From algebraic weak factorisation systems to models of type theory

Nicola Gambino

School of Mathematics University of Leeds

HoTTEST Seminar January 31st, 2019

Summer School on HTT/UF

University of Leeds, June 24th-28th

Mini-courses

- Charles Rezk
- Peter LeFanu Lumsdaine

Special lectures

- Benedikt Ahrens
- André Joyal
- Emily Riehl

Tutorials

- Paige North
- Nima Rasekh
- Karol Szumilo

Topic: models of type theory

Several issues

- ► standard type constructors (Π -types, Σ -types, ...)
- intensional Id-types
- associativity of substitution
- interaction of substitution with type formers

Optional requirements

- models may be defined constructively
- 'homotopical' models should support the types-as-spaces idea

Today

method for obtaining models via awfs

Outline

Part I: Context and motivation

- Models of type theory
- Two goals

Part II: Comprehension categories

- Modelling type theory
- The right adjoint splitting

Part III: Algebraic weak factorisation systems

- Type-theoretic awfs's
- Examples

References

N. Gambino and C. Sattler **The Frobenius condition, right properness and uniform fibrations** Journal of Pure and Applied Algebra, 2018

M. F. Larrea **Models of type theory from algebraic weak factorisation systems** PhD thesis, University of Leeds, 2019

All results below, unless otherwise stated, are due to Marco Larrea.

Part I: Context and motivation

How can we construct models of type theory?

It is useful to isolate three kinds of structures:

(1) **Raw structures**, i.e. mathematical structures occurring in practice, e.g.

- Quillen model categories
- weak factorisation systems

(2) **Intermediate structures**, i.e. a packaging of the above which mirrors syntax, e.g.

- comprehension categories
- categories with a universe
- (3) Models = genuine on-the-nose models, e.g.
 - split comprehension categories
 - contextual categories

Constructing a model of type theory typically involves two steps:

(1) Raw structure \Longrightarrow (2) Intermediate structure \Longrightarrow (3) Model

Models of type theory?

Many options of model are possible. How should we choose?

Criteria: good notions should

- be supported by a general theory
- facilitate step $(1) \Rightarrow (2)$
- support a theorem for the step $(2) \Rightarrow (3)$

Comprehension categories

Today, we work with

- comprehension categories as intermediate structures
- split comprehension categories as models

As we will see, these satisfy the criteria above.

In particular, there are three ways of splitting comprehension categories:

- (1) right adjoint splitting (Bénabou, Hoffmann)
- (2) left adjoint splitting (Lumsdaine and Warren)
- (3) splitting via universe (Voevodsky)

General method for constructing models

Step 1

Isolate once and for all what structure on a comprehension category we need in order for a splitting to produce a model.

Step 2

Find examples of such a structure.

Note: quite a lot is already known for Step 1

- ▶ for left adjoint splitting, see Lumsdaine-Warren
- for the right adjoint splitting, the result can be extracted from Hoffmann and Warren (see later)
- for the universe splitting, the result can be translated from work of Voevodsky

Today's seminar

- Review what structure on a comprehension category is necessary in order for the right adjoint splitting to give a model of type theory.
- Describe how natural examples of such a structure can be found.

Key notion: algebraic weak factorisation system.

Executive summary: The 'algebraic' aspect of awfs makes it possible to satisfy the assumptions necessary to make the right adjoint splitting work.

Note:

- This is an idea that goes back to Richard Garner (cf. comments in Michael Warren's thesis, Chapter 2, page 34)
- ▶ see also [van den Berg and Garner 2012].

Part II: Models via comprehension categories

Fibrations

A functor $p: \mathbb{E} \to \mathbb{C}$ is said to be a **fibration** if whenever we have

Note Cartesian here means universal in a suitable way.

Note. All fibrations today will be assumed to be cloven.

Comprehension categories

A comprehension category has the form

where

- ▶ p is a fibration
- \blacktriangleright $\mathbb C$ has pullbacks, so cod is a fibration
- χ sends Cartesian squares to pullback squares.

Comprehension categories: some intuition

We think of

as follows:

- $\blacktriangleright \ \mathbb{C}$ is a category of contexts
- For $\Gamma \in \mathbb{C}$, \mathbb{E}_{Γ} is the category of types A in context Γ
- Functor χ maps a type A in context Γ to the 'display map'

$$\chi_A : \Gamma.A \to \Gamma$$

- \blacktriangleright cod models substitution in contexts
- p models substitution in types

Split comprehension categories

Without further assumptions, we only have

$$A[\sigma][\tau] \cong A[\sigma \circ \tau], \qquad A[1_{\Gamma}] \cong A$$

When these are identities, we have a split comprehension category.

Note:

- These are hard to find 'in nature'
- We have splitting procedures

Today, we focus on the so-called right adjoint splitting.

The right adjoint splitting

For a comprehension category (\mathbb{C}, p, χ) , we let \mathbb{E}^R be the category with

Objects: pairs (A, A[-]), where A ∈ E and A[-] is a function mapping σ: Δ → Γ to a Cartesian arrow

• Maps: $f:(A, A[-]) \rightarrow (B, B[-])$ are maps $f: B \rightarrow A$ in \mathbb{E} .

We then obtain a split comprehension category

Pseudo-stable Id-types

Let (\mathbb{C}, p, χ) be a comprehension category.

Definition. A pseudo-stable choice of Id-types consists of a choice, for each $\Gamma \in \mathbb{C}$ and $A \in \mathbb{E}_{\Gamma}$, of

- ► $Id_A \in \mathbb{E}_{\Gamma.A.A}$
- reflexivity maps r_A
- elimination maps j_A
- For σ: Δ → Γ in C and every Cartesian f: B → A over σ, in E, we have a Cartesian map

 $\mathrm{Id}_f:\mathrm{Id}_B\to\mathrm{Id}_A$

over $\delta_f : \Delta.B.B \rightarrow \Gamma.A.A$, suitably functorial and coherent with reflexivity and elimination maps.

Note. Elimination maps are operations selecting diagonal fillers.

Similar definitions can be given for Π -types and Σ -types.

A coherence theorem

Theorem. Let

be a comprehension category equipped with pseudo-stable choices of $\Sigma,$ Π and $Id\-$ types.

Then its right adjoint splitting $(\mathbb{C}^R, p^R, \chi^R)$ is a split comprehension category equipped with strictly stable choices of Σ , Π and **Id**-types.

Note. It remains to find examples of comprehension categories with pseudo-stable choices of Σ , Π and Id-types.

Problem: Weak factorisation systems and model categories do not give rise to examples, as elimination maps are not given by operations.

Part III: Algebraic weak factorisation systems

Issues

Fundamental distinction:

- satisfaction of a property
- the existence of additional structure.

Examples:

- categories with finite products
- fibrations.

Sometimes ignoring this distinction is not harmful.

But sometimes things become more subtle:

- choices are unique up to higher and higher homotopies
- coherence issues
- constructivity issues.

Algebraic weak factorisation systems

Recall that in a weak factorization system (L, R), we often ask for

functorial factorizations, i.e. functors such that

gives the required factorization.

In an algebraic weak factorization system, we ask also that

- L has the structure of a comonad,
- R has the structure of a monad,
- ▶ a distributive law between *L* and *R*.

Grandis and Tholen (2006), Garner (2009).

L-maps and R-maps

Given an awfs (L, R) on a category \mathbb{C} , the comonad and the monad

 $L: \mathbb{C}^{\to} \to \mathbb{C}^{\to}, \qquad R: \mathbb{C}^{\to} \to \mathbb{C}^{\to}$

are in particular a copointed and pointed endofunctors, respectively.

So we can consider the categories

L-Map, R-Map

of coalgebras and algebras for the copointed and pointed endofunctors. These replace the standard classes of left and right maps in a wfs.

Note: There are forgetful functors

L-Map $\to \mathbb{C}^{\to}$, R-Map $\to \mathbb{C}^{\to}$

So being a left map or a right map is a structure, not a property.

From awfs's to comprehension categories

Proposition. Let (L, R) be an awfs on a category \mathbb{C} . Then

is a comprehension category.

This has always a choice of pseudo-stable Σ -types.

Type-theoretic awfs's

Definition. A **type-theoretic awfs** consists of an awfs (L, R) equipped with

> a stable functorial choice of path objects, i.e. factorisations

such that r_f is an *L*-map, p_f is an *R*-map, satisfying stability and functoriality conditions.

a functorial Frobenius structure, i.e. a lift of the pullback functor so that the pullback of an L-map along an R-map is an L-map.

Note: The Frobenius property is necessary to model Π -types.

From type-theoretic awfs to comprehension categories

Theorem. Let (L, R) be a type-theoretic awfs. Then the associated comprehension category

is equipped with pseudo-stable choices of Σ -, Π -, and **Id**-types.

So by the earlier coherence theorem, we are left with the question of finding examples of type-theoretic awfs's.

An easy example comes from the category of groupoids: the right maps are the normal isofibrations.

Examples of type-theoretic awfs's

Let

- \mathcal{E} be a presheaf category
- $I \in \mathcal{E}$ an interval object with connections.
- E.g. Simplicial sets and cubical sets.

From [Gambino and Sattler 2017], we know

- ► an awfs (C, F_t) such that C-Map is the category of monomorphisms and pullback squares,
- ► an awfs (C_t, F) such that F-Map is a category of uniform fibrations à la Bezem-Coquand-Huber
- the awfs $(\mathbf{C}_t, \mathbf{F})$ has the Frobenius property.

Building on this, Larrea showed

Theorem. (C_t, F) is a type-theoretic awfs.

Key step: showing that the 'reflexivity map' $r_f: X \to \mathcal{P}(f)$ is a \mathbf{C}_t -map.

Summary

Type-theoretic weak factorisation systems give rise to models of type theory with Σ -types, Π -types and **Id**-types.

(1) Type-theoretic awfs \implies (2) Comprehension categories with pseudo-stable ... \implies (3) Comprehension categories with strictly stable ...

Examples

presheaf categories (e.g. SSet and CSet) provide many examples of type-theoretic awfs.