Why some cubical models don't present spaces

Evan Cavallo University of Gothenburg

> joint work with Christian Sattler

"HoTT is a constructive language for homotopy theory"

- \otimes *for homotopy theory:*
 - ⊘ interpret in simplical sets (Kapulkin–Lumsdaine '21)
 - ⊘ interpret in any ∞-topos (Shulman '19)
- \otimes constructive:
 - \oslash constructive interpretations:
 - ⊙ in cubical settings (references to come)
 - ⊙ in simplicial sets? work in progress (Gambino–Henry '19, van den Berg–Faber '22)
 - ⊘ homotopy canonicity (Kapulkin–Sattler '??, Bocquët '23)

- ⊗ Classically, have "standard homotopy theory"
 - \oslash Topological spaces, simplicial sets, *etc.* are equivalent, present a well-behaved $(\infty, 1)$ -category of spaces
- ⊗ Constructive picture more nuanced, still developing (Shulman '21, "The derivator of setoids")
- ⊗ Starter question:

which *constructive* interpretations *classically* present spaces?

which *constructive* interpretations *classically* present spaces?

- ⊗ Equivariant fibrations in cartesian cubical sets (Awodey-C-Coquand-Riehl-Sattler '??)
- ⊗ Cartesian cubical sets + one connection (C–Sattler '22)
- ⊗ Constructive simplicial set ~interpretations

this talk: which constructive interpretations classically *do not* present spaces?

many cubical interpretations!

- \otimes ideas sketched in Sattler's 2018 talk "Do cubical models of type theory also model homotopy types?"
- ⊗ portion in Coquand's 2018 note "Trivial cofibration-fibration factorization with one application"
 - @ groups.google.com/g/homotopytypetheory/c/RQkLWZ_83kQ
- \otimes full writeup from Christian and I on the way \odot

why care?

⊗ motivates, *e.g.* "equivariance" fix in cartesian cubes

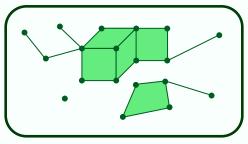
- \otimes gives some hint towards characterizing these models?
- \otimes some general tools for comparing with spaces

Table of contents

- (1) Interpreting HoTT in cubical sets
- (2) Invariants of model categories
- (3) Counterexamples

Interpreting HoTT in cubical sets

 \otimes cubical sets = presheaves on a *cube category* \square



A CUBICAL SET

- \otimes choice of \square determines structure inherent in a cube

 - \oslash for every edge, is there an edge in the opposite direction?

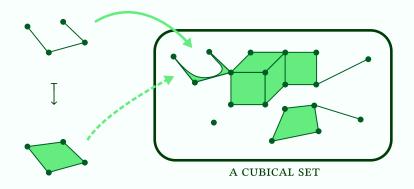
- ⊗ starting point is Daniel Kan '55: homotopy theory with the *minimal cube category*
 - \oslash objects look like $I \otimes \cdots \otimes I$
 - ⊘ every *n*-cube has two faces along each axis

$$\mathbf{I} \otimes \delta_0 \otimes \mathbf{I} : \mathbf{I} \otimes \mathbf{I} \to \mathbf{I} \otimes \mathbf{I} \otimes \mathbf{I}$$

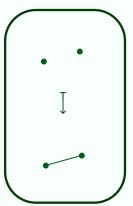
$$\mathbf{I} \otimes \mathbf{I} \otimes \delta_1 : \mathbf{I} \otimes \mathbf{I} \to \mathbf{I} \otimes \mathbf{I} \otimes \mathbf{I}$$

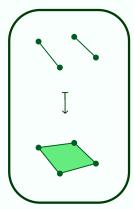
- \oslash every n-cube can be seen as a degenerate (n+1)-cube $\mathbb{I} \otimes \varepsilon : \mathbb{I} \otimes \mathbb{I} \to \mathbb{I}$
- ∅ and some equations, and that's it.
- \otimes the cubical sets that encode spaces are those with *box filling*.

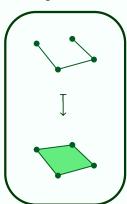
⊗ *box filling*: every "open box" is filled by a cube



- \otimes how are open boxes formed?
 - (1) start from the boundary of a cube:
- (2) stretch everything in a new direction:
- (3) add a "cap" on the top or bottom:

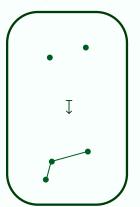


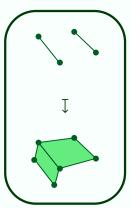


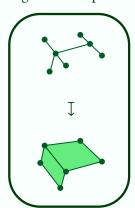


how are open boxes formed? — equivalent take 2

- (1) start from a (2) stretch everything subobject of a □-set in a new direction:
- (3) add a "cap" at a "generalized point":







Interpreting HoTT in cubical sets

- \otimes To model HoTT constructively, want more structured \Box
- ⊗ Bezem–Coquand–Huber '13, '19: in *affine* cubical sets

$$\mathbf{I} \otimes \mathbf{I} \xrightarrow{\cong} \mathbf{I} \otimes \mathbf{I}$$

⊗ Cohen–Coquand–Huber–Mörtberg '15: in *De Morgan cubical sets*

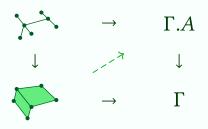
$$\otimes \text{ is } \times \qquad \qquad I \otimes I \stackrel{\vee, \, \wedge}{\longrightarrow} I \qquad \quad (\ I \stackrel{\neg}{\underset{\cong}{\longrightarrow}} I \)$$

Angiuli-Favonia-Harper '18,
 Angiuli-Brunerie-Coquand-Harper-Favonia-Licata '21 in cartesian cubical sets

$$\otimes$$
 is \times

Interpreting HoTT in cubical sets

⊗ In all cases, intepret types Γ ⊢ A by maps with box filling, i.e. right lifting against box inclusions



 \otimes Is it still homotopically reasonable for these \Box 's?

Model structures on cubical sets

⊗ Do still get *Quillen model structures* on □-sets (constructively!): (Sattler '17, C-Mörtberg-Swan '20, Awodey '23)

cofibrations (
$$\rightarrow$$
)
(decidable) monosfibrations (\rightarrow)
right lift against box inclusionstrivial cofibrations ($\stackrel{\sim}{\rightarrow}$)
left lift against \rightarrow
box inclusionstrivial fibrations ($\stackrel{\sim}{\rightarrow}$)
right lift against \rightarrow
right lift against \rightarrow

weak equivalences (
$$\stackrel{\sim}{\rightarrow}$$
) = $\stackrel{\sim}{\rightarrow} \circ \stackrel{\sim}{\rightarrow}$

⊗ So, at least well-defined notion of homotopy

Model structures on cubical sets

- ⊗ Can compare model categories up to *Quillen equivalence*, e.g. to the standards on simplicial sets / topological spaces
- ⊗ Also have *test model structures* on □-sets to compare directly
 - ⊘ Cisinski '06: any test category admits a model structure
 - \odot with \longrightarrow = \Longrightarrow
 - ⊙ Quillen equivalent to simplicial sets
 - ⊘ Buchholtz-Morehouse '17: our □'s are test categories
 - ⊘ Doesn't give very explicit def'n of →–not so easy to compare

What could go wrong?

- ⊗ Intuition: any space should be an h-colimit of contractible things
- ⊗ Cubes are made of just one point:

$$1 \stackrel{\widetilde{}}{\blacktriangleright} \stackrel{\widetilde{}}{\delta_0} \rightarrow I \stackrel{\widetilde{}}{\blacktriangleright} \stackrel{\widetilde{}}{I \otimes \delta_0} \rightarrow I^2 \stackrel{\widetilde{}}{\blacktriangleright} \stackrel{\widetilde{}}{I^2 \otimes \delta_0} \rightarrow I^3 \stackrel{\widetilde{}}{\blacktriangleright} \stackrel{\widetilde{}}{\longleftarrow} \rightarrow \cdots$$

 \otimes More structure on $\square \Longrightarrow$ more potentially exotic objects

$$\mathbf{I}^{2}/\sigma = \operatorname{colim}\left\{\begin{array}{l} \mathbf{I}^{2} \nearrow \sigma \right\} \\ \operatorname{colim}\left\{\begin{array}{l} \mathbf{I}^{2} \\ \searrow \\ i,j \mapsto i,i \vee j \end{array}\right\} \\ \operatorname{Im}\left\{\begin{array}{l} \mathbf{I}^{3} \\ \operatorname{Im}\left\{\begin{array}{l} \mathbf{I}^{3} \\ \longrightarrow i,j \mapsto i,i \wedge j,j \wedge k,i \vee k \end{array}\right\} \end{array}\right\}$$

What could go wrong?

$$I^2/\sigma = \operatorname{colim} \left\{ I^2 \supset \sigma \right\} \qquad I/\neg = \operatorname{colim} \left\{ I \supset \neg \right\}$$

- ⊗ Topologically, look like they should be contractible
- ⊗ Sometimes we know they are:

$$\mathbf{I}^{2}/\sigma \times \mathbf{I} \to \mathbf{I}^{2}/\sigma$$
$$(i, j), t \mapsto (i \lor t, j \lor t)$$

- ⊗ What does the test model structure say?
 - \oslash In test cartesian \Box -sets, I^2/σ is contractible
 - \oslash (Buchholtz) In test De Morgan \square -sets, I/\neg is $K(\mathbb{Z}_2, 1)$
 - \oslash (Sattler) In test affine \square -sets, I^2/σ is $\Sigma K(\mathbb{Z}_2, 1)$

Table of contents

- (1) Interpreting HoTT in cubical sets
- (2) Invariants of model categories
- (3) Counterexamples

Invariants of model categories

- ⊗ Not enough to show particular realization isn't an equivalence, nor to show that test model structure is different
- ⊗ Seek property invariant under Quillen equivalence that is characteristic of spaces and fails in some □-sets

Def'n: A fibration between fibrant objects f is *fiberwise trivial* if its pullbacks along trivially fibrant objects are trivial:

$$\begin{array}{ccc} Y_{X} & --- & Y \\ \downarrow & & \downarrow f & \text{for all } K \xrightarrow{\sim} 1, x \colon K \to X \\ K & \xrightarrow{X} & X \end{array}$$

Def'n: Say **FTFT** holds in a model category when all fiberwise trivial fibrations btw fibrant objects are trivial fibrations

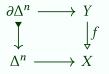
Def'n: Say **FTFT** holds in a model category when all fiberwise trivial fibrations btw fibrant objects are trivial fibrations

Write **FTFT**₋₁ for property restricted to *propositional* fibrations $(f: Y \longrightarrow X \text{ such that } \Delta_Y \colon Y \xrightarrow{\sim} Y \times_X Y)$

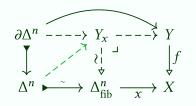
Th'm: These are invariant under Quillen equivalence

- \otimes No surprise for experts; in $(\infty, 1)$ -cat language they say: "if every pullback of (mono) f along $x \colon 1 \to X$ is iso, then f is iso"
- ⊗ In paper we also look at excluded middle; skipping today

 \otimes In simplicial sets, let f be fiberwise trivial:



 \otimes In simplicial sets, let f be fiberwise trivial:



- \otimes So spaces have **FTFT**
- ⊗ Even holds constructively in constructive Kan–Quillen model structure of Henry '19, Gambino–Sattler–Szumiło '22

⊗ Intuition by looking at discrete model categories

$$\Rightarrow$$
 = \mapsto = all maps $\stackrel{\sim}{\rightarrow}$ = isomorphisms

Th'm: The following are equivalent in a discrete model cat \mathbb{C} :

- 1. FTFT
- 2. **FTFT**₋₁
- 3. $\mathbb{C}(1,-)$ is conservative ($\mathbb{C}(1,f)$ iso $\Longrightarrow f$ iso)
- \otimes A 1-topos where this holds and $0 \not\cong 1$ is called *well-pointed*
- \otimes Any well-pointed Grothendieck topos is **Set**

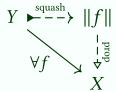
- ⊗ Example: *n*-truncated simplicial sets have **FTFT**
- ⊗ Exotic example: parameterized spectra \int_X Spectra_X (which present a Grothendieck ∞-topos) has FTFT
- Exotic example: Set × Spectra has FTFT₋₁ but not FTFT (don't know an ∞-topos example)

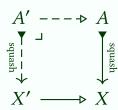
With propositional truncation

Def'n: Say a cofibration is *squash* if it left lifts against propositional fibrations

Def'n: Say a model category with pullback-stable cofibrations has a *stable propositional truncation* when

- 1. maps with fibrant codomain have (squash, prop) factorizations
- 2. squash maps with fibrant codomain preserved by pullback along fibrations



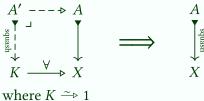


⊗ In discrete model categories: pullback-stable images

With propositional truncation

Th'm: The following are equivalent in a model cat with stable propositional truncations:

- 1. **FTFT**₋₁
- 2. every *fiberwise squash cofibration* with fibrant codomain is squash:



We'll use this characterization

Table of contents

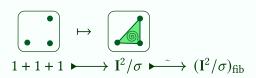
- (1) Interpreting HoTT in cubical sets
- (2) Invariants of model categories
- (3) Counterexamples

Outline

- \otimes For concreteness, look at cartesian cubes (\otimes is \times)
- ⊗ Candidate pathological object:

$$I^2/\sigma = \operatorname{colim}\left\{ I^2 \rightleftharpoons \sigma \right\}$$

⊗ We'll show that



is fiberwise squash but not squash

 \otimes Intuition: fiberwise squash maps only can't add points, but squash maps also can't add I^2/σ 's

First half

Lemma: Given

$$A \longrightarrow B \stackrel{\sim}{\longrightarrow} B_{\text{fib}}$$

if $A \mapsto B$ surjective on points then composite is fiberwise squash.

Proof: Depends on details—any point in B_{fib} connects to one in B

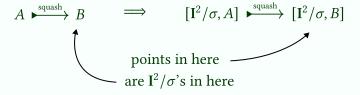
Instantiate with our candidate map:

Second half

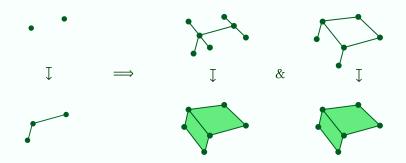
⊗ Idea: squashing doesn't add new isolated points

Lemma: If $A \mapsto B \mapsto B \sqcup C$ is squash, then *C* is empty.

- \otimes Want to see squashing *also* doesn't add new "isolated" I^2/σ 's
- \otimes **Strategy:** show $[I^2/\sigma, -]$ preserves squash cofibrations



- \otimes **To show:** [I²/ σ , –] preserves squash cofibrations
- ⊗ Use concrete description of squashing in □-sets: generated by
 - \oslash open box inclusions $(A \times I) \cup B \longrightarrow B \times I$
 - \oslash boundary inclusions $(A \times I) \cup (B \sqcup B) \mapsto B \times I$



- \otimes **To show:** [I²/ σ , –] preserves squash cofibrations
- \otimes Use concrete description of squashing in \square -sets: generated by
 - \oslash open box inclusions $(A \times I) \cup B \longrightarrow B \times I$
 - \oslash boundary inclusions $(A \times I) \cup (B \sqcup B) \mapsto B \times I$
- \otimes Small object argument: every squash cofibration \longrightarrow is
 - ⊘ a retract of...
 - \oslash a transfinite composite of...

🛕 classical!

- ⊘ pushouts of...

[&]quot;squash cofibration = composite of steps where we attach fillers"

- \otimes Small object argument: every squash cofibration \mapsto is
 - \oslash a retract of... preserved by $[I^2/\sigma, -]$ (and any functor)
 - a transfinite composite of... − preserved by [I²/σ, −]
 [I², −] preserves all colimits (tiny object)
 compact objects (A s.t. [A, −] preserves colims like these)
 closed under finite colimits
 - \oslash pushouts of... preserved by $[I^2/\sigma, -]!$ A such that [A, -] preserves pushouts along \rightarrowtail closed under finite monoid colimits
 - \oslash generating squash cofibrations. reduces to checking [I²/ σ , I] contractible

 \oslash generating squash cofibrations.

reduces to checking $[I^2/\sigma, I]$ contractible

$$[\mathbf{I}^{2}/\sigma, \mathbf{I}]:$$

$$(i, j) \mapsto 0$$

$$(i, j) \mapsto 1$$

$$(A \times \mathbf{I}) \cup B$$

$$(i, j) \mapsto i$$

$$(A \times \mathbf{I}) \cup B$$

$$\mathbf{I}^{2}/\sigma \longrightarrow B \times \mathbf{I}$$
must be constant in this coordinate

Putting it all together

⊗ We know that

is fiberwise squash

 \otimes To show it's not squash, now suffices to show

$$[I^2/\sigma, 1+1+1] \longrightarrow [I^2/\sigma, (I^2/\sigma)_{fib}]$$

is not squash

Putting it all together

To show it's not squash, now suffices to show

$$[I^2/\sigma, 1+1+1] \longrightarrow [I^2/\sigma, (I^2/\sigma)_{fib}] \sim [I^2/\sigma, I^2/\sigma]_{fib}$$

is not squash

$$\otimes$$
 maps $I^2/\sigma \rightarrow 1+1+1$ are constants

$$\otimes \text{ maps } \mathbf{I}^2/\sigma \to \mathbf{I}^2/\sigma \text{ are }$$

$$(i,j)\mapsto (0,0)$$

$$(i,j) \mapsto (0,0)$$
 $(i,j) \mapsto (i,j)$

$$\otimes$$
 $(i,j) \mapsto (i,0)$

Putting it all together

 \otimes To show it's not squash, now suffices to show

$$[I^2/\sigma, 1+1+1] \hspace{0.2cm} \longmapsto \hspace{0.2cm} [I^2/\sigma, (I^2/\sigma)_{\rm fib}] \hspace{0.2cm} \sim \hspace{0.2cm} [I^2/\sigma, I^2/\sigma]_{\rm fib}$$

is not squash

$$\otimes$$
 maps $I^2/\sigma \rightarrow 1+1+1$ are constants

$$\otimes$$
 maps $\mathbf{I}^n \times \mathbf{I}^2/\sigma \to \mathbf{I}^2/\sigma$ are

constants: identity: that's it.

$$\vec{k}, (i, j) \mapsto f(\vec{k})$$
 $\vec{k}, (i, j) \mapsto (i, j)$

$$[I^2/\sigma, I^2/\sigma] \cong I^2/\sigma + 1 \leftarrow \text{point outside image of } 1 + 1 + 1!$$

Summarizing

$$\begin{array}{cccc}
\bullet & \mapsto & & & \\
\bullet & \bullet & & \mapsto & & \\
1+1+1 & \longmapsto & & & & & & \\
\end{array}$$

$$1 + 1 + 1 & \longmapsto & & & & & & & \\
\end{array}$$

$$(I^2/\sigma)_{fib}$$

- \otimes Doesn't add points \implies fiberwise squash
- \otimes Adds a new $I^2/\sigma \implies$ not squash!

- \implies cartesian box-filling model structure fails **FTFT**
- \implies cartesian box-filling model structure is not spaces.

Other cube categories

- ⊗ This version works in
 - ⊘ cartesian cubical sets
 - ∅ affine cubical sets

$$I^2/\sigma = \operatorname{colim}\left\{ I^2 \rightleftharpoons \sigma \right\}$$

⊗ But not with connections!

$$\begin{array}{c} \mathbf{I}^2/\sigma \times \mathbf{I} \to \mathbf{I}^2/\sigma \\ (i,j),t \mapsto (i \vee t,j \vee t) \end{array} \right\} \quad \text{id} \in [\mathbf{I}^2/\sigma,\mathbf{I}^2/\sigma] \text{ is not isolated} \\ \quad \text{but contracts to a constant}$$

- ⊗ Can use a different quotient in
 - ⊘ De Morgan cubical sets
 - ∅ boolean cubical sets

$$I/\neg = \operatorname{colim} \left\{ I \nearrow \neg \right\}$$

Other cube categories

⊗ For box-filling model structures:

Affine (BCH)	$\delta, \varepsilon, \sigma$	X
Cartesian (AFH+ABCFHL)	$\delta, \varepsilon, \Delta, \sigma$	X
Semilattice (CS)	$\delta, \varepsilon, \Delta, \sigma, \vee,$	✓
Dedekind	$\delta, \varepsilon, \Delta, \sigma, \vee, \wedge$?
De Morgan (CCHM)	$\delta, \varepsilon, \Delta, \sigma, \vee, \wedge, \neg$	X

 \otimes Equivariant model structure fixes "cartesian" with more complicated open boxes—make I^n/G contractible

Closing remarks

- ⊗ Christian recently found an explicit construction of a non-trivial fiberwise trivial fibration in these cases Wait for the paper ☺
- Hints towards characterizations of the model structures?
 At least for cartesian cubes, think so (WIP!)
- ⊗ Do the equivariant and one-connection model structures validate FTFT *constructively*?

We are doubtful...

Thank you!