The Reedy diagrams model of dependent type theory

Peter LeFanu Lumsdaine joint work with Chris Kapulkin

Stockholm University

HoTTEST, 15 February 2018

Martin Hofmann, 1965–2018

Problem

Work in some small dependent type theory (e.g. Id, Σ , Π). Suppose we have...

... some type expression *T*, containing an atomic type X; e.g.:

 $List(X^2)$ isContr(X) RingStruc(X)

... some model C of type theory (e.g. simplicial sets, realisability, ...) and two "types" A, B in C.

Get two interpretations: $\llbracket T \rrbracket^{\chi \mapsto A}$, $\llbracket T \rrbracket^{\chi \mapsto B}$.

Question

Does an equivalence $e : A \simeq B$ induce an equivalence $\llbracket T \rrbracket^{X \mapsto A} \simeq \llbracket T \rrbracket^{X \mapsto B}$?

Answer: Univalence?

Similar to statement of univalence, but a bit different. Univalence...

- ... is a statement about a universe;
- ...says: arbitrary constructions on that universe respect equivalence.

Here...

- ...no universe assumed in C!
- ... but *T* assumed definable: an actual expression of the type theory.

Must make use of type-theoretic definition of *T* somehow!

Idea: induct up on the definition/derivation of *T*. Show each step is invariant under equivalence.

But: we're in a dependent type theory! Derivation may involve not just closed types but dependent types, terms, contexts...

I.e. want new model of this type theory, whose "closed types" consist of a pair of closed types of **C** and an equivalence between them (in some sense).

I.e. want construction on models: $\mathbf{C} \mapsto \mathbf{C}^{\text{Eqv}}$.

Span-equivalences

What notion of equivalence to use?

 $\vdash A$ type $\vdash B$ type $x:A, y:B \vdash R(x, y)$ type A (type-valued) relation between A and B...

$$x:A \vdash \text{isContr}\left(\sum(y:B) R(x, y)\right)$$

 $y:B \vdash \text{isContr}\left(\sum(x:A) R(x, y)\right)$

... forming a one-to-one correspondence.

Call this a Reedy span-equivalence; without the second part, just a Reedy span. So want:

- ► C^{Eqv}, model whose types are Reedy span-equivalences in C;
- C^{Eqv} ⊆ C^{Span}, whose types are Reedy spans in C−a "relations" model).

Categories with Attributes

Use categorical/algebraic notion of model of type theories:

Definition

A category with attributes (CwA) is:

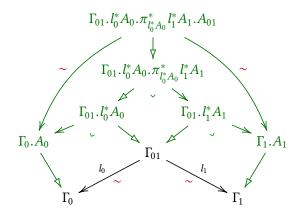
- ► a category **C** [sometimes assumed: with terminal object \diamondsuit];
- ▶ a functor Ty : C^{op} → Set;
- ▶ for each $A \in Ty(\Gamma)$, an object $\Gamma.A$ and map $\pi_A : \Gamma.A \longrightarrow \Gamma$;
- for each $A \in \text{Ty}(\Gamma)$ and $f : \Delta \longrightarrow \Gamma$,

a map f.A giving pullback $\begin{array}{c} \Delta \cdot f^*A \xrightarrow{f.A} \Gamma \cdot A \\ \pi_{f^*A} \bigvee \qquad \downarrow \qquad \qquad \downarrow \pi_A \text{ functorially in } f. \\ \Delta \xrightarrow{f} \Gamma, \end{array}$

Further: equip CwA's with logical structure, i.e. algebraic operations/axioms corresponding to the logical rules of DTT (Id, Σ , Π , ...)

CwA of span-equivalences

 C^{Span} , C^{Eqv} have contexts and types given by:



- I.e. Reedy span(-equivalence)s as defined syntactically above,
- expressed diagramatically in C,
- relativised to over a general span(-equivalence) as context.

Σ -types in span(-equivalence)s

Input to Σ -types:

 $\vdash A$ type $x:A \vdash B(x)$ type

In spans (working syntactically for readability):

$$\vdash A_0 \text{ type } \vdash A_1 \text{ type } x_0:A_0, x_1:A_1 \vdash A_{01}(x_0, x_1) \text{ type } x_0:A_0 \vdash B_0 \text{ type } x_1:A_1 \vdash B_1 \text{ type } x_0:A_0, x_1:A_1, x_{01}:A_{01}(x_0, x_1), y_0:B_0(x_0), y_1:B_1(x_1) \vdash B_{01}(x_0, x_1, x_{01}, y_0, y_1) \text{ type } x_0:A_0 \vdash A_0 + A_0$$

Define $\Sigma(x:A) B$ as:

 $\vdash \Sigma(x_0:A_0) B_0(x_0) \text{ type} \qquad \vdash \Sigma(x_1:A_1) B_1(x_1) \text{ type}$ $z_0 : \Sigma(x_0:A_0) B_0(x_0), z_1 : \Sigma(x_0:A_0) B_0(x_0)$ $\vdash \Sigma(x_{01}: A_{01}(\text{pr}_1(z_0), \text{pr}_1(z_1))) B_{01}(x_{01}, \text{pr}_2(z_0), \text{pr}_2(z_1)) \text{ type}$ Moreover: this span is an equivalence if *A*, *B* both were.

Exercise: similarly, give the definition of Π -types in spans.

Reedy diagrams on inverse categories

Definition

 Inverse category: no infinite descending chain of non-identity morphisms

- Ordered inverse category: ordering on objects of each coslice, satisfying certain conditions.
- Homotopical category: equipped with distinguished class of maps, "equivalences".

Examples, non-homotopical: the span category; the opposite of the semi-simplicial category.

Example, homotopical: the equivalence-span category, i.e. the span category with all maps equivalences.

Fact: every inverse category admits an ordering.

Reedy diagrams on inverse categories

Definition

Suppose I an ordered inverse cat, **C** a CwA, $\Gamma : I \longrightarrow \mathbf{C}$ a diagram.

Reedy type *A* over *I*:

- a diagram $(\Gamma.A) : \mathcal{I} \longrightarrow \mathbb{C}$ over Γ ,
- in which each object arises from a type A_i over a matching object M_iA.

Suppose I homotopical. A diagram $\Gamma : I \longrightarrow \mathbf{C}$ is homotopical if it sends equivalences to equivalences. Have CwA's \mathbf{C}^{I} , \mathbf{C}_{h}^{I} .

Example: Reedy spans, Reedy span-equivalences.

Orderings are used just to construct M_iA as context extension.

Summary

Theorem

C a CwA with Id-types, *I* an ordered homotopical inverse category. Then:

- 1. $\mathbf{C}^{\mathcal{I}}$ carries Id-types; if \mathbf{C} carries 1- and Σ -types, so does $\mathbf{C}^{\mathcal{I}}$.
- 2. If C carries extensional Π -types, and additionally all maps of I are equivalences, then C^{I} carries extensional Π -types.
- 3. A CwA map $F : \mathbb{C} \longrightarrow \mathbb{D}$ induces a CwA map $F^{I} : \mathbb{C}^{I} \longrightarrow \mathbb{D}^{I}$, preserving whatever logical structure F preserved, functorially in F.
- Any homotopical discrete opfibration f : I → J induces a map C^f: C^J → C^I, preserving all logical structure, and functorially in f.
- 5. If $f : I \longrightarrow \mathcal{J}$ as above is moreover injective, then \mathbf{C}^{f} is a local fibration; and if f is a homotopy equivalence, then \mathbf{C}^{f} is a local equivalence.

Application: Homotopy theory of type theories

Long-term goal: some precise version of "HoTT is the internal logic of elementary ∞ -toposes" (and similar statements for fragments of HoTT vs. lex and lccc ∞ -categories).

More precise goal: construct $(\infty, 1)$ -equivalance DTT_{HoTT} \simeq_{∞} ElemTop_{∞}, for some suitable $(\infty, 1)$ -categories of DTT's and elementary ∞ -toposes; similarly DTT_{Id, $\Sigma} \simeq_{\infty}$ Lex_{∞}, etc.}

Analogous to established statements for IHOL/toposes, etc. Pragmatic interpretation: "something holds in suitable infinity-categories exactly when you can prove it in type theory".

First step: give tractable construction of suitable $(\infty, 1)$ -categories of dependent type theories.

Given in Kapulkin–Lumsdaine, *The homotopy theory of type theories*, arXiv:1610.00037; see also Isaev, *Model structures on categories of models of type theories*, arXiv:1607.07407.

Contextual categories

Definition

A CwA is **C** *contextual* if it has a distinguished terminal object \diamond , s.t. every object of **C** is uniquely expressible as \diamond . A_1 A_n .

Take DTT_T to be (1-)category of contextual categories equipped with logical structure for the rules of **T**.

Inclusion $\text{DTT}_T \longrightarrow CwA_T$ has right adjoint, sending CwA C to $C(\diamondsuit)$:

- objects: "context extensions" (A_1, \ldots, A_n) over \diamond ;
- ▶ maps, types, structure: inherited from **C**.

Why not use CwA's for DTT_T ? Type theory can't reason about arbitrary contexts of a CwA.

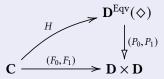
Why not use contextual cats throughout? Many constructions much simpler with CwA's (eg contexts in diagram models). E.g. for $C^{\text{Span}}(\diamondsuit)$ given directly, see Tonelli 2013, *Investigations into a model of type theory based on the concept of basic pair*.

Path objects as Reedy diagrams

Key technical tool: Right homotopy, with $\mathbf{C}^{\text{Eqv}}(\diamondsuit)$ as path-objects.

Definition

 $F_0, F_1 : \mathbb{C} \longrightarrow \mathbb{D}$ in $DTT_{\mathrm{Id}, \Sigma(, \Pi_{ext})}$ are right homotopic $(F_0 \sim_r F_1)$ if they factor jointly through $\mathbb{D}^{\mathrm{Eqv}}(\diamondsuit)$:



Problem: not an equivalence relation! E.g. no reflexivity map $\mathbf{D} \longrightarrow \mathbf{D}^{Eqv}(\diamondsuit)$ in $\text{DTT}_{\mathbf{T}}$.

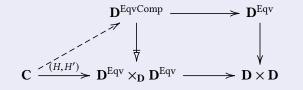
Example: transitivity of path-objects

Proposition

Right homotopy is an equivalence relation on DTT(C, D), when C is *cofibrant*.

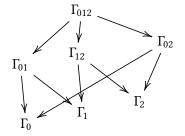
Proof.

Construct a suitable CwA $\mathbf{D}^{EqvComp}$ with a trivial fibration $\mathbf{D}^{EqvComp} \longrightarrow \mathbf{D}^{Eqv} \times_{\mathbf{D}} \mathbf{D}^{Eqv}$:



Example: transitivity of path objects

 $\mathbf{D}^{\text{EqvComp}}$: CwA of homotopical Reedy types on the category



with all maps equivalences.

Payoff

Theorem (Kapulkin–Lumsdaine 2016)

There is a left semi-model structure on $DTT_{Id,\Sigma(,\Pi_{ext})}$, with equivalences the type-theoretic equivalences.

(Heuristically, expect this to extend to DTT_{HoTT} , for suitable definition thereof.)

This gives precise statement of the "internal language" conjectures for these type theories. In fact, now proven in the finitely-complete case:

Theorem (Kapulkin–Szumiło 2017)

There is an $(\infty, 1)$ *-equivalence* DTT_{Id,1, Σ) \longrightarrow Lex_{∞}.}

Kapulkin, Szumiło, Internal language of finitely complete $(\infty, 1)$ -categories, arXiv:1709.09519.

Bonus: exercise solution, Π-types in span(-equivalence)s

Input to Π -types is same as for Σ -types:

 $\vdash A$ type $x:A \vdash B(x)$ type

In spans:

 $\vdash A_0 \text{ type } \vdash A_1 \text{ type } x_0:A_0, x_1:A_1 \vdash A_{01}(x_0, x_1) \text{ type } x_0:A_0 \vdash B_0 \text{ type } x_1:A_1 \vdash B_1 \text{ type } x_0:A_0, x_1:A_1, x_{01}:A_{01}(x_0, x_1), y_0:B_0(x_0), y_1:B_1(x_1) \vdash B_{01}(x_{01}, y_0, y_1) \text{ type } x_0:A_0 \vdash B_0(x_0), y_0:A_0(x_0, y_0, y_1) \text{ type } x_0:A_0 \vdash B_0(x_0), y_0:A_0(x_0, y_0, y_1) \text{ type } x_0:A_0 \vdash B_0(x_0), y_0:A_0(x_0, y_0, y_1) \text{ type } x_0:A_0 \vdash B_0(x_0), y_0:A_0(x_0, y_0, y_1) \text{ type } x_0:A_0 \vdash B_0(x_0), y_0:A_0(x_0, y_0, y_0) \text{ type } x_0:A_0(x_0, y_0) \text{ type } x$

Define Π (*x*:*A*) *B* as:

 $\vdash \Pi (x_0:A_0) B_0(x_0) \text{ type} \qquad \vdash \Pi (x_1:A_1) B_1(x_1) \text{ type}$ $f_0 : \Pi (x_0:A_0) B_0(x_0), f_1 : \Pi (x_0:A_0) B_0(x_0)$ $\vdash \Pi (x_0:A_0) (x_1:A_1) (x_{01}:A_{01}), B_{01}(x_{01}, \operatorname{app}(f_0, x_0), \operatorname{app}(f_1, x_1)) \text{ type}$