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Topic: models of type theory

Several issues

I standard type constructors (Π-types, Σ-types, . . . )

I intensional Id-types

I associativity of substitution

I interaction of substitution with type formers

Optional requirements

I models may be defined constructively

I ‘homotopical’ models should support the types-as-spaces idea

Today

I method for obtaining models via awfs
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Part I: Context and motivation
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How can we construct models of type theory?

It is useful to isolate three kinds of structures:

(1) Raw structures, i.e. mathematical structures occurring in practice,
e.g.

I Quillen model categories
I weak factorisation systems

(2) Intermediate structures, i.e. a packaging of the above which
mirrors syntax, e.g.

I comprehension categories
I categories with a universe

(3) Models = genuine on-the-nose models, e.g.
I split comprehension categories
I contextual categories

Constructing a model of type theory typically involves two steps:

(1) Raw structure =⇒ (2) Intermediate structure =⇒ (3) Model
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Models of type theory?

Many options of model are possible. How should we choose?

Criteria: good notions should

I be supported by a general theory

I facilitate step (1)⇒ (2)

I support a theorem for the step (2)⇒ (3)
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Comprehension categories

Today, we work with

I comprehension categories as intermediate structures

I split comprehension categories as models

As we will see, these satisfy the criteria above.

In particular, there are three ways of splitting comprehension categories:

(1) right adjoint splitting (Bénabou, Hoffmann)

(2) left adjoint splitting (Lumsdaine and Warren)

(3) splitting via universe (Voevodsky)
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General method for constructing models

Step 1

I Isolate once and for all what structure on a comprehension category
we need in order for a splitting to produce a model.

Step 2

I Find examples of such a structure.

Note: quite a lot is already known for Step 1

I for left adjoint splitting, see Lumsdaine-Warren

I for the right adjoint splitting, the result can be extracted from
Hoffmann and Warren (see later)

I for the universe splitting, the result can be translated from work of
Voevodsky
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Today’s seminar

I Review what structure on a comprehension category is necessary in
order for the right adjoint splitting to give a model of type theory.

I Describe how natural examples of such a structure can be found.

Key notion: algebraic weak factorisation system.

Executive summary: The ‘algebraic’ aspect of awfs makes it possible to
satisfy the assumptions necessary to make the right adjoint splitting work.

Note:

I This is an idea that goes back to Richard Garner (cf. comments in
Michael Warren’s thesis, Chapter 2, page 34)

I see also [van den Berg and Garner 2012].
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Part II: Models via comprehension categories
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Fibrations

A functor p :E→ C is said to be a fibration if whenever we have

E

p

��

A

C ∆
σ
// Γ

we get a Cartesian map

E

p

��

A[σ] // A

C ∆
σ
// Γ

Note Cartesian here means universal in a suitable way.

Note. All fibrations today will be assumed to be cloven.
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Comprehension categories

A comprehension category has the form

E

p
��

χ
// C→

cod
}}

C

where

I p is a fibration

I C has pullbacks, so cod is a fibration

I χ sends Cartesian squares to pullback squares.



15

Comprehension categories: some intuition

We think of

E

p
��

χ
// C→

cod
}}

C

as follows:

I C is a category of contexts

I For Γ ∈ C, EΓ is the category of types A in context Γ

I Functor χ maps a type A in context Γ to the ‘display map’

χA : Γ.A→ Γ

I cod models substitution in contexts

I p models substitution in types
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Split comprehension categories

Without further assumptions, we only have

A[σ][τ ] ∼= A[σ ◦ τ ] , A[1Γ] ∼= A

When these are identities, we have a split comprehension category.

Note:

I These are hard to find ‘in nature’

I We have splitting procedures

Today, we focus on the so-called right adjoint splitting.
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The right adjoint splitting
For a comprehension category (C, p, χ), we let ER be the category with

I Objects: pairs (A,A[−]), where A ∈ E and A[−] is a function
mapping σ : ∆→ Γ to a Cartesian arrow

A[σ]
σ∗
// A

∆
σ
// Γ

I Maps: f : (A,A[−])→ (B,B[−]) are maps f :B → A in E.

We then obtain a split comprehension category

ER //

pR
  

E
χ
// C→

cod
~~

C
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Pseudo-stable Id-types

Let (C, p, χ) be a comprehension category.

Definition. A pseudo-stable choice of Id-types consists of a choice,
for each Γ ∈ C and A ∈ EΓ, of

I IdA ∈ EΓ.A.A

I reflexivity maps rA
I elimination maps jA
I for σ : ∆→ Γ in C and every Cartesian f :B → A over σ, in E, we

have a Cartesian map
Idf : IdB → IdA

over δf : ∆.B.B → Γ.A.A, suitably functorial and coherent with
reflexivity and elimination maps.

Note. Elimination maps are operations selecting diagonal fillers.

Similar definitions can be given for Π-types and Σ-types.
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A coherence theorem

Theorem. Let

E

p
��

χ
// C→

cod
}}

C

be a comprehension category equipped with pseudo-stable choices of Σ,
Π and Id-types.

Then its right adjoint splitting (CR , pR , χR) is a split comprehension
category equipped with strictly stable choices of Σ, Π and Id-types.

Note. It remains to find examples of comprehension categories with
pseudo-stable choices of Σ, Π and Id-types.

Problem: Weak factorisation systems and model categories do not give
rise to examples, as elimination maps are not given by operations.
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Part III: Algebraic weak factorisation systems
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Issues

Fundamental distinction:

I satisfaction of a property

I the existence of additional structure.

Examples:

I categories with finite products

I fibrations.

Sometimes ignoring this distinction is not harmful.

But sometimes things become more subtle:

I choices are unique up to higher and higher homotopies

I coherence issues

I constructivity issues.
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Algebraic weak factorisation systems

Recall that in a weak factorization system (L,R), we often ask for

I functorial factorizations, i.e. functors such that

A
f //

L(f ) !!

B

K (f )

R(f )

==

gives the required factorization.

In an algebraic weak factorization system, we ask also that

I L has the structure of a comonad,

I R has the structure of a monad,

I a distributive law between L and R.

Grandis and Tholen (2006), Garner (2009).
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L-maps and R-maps

Given an awfs (L,R) on a category C, the comonad and the monad

L :C→ → C→ , R :C→ → C→

are in particular a copointed and pointed endofunctors, respectively.

So we can consider the categories

L-Map , R-Map

of coalgebras and algebras for the copointed and pointed endofunctors.

These replace the standard classes of left and right maps in a wfs.

Note: There are forgetful functors

L-Map→ C→ , R-Map→ C→

So being a left map or a right map is a structure, not a property.
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From awfs’s to comprehension categories

Proposition. Let (L,R) be an awfs on a category C. Then

R-Map
U //

""

C→

cod
~~

C

is a comprehension category.

This has always a choice of pseudo-stable Σ-types.
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Type-theoretic awfs’s

Definition. A type-theoretic awfs consists of an awfs (L,R) equipped
with

I a stable functorial choice of path objects, i.e. factorisations

X
δf //

rf
  

X ×Y X

Pf

pf

;;

such that rf is an L-map, pf is an R-map, satisfying stability and
functoriality conditions.

I a functorial Frobenius structure, i.e. a lift of the pullback functor so
that the pullback of an L-map along an R-map is an L-map.

Note: The Frobenius property is necessary to model Π-types.
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From type-theoretic awfs to comprehension categories

Theorem. Let (L,R) be a type-theoretic awfs. Then the associated
comprehension category

R-Map
U //

""

E→

cod
~~
E

is equipped with pseudo-stable choices of Σ-, Π-, and Id-types.

So by the earlier coherence theorem, we are left with the question of
finding examples of type-theoretic awfs’s.

An easy example comes from the category of groupoids: the right maps
are the normal isofibrations.
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Examples of type-theoretic awfs’s

Let

I E be a presheaf category

I I ∈ E an interval object with connections.

E.g. Simplicial sets and cubical sets.

From [Gambino and Sattler 2017], we know

I an awfs (C,Ft) such that C-Map is the category of monomorphisms
and pullback squares,

I an awfs (Ct ,F) such that F -Map is a category of uniform fibrations
à la Bezem-Coquand-Huber

I the awfs (Ct ,F) has the Frobenius property.

Building on this, Larrea showed

Theorem. (Ct ,F) is a type-theoretic awfs.

Key step: showing that the ‘reflexivity map’ rf :X → P(f ) is a Ct-map.
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Summary

Type-theoretic weak factorisation systems give rise to models of type
theory with Σ-types, Π-types and Id-types.

(1) Type-theoretic awfs

=⇒ (2) Comprehension categories with pseudo-stable . . .

=⇒ (3) Comprehension categories with strictly stable . . .

Examples

I presheaf categories (e.g. SSet and CSet) provide many examples of
type-theoretic awfs.


