CORRIGENDUM TO "ANGULAR EQUIVALENCE OF NORMED SPACES" [J. MATH. ANAL. APPL. 454(2) (2017) 942–960]

EDER KIKIANTY AND GORD SINNAMON

ABSTRACT. A correct proof is given for Theorem 2.1 of E. Kikianty and G. Sinnamon, 'Angular equivalence of normed spaces', J. Math. Anal. Appl., 454(2):942–960, 2017. http://doi.org/10.1016/j.jmaa.2017.05.038.

The statement of Theorem 2.1 in the above paper is correct, but the proof contains an unsupported statement. The statement and a correct proof follow. Refer to the original article for notation and definitions, and for inequality (1.2).

Theorem 2.1. Let X be a real vector space having two norms, $\|\cdot\|_1$ and $\|\cdot\|_2$. Suppose $\|\cdot\|_1$ and $\|\cdot\|_2$ are angularly equivalent and x is a non-zero vector in X. Then $x/\|x\|_1$ is an extreme point of the $\|\cdot\|_1$ -unit ball if and only if $x/\|x\|_2$ is an extreme point of the $\|\cdot\|_2$ -unit ball.

Proof. We argue the contrapositive. Suppose $x/||x||_2$ is not an extreme point of the $\|\cdot\|_2$ -unit ball. Then there are points y and z in X such that $(y+z)/2 = x/||x||_2$ and the closed line segment from y to z is contained in the $\|\cdot\|_2$ -unit ball. If $s \in [0,1]$ then (1-s)y+sz and sy+(1-s)z are on the line segment and hence in the $\|\cdot\|_2$ -unit ball. Thus,

$$2 = \|y+z\|_2 = \|(1-s)y+sz+sy+(1-s)z\|_2 \le \|(1-s)y+sz\|_2 + \|sy+(1-s)z\|_2 \le 2$$

It follows that $\|(1-s)y+sz\|_2 = 1$. In particular, observe that $\|y\|_2 = \|z\|_2 = 1$
Now.

$$g_2^{\pm}(y,z) = \lim_{t \to 0\pm} \frac{1}{t} (\|y + tz\|_2 - 1)$$

=
$$\lim_{s \to 0\pm} \frac{1-s}{s} (\|y + \frac{s}{1-s}z\|_2 - 1)$$

=
$$\lim_{s \to 0\pm} \frac{1}{s} (\|(1-s)y + sz\| - 1 + s) =$$

This shows that $g_2(y, z) = 1$, $\cos(\theta_2(y, z)) = 1$, and $\tan(\theta_2(y, z)/2) = 0$. By angular equivalence, $\tan(\theta_1(y, z)/2) = 0$ as well. This implies $\cos(\theta_1(y, z)) = 1$ and hence $g_1(y, z) = ||y||_1 ||z||_1$. The last statement, which may be written as

1.

$$g_1^-(y,z) + g_1^+(y,z) = 2\|y\|_1\|z\|_1$$

combined with

$$g_1^-(y,z) \le g_1^+(y,z) \le \|y\|_1(\|y+z\|_1 - \|y\|_1) \le \|y\|_1\|z\|_1,$$

from (1.2), gives

$$||y||_1(||y+z||_1 - ||y||_1) = ||y||_1||z||_1.$$

Supported by the University of Pretoria Research Development Programme.

Supported by the Natural Sciences and Engineering Research Council of Canada.

Since $||y + z||_1 = ||y||_1 + ||z||_1$ and $x/||x||_2 = (y + z)/2$, we have

$$\frac{x}{\|x\|_1} = \frac{y+z}{\|y+z\|_1} = \frac{\|y\|_1}{\|y\|_1 + \|z\|_1} \frac{y}{\|y\|_1} + \frac{\|z\|_1}{\|y\|_1 + \|z\|_1} \frac{z}{\|z\|_1}$$

which is a convex combination of the points $y/||y||_1$ and $z/||z||_1$. Thus, $x/||x||_1$ is an interior point of the line segment from $y/||y||_1$ to $z/||z||_1$. Since the endpoints of this segment lie in the $||\cdot||_1$ -unit ball, convexity shows that the entire line segment does. Thus, $x/||x||_1$ is not an extreme point of the $||\cdot||_1$ -unit ball.

Reversing the roles of the two norms gives the other implication.

E. KIKIANTY, DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS, UNIVERSITY OF PRETORIA, PRETORIA, SOUTH AFRICA

E-mail address: eder.kikianty@gmail.com

Department of Mathematics, University of Western Ontario, London, Canada $E\text{-}mail\ address:\ \texttt{sinnamonQuwo.ca}$