(0) is a weak

equivalence in (P,W).

Remark 2.6. The underlying poset of ξt(P,W) can also be described as having elements given
by (n + 1)-tuples (x0, . . . , xn) of elements of P such that x0 < x1 < · · · < xn, with (x0, . . . , xn) ≤
(y0, . . . , ym) if and only if n ≤ m and every xi is (exactly) one of the y′js.

Given a relative poset (P,W), there are relative functors

(7) πt : ξt(P,W)→ (P,W) and πi : ξi(P,W)→ (P,W)

given by evaluating an element x : [n]→ P at n and at 0 respectively.

Let RelPos be the full subcategory of RelCat spanned by the relative posets. Then the terminal and
the initial subdivision extend to endofunctors

ξt, ξi : RelPos→ RelPos

For a map f : (P,W)→ (P′,W ′) of relative posets and a poset monomorphism x : [n]→ P, ξtf(x) =
ξif(x) is the monomorphism in the epi-mono factorization of f ◦ x. The projection functors πt, πi
become natural transformations

πt : ξt → IdRelPos and πi : ξi → IdRelPos

Definition 2.7. The two-fold subdivision functor is

ξ := ξtξi : RelPos→ RelPos

Set also

(8) π := πi ◦ (πt)ξi : ξ → IdRelPos

We use ξ to modify the adjunction (6). Consider the functor

Kξ : ∆×∆→ ∆, ([m], [n]) 7→ ξ(min([m])×max([n]))

We obtain the adjoint pair

(9) s2Set RelCat

Kξ=Lany(Kξ)

''
s2Set RelCatee

Nξ

⊥

4 Note that if such an s exists, it must be unique, because x2 is a monomorphism.
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For (C,W) ∈ RelCat and m,n ∈ N, we have

Nξ(C,W)m,n = RelCat(ξ(min([m])×min([n])), (C,W)).

We can now use this adjunction to transfer the model structure CSs to RelCat.

Theorem 2.8 ([BK12], Thm 6.1). There is a cofibrantly generated, left proper model category
structure on RelCat in which a relative functor f : (C,W)→ (C′,W ′) is a weak equivalence (resp. a
fibration) if and only if Nξ(f) is a weak equivalence (resp. a fibration) in CSs. Furthermore, every
cofibrant object is a relative poset.

So, in this model structure, every relative category (say, (Kan,WKQ) with WKQ being the class of
Kan-Quillen equivalences) is weakly equivalent to a poset!

We call the model category structure of Theorem 2.8 the Barwick-Kan model structure on RelCat.

From Theorem 2.8 it is immediate that Kξ a Nξ is a Quillen pair CSs→ RelCat.

Theorem 2.9 ([BK12], Prop 10.3 & Thm 6.1). There is a Quillen equivalence

CSs RelCat

Kξ

&&
CSs RelCatee

Nξ

⊥

where RelCat has the Barwick-Kan model structure.

Therefore, the Barwick-Kan model structure turns RelCat into a presentation of (∞, 1)-categories.

The functor Nξ is needed to detect fibrations in RelCat. However, there are other ways to decide
whether a relative functor is a weak equivalence. The natural transformation π : ξ → IdRelPos of (8)
gives rise to a natural transformation

(10) π∗ : NRzk → Nξ

Proposition 2.10 ([BK12], Lemma 5.4). The natural transformation π∗ of (10) is a pointwise
vertical weak equivalence of bisimplicial set.

The above Proposition gives the equivalence between the first two assertions in the following

Theorem 2.11 ([BK10], Thm 1.4). The following are equivalent, for a map f in RelCat.

(1) f is a weak equivalence in the Barwick-Kan model structure.
(2) NRzk(f) is a weak equivalence in CSs.
(3) LH(f) is a Dwyer-Kan equivlaence of simplicial categories.

We conclude by stating the following result which ensures that fibrant objects in the Barwick-Kan
model structure include many of the better-behaved presentations of homotopy theory.

Theorem 2.12 ([Mei15], Thm 4.12). The underlying relative category of every fibration category
is a fibrant object in the Barwick-Kan model structure in RelCat.

Conclusion

In these two talks we surveyed various presentations of (∞, 1)−categories as model categories and
we exhibited Quillen equivalences among some of those. By taking the direction of a Quillen
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equivalence to be given by the right adjoint, we can picture these equivalences as follows

(11) (sSet)Joyal CSs

t!

##
(sSet)Joyal CSs

dd

i∗1

SCat (sSet)Joyal

Ncoh

$$
RelCatCSs

Nξ

{{

Since right Quillen functors compose (as well as Quillen equivalences), we managed to find a functor
R : HMod → QCat as stated in the Introduction, for HMod = CSs, SCat and RelCat. If we do not
insist in only having (right) Quillen functors in our picture, we can expand (11) as follows

(12)

(sSet)Joyal CSs

t!

##
(sSet)Joyal CSs

dd

i∗1

SCat (sSet)Joyal

Ncoh

$$
RelCatCSs

Nξ

{{
RelCatCSs

NRzk

bb RelCatSCat

LH

��

In this case, all the displayed functors are relative functors between relative categories. In fact,they
are DK-equivalences of relative categories5, in the sense that they are relative functors F : (C,W)→
(C′,W ′) which induce equivalences of homotopy categories and Kan-Quillen equivalences between
the mapping spaces in the hammock localizations of C and C′. Thus, all these functors (up to taking
derived functors for the right Quillen maps) provide a suitable notion of “equivalence between
homotopy theories”, again in the spirit of the Introduction.

5 Up to size issues.
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