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Abstract Diffeological spaces are generalizations of smooth manifolds which include sin-
gular spaces and function spaces. For each diffeological space, P. Iglesias-Zemmour intro-
duced a natural topology called the D-topology. However, the D-topology has not yet been
studied seriously in the existing literature. In this paper, we develop the basic theory of the
D-topology for diffeological spaces. We explain that the topological spaces that arise as the
D-topology of a diffeological space are exactly the ∆ -generated spaces and give results and
examples which help to determine when a space is ∆ -generated. Our most substantial re-
sults show how the D-topology on the function space C∞(M,N) between smooth manifolds
compares to other well-known topologies.
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1 Introduction

Smooth manifolds are some of the most important objects in mathematics. They contain a
wealth of geometric information, such as tangent spaces, tangent bundles, differential forms,
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de Rham cohomology, etc., and this information can be put to great use in proving theorems
and making calculations. However, the category of smooth manifolds and smooth maps is
not closed under many useful constructions, such as subspaces, quotients, function spaces,
etc. On the other hand, various convenient categories of topological spaces are closed under
these constructions, but the geometric information is missing. Can we have the best of both
worlds?

Since the 1970’s, the category of manifolds has been enlarged in several different ways
to a well-behaved category as described above, and these approaches are nicely summarized
and compared in [St]. In this paper, we work with diffeological spaces, which were intro-
duced by J. Souriau in his 1980 paper [So], and in particular we study the natural topology
that any diffeological space has.

A diffeological space is a set X along with a specified set of maps U → X for each open
set U in Rn and each n ∈ N, satisfying a presheaf condition, a sheaf condition, and a non-
triviality condition (see Definition 2.1). Given a diffeological space X , the D-topology on X
is the largest topology making all of the specified maps U → X continuous. In this paper,
we make the first detailed study of the D-topology. Our results include theorems giving
properties and characterizations of the D-topology as well as many examples which show
the behaviour that can occur and which rule out some natural conjectures.

Our interest in these topics comes from several directions. First, it is known [SYH] that
the topological spaces which arise as the D-topology of a diffeological space are precisely
the ∆ -generated spaces, which were introduced by Jeff Smith as a possible convenient cat-
egory for homotopy theory and were studied by [D,FR]. Some of our results help to further
understand which spaces are ∆ -generated, and we include illustrative examples.

Second, for any diffeological spaces X and Y , the set C∞(X ,Y ) of smooth maps from
X to Y is itself a diffeological space in a natural way and thus can be endowed with the
D-topology. Since the topology arises completely canonically, it is instructive to compare
it with other topologies that arise in geometry and analysis when X and Y are taken to be
smooth manifolds. A large part of this paper is devoted to this comparison, and again we
give both theorems and illustrative examples.

Finally, this paper arose from work on the homotopy theory of diffeological spaces, and
can be viewed as the topological groundwork for this project. It is for this reason that we
need to focus on an approach that produces a well-behaved category, rather than working
with a theory of infinite-dimensional manifolds, such as the one throroughly developed in
the book [KM]. We will, however, make use of results from [KM], as many of the underlying
ideas are related.

Here is an outline of the paper, with a summary of the main results:
In Section 2, we review some basics of diffeological spaces. For example, we recall that

the category of diffeological spaces is complete, cocomplete and cartesian closed, and that
it contains the category of smooth manifolds as a full subcategory. Moreover, like smooth
manifolds, every diffeological space is formed by gluing together open subsets of Rn, with
the difference that n can vary and that the gluings are not necessarily via diffeomorphisms.

In Section 3, we study the D-topology of a diffeological space, which was introduced
by Iglesias-Zemmour in [I1]. We show that the D-topology is determined by the smooth
curves (Theorem 3.7), while diffeologies are not (Example 3.8). We recall a result of [SYH]
which says that the topological spaces arising as the D-topology of a diffeological space
are exactly the ∆ -generated spaces (Proposition 3.10). We give a necessary condition and a
sufficient condition for a space to be ∆ -generated (Propositions 3.4 and 3.11) and show that
neither is necessary and sufficient (Proposition 3.12 and Example 3.14). We can associate
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two topologies to a subset of a diffeological space. We discuss some conditions under which
the two topologies coincide (Lemmas 3.16 and 3.17, Proposition 3.20, and Corollary 4.15).

Section 4 contains our most substantial results. We compare the D-topology on func-
tion spaces between smooth manifolds with other well-known topologies. The results are
(1) the D-topology is almost always strictly finer than the compact-open topology (Propo-
sition 4.2 and Example 4.5); (2) the D-topology is always finer than the weak topology
(Proposition 4.4) and always coarser than the strong topology (Theorem 4.13); (3) we give
a full characterization of the D-topology as the smallest ∆ -generated topology containing
the weak topology (Theorem 4.7); (4) as a consequence, we show that the weak topol-
ogy is equal to the D-topology if and only if the weak topology is locally path-connected
(Corollary 4.9); (5) in particular, when the codomain is Rn or the domain is compact, the
D-topology coincides with the weak topology (Corollary 4.10 and Corollary 4.14), but not
always (Example 4.6).

All smooth manifolds in this paper are assumed to be Hausdorff, second countable and
without boundary.

We would like to thank Andrew Stacey and Chris Schommer-Pries for very helpful
conversations, and Jeremy Brazas for the idea behind Example 3.14.

2 Background on Diffeological Spaces

Here is some background on diffeological spaces. A good reference for the material in this
section is the book [I2].

Definition 2.1 ([So]) A diffeological space is a set X together with a specified set DX of
maps U → X (called plots) for each open set U in Rn and for each n ∈ N, such that for all
open subsets U ⊆ Rn and V ⊆ Rm:

1. (Covering) Every constant map U → X is a plot;
2. (Smooth Compatibility) If U → X is a plot and V →U is smooth, then the composition

V →U → X is also a plot;
3. (Sheaf Condition) If U = ∪iUi is an open cover and U → X is a set map such that each

restriction Ui→ X is a plot, then U → X is a plot.

We usually use the underlying set X to denote the diffeological space (X ,DX ).

Definition 2.2 ([So]) Let X and Y be two diffeological spaces, and let f : X → Y be a set
map. We call f smooth if for every plot p : U → X of X , the composition f ◦ p is a plot of
Y .

The collection of all diffeological spaces with smooth maps forms a category, and we
will denote it by Diff. Given two diffeological spaces X and Y , we write C∞(X ,Y ) for the set
of all smooth maps from X to Y . An isomorphism in Diff will be called a diffeomorphism.

Theorem 2.3 There is a fully faithful functor from the category of smooth manifolds to Diff.

Proof Every smooth manifold M is canonically a diffeological space with the same under-
lying set and plots taken to be all smooth maps U →M in the usual sense. We call this the
standard diffeology on M. By using charts, it is easy to see that smooth maps in the usual
sense between smooth manifolds coincide with smooth maps between them with the stan-
dard diffeology. ut
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From now on, unless we say otherwise, every smooth manifold considered as a diffe-
ological space is equipped with the standard diffeology. It is clear that given a fixed open
subset U of Rn, the set of all plots from U to a fixed diffeological space X is equal to
C∞(U,X).

Proposition 2.4 ([I1]) Given a set X, let D be the set of all diffeologies on X ordered by
inclusion. Then D is a complete lattice.

Proof This follows from the fact that D is closed under arbitrary (small) intersection. The
largest element in D is called the indiscrete diffeology on X , which consists of all set maps
U→ X , and the smallest element in D is called the discrete diffeology on X , which consists
of all locally constant maps U → X . ut

The smallest diffeology DX (A) on X containing a set of maps A = {Ui→ X}i∈I is called
the diffeology generated by A. The diffeology DX (A) consists of all maps f : V → X such
that there exists an open cover {Vj} of V such that f restricted to each Vj factors through
some element Ui→ X in A via a smooth map Vj→Ui. The standard diffeology on a smooth
manifold is generated by any smooth atlas on the manifold. For every diffeological space X ,
DX is generated by ∪n∈NC∞(Rn,X).

Generalizing the previous paragraph, let A = { f j : X j → X} j∈J be a set of functions
from some diffeological spaces to a fixed set X . Then there exists a smallest diffeology on
X making all f j smooth, and we call it the final diffeology defined by A. For a diffeological
space X with an equivalence relation ∼, the final diffeology defined by the quotient map
{X � X/∼} is called the quotient diffeology. Similarly, let B = {gk : Y → Yk}k∈K be a
set of functions from a fixed set Y to some diffeological spaces. Then there exists a largest
diffeology on Y making all gk smooth, and we call it the initial diffeology defined by B. For
a diffeological space X and a subset A of X , the initial diffeology defined by the inclusion
map {A ↪→ X} is called the sub-diffeology. More generally, we have the following result:

Theorem 2.5 The category Diff is both complete and cocomplete.

Limits and colimits are constructed as follows. The forgetful functor Diff→Set, where
Set denotes the category of sets, must preserve both limits and colimits since it has both
left and right adjoints, given by the discrete and indiscrete diffeologies. The diffeology on
the (co)limit is the initial (final) diffeology defined by the natural maps. More precisely, let
F : J→Diff be a functor from a small category J. Then U → lim(F) is a plot if and only if
the composition U→ lim(F)→F( j) is a plot of F( j) for each j∈Obj(J). And U→ colimF
is a plot if and only if locally it factors as U → F( j)→ colimF for some j ∈ Obj(J), with
the first map a plot of F( j).

Theorem 2.6 The category Diff is cartesian closed.

Given two diffeological spaces X and Y , the set of maps {U→C∞(X ,Y ) |U×X→Y is
smooth} forms a diffeology on C∞(X ,Y ). We call it the functional diffeology on C∞(X ,Y ),
and we always equip hom-sets with the functional diffeology. Furthermore, for each diffeo-
logical space Y , −×Y : Diff 
Diff : C∞(Y,−) is an adjoint pair.

A smooth manifold of dimension n is formed by gluing together some open subsets
of Rn via diffeomorphisms. A diffeological space is also formed by gluing together open
subsets of Rn (with the standard diffeology) via smooth maps, possibly for all n ∈ N. To be
precise, let’s introduce the following concept:
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Let DS be the category with objects all open subsets of Rn for all n∈N and morphisms
the smooth maps between them. Given a diffeological space X , we define DS /X to be the
category with objects all plots of X and morphisms the commutative triangles

U

p
��

f // V

q
��

X ,

with p,q plots of X and f a smooth map. We call DS /X the category of plots of X . It is
equiped with a forgetful functor F : DS /X →Diff sending a plot U → X to U regarded as
a diffeological space and sending the morphism displayed above to f . We can use F to show
that any X can be built out of Euclidean spaces:

Proposition 2.7 The colimit of the functor F : DS /X →Diff is X.

Proof Clearly there is a natural cocone F → X sending the above commutative triangle to
itself. For each diffeological space Y and cocone g : F→Y , we define a set map h : X→Y by
sending x∈ X to g(x)(R0), where by abuse of notation the second x denotes the plot R0→ X
with image x ∈ X . Note that h induces a (unique) cocone map since h(p(u)) = g(p(u)) =
g(p) ◦ u for each plot p : U → X and each u ∈ U , which also implies the smoothness of
h. ut

The result is essentially the same as [I2, Exercise 33].

Given a diffeological space X , the category DS /X can be used to define geometric
structures on X . See [So,I2] for a discussion of differential forms and the de Rham coho-
mology of a diffeological space, and see [He,La] for tangent spaces and tangent bundles.

3 The D-topology

A diffeological space is a set with some extra structure. We can associate to every diffeolog-
ical space the following interesting topology:

Definition 3.1 ([I1]) Given a diffeological space X , the final topology induced by its plots,
where each domain is equipped with the standard topology, is called the D-topology on X .

In more detail, if (X ,D) is a diffeological space, then a subset A of X is open in the
D-topology of X if and only if p−1(A) is open for each p∈D . We call such subsets D-open.
If D is generated by a subset D ′, then A is D-open if and only if p−1(A) is open for each
p ∈D ′.

A smooth map X → X ′ is continuous when X and X ′ are equiped with the D-topology,
and so this defines a functor D : Diff→ Top to the category of topological spaces.

Example 3.2 (1) The D-topology on a smooth manifold with the standard diffeology coin-
cides with the usual topology on the smooth manifold.

(2) The D-topology on a discrete diffeological space is discrete, and the D-topology on
an indiscrete diffeological space is indiscrete.
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Every topological space Y has a natural diffeology, called the continuous diffeology,
whose plots U → Y are the continuous maps. A continuous map Y → Y ′ is smooth when Y
and Y ′ are equiped with the continous diffeology, and so this defines a functor C : Top→
Diff.

Proposition 3.3 The functors D : Diff 
 Top : C are adjoint, and we have C ◦D ◦C = C
and D◦C ◦D = D.

Proof The adjointness is [SYH, Proposition 3.1], and the rest is easy. ut

Proposition 3.4 ([He,La]) For each diffeological space, the D-topology is locally path-
connected.

However, not every locally path-connected space comes from a diffeological space; see
Example 3.14.

3.1 The D-topology is determined by smooth curves

Definition 3.5 We say that a sequence xm in Rn converges fast to x in Rn if for each k ∈ N
the sequence mk(xm− x) is bounded.

Note that every convergent sequence has a subsequence which converges fast.

Lemma 3.6 (Special Curve Lemma [KM, page 18]) Let xm be a sequence which con-
verges fast to x in Rn. Then there is a smooth curve c : R→ Rn such that c(t) = x for t ≤ 0,
c(t) = x1 for t ≥ 1, c( 1

m ) = xm for each m ∈ Z+, and c maps [ 1
m+1 ,

1
m ] to the line segment

joining xm+1 and xm.

Theorem 3.7 The D-topology on a diffeological space X is determined by C∞(R,X), in the
sense that a subset A of X is D-open if and only if p−1(A) is open for every p ∈C∞(R,X).

Proof (⇒) This follows from the definition of the D-topology.
(⇐) Suppose that p−1(A) is open for every p ∈C∞(R,X). Consider a plot q : U → X ,

and let x ∈ q−1(A). Suppose that {xm} converges fast to x. By the Special Curve Lemma,
there is a smooth curve c : R→ U such that c( 1

m ) = xm for each m and c(0) = x. Since
c−1(q−1(A)) is open, xm is in q−1(A) for m sufficiently large. So q−1(A) is open in U . ut

Example 3.8 Let X = R2 with the standard diffeology, and let Y be the set R2 with the dif-
feology generated by C∞(R,R2). Then D(X) is homeomorphic to D(Y ) since C∞(R,X) =
C∞(R,Y ), but X and Y are not diffeomorphic since the identity map R2→ R2 does not lo-
cally factor through curves. In other words, the D-topology is determined by smooth curves,
but the diffeology is not.

In this example, Y has the smallest diffeology such that C∞(R,R2) consists of the usual
smooth curves. In contrast, by Boman’s theorem [KM, Corollary 3.14], X has the largest
diffeology such that C∞(R,R2) consists of the usual smooth curves. That is, p : U → X is a
plot if and only if for every smooth function c : R→U , the composite p◦ c is in C∞(R,X).
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3.2 Relationship with ∆ -generated topological spaces

Definition 3.9 A topological space X is called ∆ -generated if the following condition holds:
A ⊆ X is open if and only if f−1(A) is open in ∆ n, the standard n-simplex in Top, for each
continuous map f : ∆ n→ X and each n ∈ N.

It is not hard to show that being ∆ -generated is the same as being R-generated or [0,1]-
generated, i.e. that one can determine the open sets of a ∆ -generated space using just the
continuous maps R→ X or [0,1]→ X . This follows from the existence of a surjective con-
tinuous map R→ ∆ n that exhibits ∆ n as a quotient of R. Note the similarity to Theorem 3.7.
More on ∆ -generated topological spaces can be found in [D,FR].

Proposition 3.10 ([SYH]) The spaces in the image of the functor D are exactly the ∆ -
generated topological spaces.

Since the argument is easy, we include a proof.

Proof Let X be a diffeological space, and consider A⊆D(X). Suppose f−1(A) is open in R
for all continuous f : R→ D(X). Then f−1(A) is open in R for all smooth f : R→ X . Thus
A is open in D(X), and so D(X) is ∆ -generated.

Now suppose that Y is ∆ -generated. By adjointness, the identity map D(C(Y ))→ Y is
continuous. We claim that it is a homeomorphism, and so Y is in the image of D. Indeed,
suppose A ⊆ D(C(Y )) is open. That is, f−1(A) is open in R for all smooth f : R→ C(Y ).
That is, f−1(A) is open in R for all continuous f : R→ Y . Then, since Y is ∆ -generated, A
is open in Y . ut

Because of this, it will be helpful to better understand which topological spaces are
∆ -generated.

Proposition 3.11 Every locally path-connected first countable topological space is ∆ -gen-
erated.

Proof Let (X ,τ) be a locally path-connected first countable topological space. Then for each
x ∈ X , there exists a neighborhood basis {Ai}∞

i=1 of x, such that

1. each Ai is path-connected; and
2. Ai+1 ⊆ Ai.

This is because, for a neighborhood basis {Bi}∞
i=1 of x, we can define A1 to be the path-

component of B1 containing x, and Ai to be the path-component of Ai−1 ∩Bi containing x
for i≥ 2. Since X is locally path-connected, each Ai is open.

Now let τ ′ be the final topology on X for all continuous maps ∆ n→ (X ,τ) for all n ∈N.
Clearly τ ⊆ τ ′. Suppose A is not in τ . This means that there exists x ∈ A such that for each
U ∈ τ which is a neighborhood of x, there exists xU ∈U \A. Let {Ai}∞

i=1 be a neighbourhood
basis for x with the above two properties, and write xn ∈ An \ A accordingly. Define f :
[0,1]→ X by letting f |[ 1

i+1 ,
1
i ]

be a continuous path connecting xi+1 to xi in Ai, and f (0) = x.

It is easy to see that f is continuous for (X ,τ), but f−1(A) is not open in [0,1]. So A is not
in τ ′. ut

Recall from Propositions 3.4 and 3.10 that every ∆ -generated space is locally path-
connected. However, not every ∆ -generated space is first countable:
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Proposition 3.12 Let X be a set with the complement-finite topology. We write card(X) for
its cardinality. Then

1. X is ∆ -generated if card(X)< card(N) or card(X)≥ card(R);
2. X is not ∆ -generated if card(X) = card(N).

Note that X is not first countable when card(X) ≥ card(R). This provides a counterex-
ample to the converse of Proposition 3.11.

Proof (1) If X is a finite set, then the complement finite topology is the discrete topology.
Hence X is ∆ -generated.

Assume card(X) ≥ card(R), and let B be a non-closed subset of X , that is, B 6= X and
card(B)≥ card(N). We must construct a continuous map f : R→ X such that f−1(B) is not
closed in R. Note that in this case, every injection R→ X is continuous.

Take an injection f̃ : { 1
n}n∈Z+ → B. We can extend this to an injection f : R→ X with

f (0) ∈ X \B. This map is what we are looking for.
(2) If card(X) = card(N), then every continuous map [0,1]→ X is constant. Otherwise,

since every point in X is closed, [0,1] would be a disjoint union of at least 2 and at most
countably many non-empty closed subsets, which contradicts a theorem of Sierpiński (see,
e.g., [vM, A.10.6] or the slick argument posted by Gowers [G]). Since X is not discrete, it is
not ∆ -generated. ut

Remark 3.13 Assume the continuum hypothesis. Then the above proposition says that a set
X with the complement finite topology is ∆ -generated if and only if X is not an infinite
countable set.

Here is an example showing that not every locally path-connected topological space is
the D-topology of a diffeological space:

Example 3.14 As a set, let X be the disjoint union of copies of the closed unit interval
indexed by the set J of countable ordinals. We write elements in X as xa with x ∈ [0,1] and
a ∈ J. Let Y be the quotient set X/∼, where the only non-trivial relations are 1a ∼ 1b for all
a,b ∈ J. Since we will only work with Y , we denote the elements of Y in the same way as
those of X . The topology on Y is generated by the following basis:

1. the open interval (xa,ya) for each 0≤ x < y≤ 1 and a ∈ J;
2. the set Ua,x := (∪a≤b∈J [0b,1b])∪ (∪c<a(xc,1c]) for each a ∈ J and x ∈ [0,1).

One can show that Y is locally path-connected (but not first countable). However, Y is not
∆ -generated. Indeed, let A = ∪a∈J(0a,1a]. Then A is not open in Y . For every continuous
map f : ∆ n → X , we claim that f−1(A) is open in ∆ n. Otherwise, there exists u ∈ f−1(A)
such that no open neighborhood of u is contained in f−1(A). Since the intervals (xa,ya) are
open, we must have f (u) = 1a, the common point. Choose a sequence (ui) converging to u
such that each ui is not in f−1(A). Then f (ui) = 0bi for some countable ordinals bi. Let b be
a countable ordinal larger than each bi. Then Ub,0 is an open set containing f (u) but none of
the f (ui), so f (ui) is not convergent to f (u) = 1a, which conflicts the continuity of f .

3.3 Two topologies related to a subset of a diffeological space

Let X be a diffeological space, and let Y be a quotient set of X . Then we can give Y two
topologies:
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1. the D-topology of the quotient diffeology on Y ;
2. the quotient topology of the D-topology on X .

Since D : Diff→ Top is a left adjoint, these two topologies are the same.
Similarly, let X be a diffeological space, and let A be a subset of X . Then we can give A

two topologies:

1. τ1(A) : the D-topology of the sub-diffeology on A;
2. τ2(A) : the sub-topology of the D-topology on X .

However, these two topologies are not always the same. In general, we can only conclude
that τ2(A)⊆ τ1(A).

Example 3.15 (1) Let A be a subset of R. Then τ1(A) is discrete if and only if A is totally
disconnected under the sub-topology of R. In particular, if A =Q, then τ1(Q) is the discrete
topology, which is strictly finer than the sub-topology τ2(Q).

(2) Let f : R→ R be a continuous and nowhere differentiable function, and let A =
{(x, f (x)) | x ∈ R} be its graph, equipped with the sub-diffeology of R2. Then τ1(A) is the
discrete topology, which is strictly finer than the sub-topology of R2. Here is the proof.
Let g : R→ R2 defined by t 7→ (y(t),z(t)) be a smooth map whose image is in A. Assume
that y′(a) 6= 0 for some a ∈ R. Then by the inverse function theorem, y : R→ R is a local
diffeomorphism around a. Since Im(g)⊆ A, we have z= f ◦y, which implies that f = z◦y−1

around y(a), contradicting nowhere differentiability of f . Therefore, any plot of the form
R→ A is constant. By Theorem 3.7, τ1(A) is discrete. On the other hand, the sub-topology
τ2(A) is homeomorphic to the usual topology on R.

We are interested in conditions under which τ1(A) = τ2(A).

Lemma 3.16 Let A be a convex subset of Rn. Then τ1(A) = τ2(A).

Proof Following the idea of the proof of [KM, Lemma 24.6(3)], let B ⊆ A be closed in the
τ1(A)-topology, and let B̄ be the closure of B in A for the τ2(A)-topology. Note that the
τ2(A)-topology is the same as the sub-topology of Rn. Hence, for any b ∈ B̄, we can find a
sequence bn in B which converges fast to b. Since A is convex, the Special Curve Lemma
(Lemma 3.6) says that there is a smooth curve c : R→ A such that c(0) = b and c( 1

n ) = bn
for each n ∈ Z+. Therefore, b ∈ B by the definition of the D-topology. ut

Lemma 3.17 If A is a D-open subset of a diffeological space X, then τ1(A) = τ2(A).

Proof Let B be in τ1(A). To show that B is in τ2(A), it suffices to show that B is D-open
in X . Let p : U → X be an arbitrary plot of X . Since A is D-open in X , p−1(A) is an open
subset of U . Hence the composition of p−1(A) ↪→U → X is also a plot for X , which factors
through the inclusion map A ↪→ X . Since B ∈ τ1(A), (p|p−1(A))

−1(B) is open in p−1(A),
which implies that p−1(B) is open in U . Thus B is D-open in X , as required. ut

Example 3.18 GL(n,R) is D-open in M(n,R)∼=Rn2
. Hence, τ1(GL(n,R)) = τ2(GL(n,R)).

Also see Corollary 4.15 for another example. Note that Lemma 3.17 is not true if we
change D-open to D-closed:

Example 3.19 Let A = { 1
n}n∈Z+ ∪{0} ⊂R. Then A is D-closed in R. It is easy to check that

τ1(A) is discrete, and is strictly finer than τ2(A).
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Proposition 3.20 Let X be a diffeological space and let A be a subset of X. If there exists
a D-open neighborhood C of A in X together with a smooth retraction r : C → A, then
τ1(A) = τ2(A). (Here both C and A are equipped with the sub-diffeologies from X.)

Proof Let B ∈ τ1(A). Then r−1(B) ∈ τ1(C) = τ2(C) is D-open in X . Therefore, B = A∩
r−1(B) ∈ τ2(A). ut

Example 3.21 Given a smooth manifold M of dimension n > 0, by the strong Whitney Em-
bedding Theorem, there is a smooth embedding M ↪→R2n. If we view M as a subset of R2n,
then τ1(M) = τ2(M) since there is an open tubular neighborhood U of M in R2n together
with a smooth retraction U →M.

4 The D-topology on function spaces

Let M and N be smooth manifolds. Recall that the set C∞(M,N) of smooth maps from M to
N has a functional diffeology described just after Theorem 2.6. In this section, we consider
the topological space obtained by taking the D-topology associated to this diffeology, and
we compare it to other well-known topologies on this set: the compact-open topology, the
weak topology, and the strong topology.

Here is a review of these three topologies and their relationship. The books [Hi,KM,Mi]
are good references for the weak and strong topologies.

The compact-open topology on C∞(M,N) has a subbasis which consists of the sets
A(K,W ) = { f ∈ C∞(M,N) | f (K) ⊆W}, where K is a non-empty compact subset of M
and W is an open subset of N. (This makes sense for any diffeological spaces M and N,
where K is then required to be compact in D(M) and W to be open in D(N).)

We now describe a subbasis for the weak topology on C∞(M,N). For r ∈ N, (U,φ)
a chart of M, (V,ψ) a chart of N, K ⊆ U compact, f ∈ C∞(M,N) with f (K) ⊆ V , and
ε > 0, we define the set Nr( f ,(U,φ),(V,ψ),K,ε) to be {g ∈ C∞(M,N) | g(K) ⊆ V and
‖Di(ψ ◦ f ◦ φ−1)(x)−Di(ψ ◦ g ◦ φ−1)(x)‖ < ε for each x ∈ φ(K) and each multi-index i
with |i| ≤ r}. These sets form a subbasis for the weak topology. Here i = (i1, . . . , im) is a
multi-index in Nm with m = dim(M), |i| = i1 + · · ·+ im, and Di is the differential operator

∂ |i|

∂x
i1
1 ···∂xim

m
.

A subbasis for the strong topology on C∞(M,N) is similar, but it allows constraints using
multiple charts. More precisely, if Nr( f ,(Ui,φi),(Vi,ψi),Ki,εi) is a family of subbasic sets
for the weak topology such that the collection {Ui} is locally finite, then the intersection
of this family is a subbasic set for the strong topology. In fact, one can show that these
intersections form a base for the strong topology.

Each of these is at least as fine as the previous one, i.e.,

compact-open topology⊆ weak topology⊆ strong topology.

The first inclusion is proved in Lemma A.2, and the second is clear. The compact-open
topology and the weak topology coincide if and only if M or N is zero-dimensional (see
Example 4.5). Moreover, the weak topology and the strong topology coincide if the domain
M is compact and are different if M is non-compact and N has positive dimension (see [Hi,
pp. 35–36]).

Now we start our comparison of the D-topology with these topologies. The following
lemma is needed for the subsequent proposition.
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Lemma 4.1 Let X and Y be two diffeological spaces such that D(X) is locally compact
Hausdorff. Then the natural bijection D(X×Y )→ D(X)×D(Y ) is a homeomorphism.

Note that when X is a smooth manifold, D(X) is locally compact Hausdorff.

Proof First observe that the natural bijection D(U ×V )→ D(U)×D(V ) is a homeomor-
phism for U and V open subsets of Euclidean spaces, since in this case the D-topology is
the usual topology. The functors D : Diff→ Top, Z×− : Diff→Diff for any diffeological
space Z and W ×− : Top→ Top for any locally compact Hausdorff space W all preserve
colimits since they are left adjoints. Thus the claim follows from Proposition 2.7, using that
D(X) is locally compact Hausdorff, as is each D(U) for U an open subset of Euclidean
space. ut

For general X and Y , one can show using a similar argument that the D-topology on
D(X ×Y ) corresponds under the bijection above to the smallest ∆ -generated topology con-
taining the product topology on D(X)×D(Y ).

Proposition 4.2 For diffeological spaces X and Y , the D-topology on C∞(X ,Y ) contains
the compact-open topology.

This result is a stepping stone to proving the stronger statement that the D-topology
contains the weak topology.

Proof Recall that the compact-open topology has a subbasis which consists of the sets
A(K,W ) = { f ∈C∞(X ,Y ) | f (K) ⊆W}, where K is a non-empty compact subset of D(X)
and W is an open subset of D(Y ). We will show that each A(K,W ) is D-open. Let φ : U →
C∞(X ,Y ) be a plot of C∞(X ,Y ). Since the corresponding map φ̄ : U ×X → Y is smooth,
φ̄−1(W ) is open in D(U ×X). So for each u ∈ φ−1(A(K,W )), {u}×K is in the open set
φ̄−1(W ). Note that the natural map D(U ×X)→ D(U)×D(X) is a homeomorphism by
Lemma 4.1. By the compactness of K and the definition of the product topology, V ×K ⊆
φ̄−1(W ) for some open neighborhood V of u in U , which implies that φ−1(A(K,W )) is open
in U . Thus A(K,W ) is open in the D-topology. ut

We will see in Example 4.5 that the D-topology is almost always strictly finer than the
compact-open topology.

The next lemma will be used to show that the D-topology contains the weak topology
for function spaces between smooth manifolds.

Lemma 4.3 Let U be an open subset in Rn. Then Di : C∞(U,R)→C∞(U,R) is smooth.

Proof Let φ : V → C∞(U,R) be a plot with dim(V ) = m. This means that the associated
map φ̄ : V ×U → R defined by φ̄(v,u) = φ(v)(u) is smooth. Write j for the vector (0m, i) ∈
Rm+n with 0m the origin of Rm. Then D j(φ̄) : V ×U → R is smooth. Since D j(φ̄)(v,u) =
Di(φ(v))(u), Di ◦φ is a plot, which implies the smoothness of Di. ut

Note that the smoothness of Di does not imply its continuity in general. It is an easy
exercise that for |i|> 0 and n > 0, Di is not continuous in the compact-open topology but is
continuous in both the weak and strong topologies.

Now we can compare the D-topology with the weak topology for function spaces be-
tween smooth manifolds:
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Proposition 4.4 Let M and N be smooth manifolds. Then the D-topology on C∞(M,N) con-
tains the weak topology.

Proof Recall that the weak topology on C∞(M,N) has the sets Nr( f ,(U,φ),(V,ψ),K,ε),
described at the beginning of Section 4, as a subbasis.

Let p : W →C∞(M,N) be a plot, that is, p̄ : W ×M→ N given by p̄(w,x) = p(w)(x) is
smooth. If w ∈ p−1(Nr( f ,(U,φ),(V,ψ),K,ε)), then by Proposition 4.2, Lemma 4.3 and the
facts that φ and ψ are diffeomorphisms, only finitely many differentials are considered, K is
compact and V is open, it is not hard to see that there exists an open neighborhood W ′ of w
in W such that W ′ ⊆ p−1(Nr( f ,(U,φ),(V,ψ),K,ε)). Therefore, Nr( f ,(U,φ),(V,ψ),K,ε)
is D-open. ut

Since the weak topology is almost always strictly finer than the compact-open topology,
so is the D-topology:

Example 4.5 The D-topology on C∞(R,R) is strictly finer than the compact-open topology.
To prove this, consider U = N1(0̂,(R, id),(R, id), [−1,1],1), where 0̂ is the zero function.
This is open in the weak topology and thus is open in the D-topology. We claim that no open
neighborhood of 0̂ in the compact-open topology of C∞(R,R) is contained in U . Otherwise,
we may assume 0̂ ∈ A(K,(−ε,ε)) ⊆U for some ε > 0 and some compact K, since if 0̂ ∈
A(K1,W1)∩·· ·∩A(Km,Wm), then 0∈Wi for each i and 0̂∈ A(K1∪·· ·∪Km,W1∩·· ·∩Wm)⊆
A(K1,W1)∩ ·· · ∩A(Km,Wm). Then clearly f : R→ R defined by f (x) = (ε/2)sin(2x/ε) is
in A(K,(−ε,ε)) for any K. But f is not in U since f ′(0) = 1.

Using a similar argument, with bump functions, one can show that when M and N are
smooth manifolds of dimension at least 1, then the weak topology is strictly finer than the
compact-open topology. Thus the D-topology is strictly finer than the compact-open topol-
ogy in this situation.

In general, the weak topology is different from the D-topology on C∞(M,N):

Example 4.6 (1) Let N and {0,1} be equipped with the discrete diffeologies. Let f : N→
{0,1} be the constant function sending everything to 0, and let fn : N→{0,1} be defined by
f−1
n (0) = {0,1, . . . ,n}. Note that fn converges to f in the weak topology for the following

reason. Since each element in the subbasis of the weak topology depends only on the values
of the function and its derivatives on a compact subset of N, any of them containing f must
contain all fn for n large enough.

On the other hand, we claim that for each n there is no continuous path F : [0,1]→
C∞(N,{0,1}) with F(0)= fn and F(1)= f , where the codomain is given the weak topology.
Since the weak topology contains the compact-open topology, such an F gives rise to a
continuous function [0,1]×N→ {0,1}, i.e. a homotopy from D( fn) to D( f ). Since these
maps are clearly not homotopic, no such F exists.

Thus the weak topology is not locally path-connected. It follows from Proposition 3.4
that the weak topology is different from the D-topology on C∞(N,{0,1}).

The above argument in fact shows that every continuous path in C∞(N,{0,1}) with
respect to a topology containing the compact-open topology is constant. In particular, this
holds for the D-topology, and since the D-topology is ∆ -generated, it must be discrete.

(2) Let X be a countable disjoint union of copies of S1, i.e. X =
∐

i∈N Xi with each
Xi = S1. Then the weak topology on C∞(X ,S1) is not locally path-connected, by a similar
argument, with f : X → S1 defined by f |Xi = id : Xi→ S1, and fn : X → S1 defined by

fn|Xi =

{
id, if i = 0,1, . . . ,n
− id, otherwise.
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(3) The weak topology on C∞(R2 \ ({0}×Z),S1) is not locally path-connected, by a
similar argument, with f : R2 \ ({0}×Z)→ S1 defined by

f (x,y) =
1− e2π(x+iy)

|1− e2π(x+iy)|
,

and fn : R2 \ ({0}×Z)→ S1 defined by

fn(x,y) = f (x,φn(y)),

where φn : R→ R is a strictly increasing smooth function with φn(t) = t for |t| ≤ n and
|φn(t)|< n+1 for all t.

The above examples all show that the weak topology is not locally path connected and
in particular that it is not ∆ -generated. The D-topology is a ∆ -generated topology which
contains the weak topology, and the following theorem says that, given this, it is as close to
the weak topology as possible.

Theorem 4.7 Let M and N be smooth manifolds. Then the D-topology on C∞(M,N) is the
smallest ∆ -generated topology containing the weak topology.

Proof First note that by Proposition 4.4, the D-topology contains the weak topology, and by
Proposition 3.10, the D-topology is ∆ -generated. So we must prove that the D-topology on
C∞(M,N) is contained in every ∆ -generated topology containing the weak topology.

So let τ be a ∆ -generated topology containing the weak topology and assume that A ⊆
C∞(M,N) not open in τ . Since τ is ∆ -generated, there is a τ-continuous map p : R →
C∞(M,N) such that p−1(A) is not open in R. Since τ contains the weak topology, p is weak
continuous. By composing with a translation in R, we can assume that 0 is a non-interior
point of p−1(A). Thus we can find a sequence tr of real numbers converging to 0 so that
p(tr) 6∈ A for each r. By Theorem A.5, there is a smooth curve q : R→C∞(M,N) such that
q(2− j) = p(tr j ) 6∈ A for each j and q(0) = p(0). This shows that A is not open in the D-
topology. ut

Since every ∆ -generated space is locally path connected (see Propositions 3.4 and 3.10),
the previous result is in fact a special case of the next result.

Theorem 4.8 Let M and N be smooth manifolds. Then the D-topology on C∞(M,N) is the
smallest locally path connected topology containing the weak topology.

Proof Suppose τ is a locally path-connected topology that contains the weak topology, A is
not τ-open, and f ∈ A is not τ-interior to A. Since the weak topology on C∞(M,N) is first
countable, there is a countable weak neighborhood basis (Wr)

∞
r=1 of f . Contained in each

Wr there is a path-connected τ-neighborhood Tr of f . For each r, choose an fr ∈ Tr \A and
a τ-continuous (and therefore weak continuous) path from f to fr lying entirely in Tr ⊆Wr.
We can concatenate these paths to produce a weak continuous path p such that p(0) = f and
p(2−r) = fr. By Theorem A.5, there is a smooth curve q : R→C∞(M,N) such that q(0) = f
and q(2− j) = fr j . Then q−1(A) contains 0 but not 2− j for any j, so A is not open in the
D-topology. ut

As a corollary, we have the following necessary and sufficient condition for the weak
topology to be equal to the D-topology:
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Corollary 4.9 Let M and N be smooth manifolds. Then the weak topology on C∞(M,N)
coincides with the D-topology if and only if the weak topology is locally path-connected.

Proof This follows from Theorem 4.8 (or from Theorem 4.7, using that the weak topology
is second countable [Hi, pp. 35–36]). ut

This allows us to give a situation in which the D-topology and the weak topology coin-
cide. (See also Corollary 4.14.)

Corollary 4.10 Let M be a smooth manifold. Then the weak topology on C∞(M,Rn) coin-
cides with the D-topology.

Proof By Lemma A.3, the weak topology on C∞(M,Rn) has a basis of convex sets. A linear
path is smooth and hence weak continuous, so it follows that this topology is locally path
connected. ut

Our next goal is to show that the D-topology is contained in the strong topology. We
first need some preliminary results.

Lemma 4.11 Let M be a smooth manifold and let N be an open subset of Rd . Then the
D-topology on C∞(M,N) is contained in any topology that contains the weak topology and
has a basis of convex sets.

Here we say that a subset of C∞(M,N) is convex if it is convex when regarded as a
subset of the real vector space C∞(M,Rd).

Proof A convex set isn’t necessarily path connected, since linear paths may not be contin-
uous. Thus Theorem 4.8 doesn’t apply directly. However, in the proof of Theorem 4.8, all
that is used is that the subsets Tr are path connected in the weak topology. Since linear paths
are smooth, they are weak continuous, and so the proof goes through. ut

Lemma 4.12 Let M be a smooth manifold and let N be an open subset of Rd . Then C∞(M,N)
is an open subspace of C∞(M,Rd) when both are equipped with the strong topology.

Proof We first prove that the strong topology on C∞(M,N) is the subspace topology of the
strong topology on C∞(M,Rd). Since the inclusion map N→ Rd induces a continuous map
in the strong topologies ([Hi, Exercise 10(b), page 65]), the intersection of a strong open set
in C∞(M,Rd) with C∞(M,N) is open in C∞(M,N). On the other hand, the data for each weak
subbasic set A in C∞(M,N) defines a weak subbasic set in C∞(M,Rd) whose intersection
with C∞(M,N) is A. Since the strong subbasic sets are certain intersections of the weak
subbasic sets, our claim follows.

Now we show that C∞(M,N) is an open subset of C∞(M,Rd), following the argument
in Lemma A.2. For f ∈C∞(M,N), choose charts for M and N and compact sets Ki ⊆M as
described in Lemma A.1(b). Then

f ∈ ∩∞
i=1 N0( f ,(Ui,φi),(N, id),Ki,1)⊆C∞(M,N),

where each N0( f ,(Ui,φi),(N, id),Ki,1) is understood to be a subbasic set for C∞(M,Rd).
So C∞(M,N) is open in the strong topology. ut

Theorem 4.13 Let M and N be smooth manifolds. Then the D-topology on C∞(M,N) is
contained in the strong topology.



The D-topology for diffeological spaces 15

Proof Choose an embedding N ↪→ Rd , and let U be an open tubular neighborhood of N
in Rd , so that the inclusion i : N→U has a smooth retract r : U → N. Since i and r induce
continuous maps in both the strong topology ([Hi, Exercise 10, page 65]) and the D-topology
(an easy argument), C∞(M,N) is a subspace of C∞(M,U) when both are equipped with either
of these topologies. So if these topologies agree on C∞(M,U), then they agree on C∞(M,N).
Thus it suffices to prove the result when N is open in Rd . Assume that this is the case.

We first prove that the strong topology on C∞(M,Rd) has a basis of convex sets. If
A := ∩i Nr( f ,(Ui,φi),(Vi,ψi),Ki,εi) is a basic open set of the strong topology, as described
at the beginning of Section 4, and if g ∈ A, then by the proof of Lemma A.3,

g ∈ ∩i Nr(g,(Ui,φi),(Rd , id),Ki,ε
′′′
i )⊆ A,

which shows that A is covered by convex strong open sets.
By Lemma 4.12, C∞(M,N) is open in C∞(M,Rd), so it too has a basis of convex sets.

Thus, by Lemma 4.11, the D-topology on C∞(M,N) is contained in the strong topology. ut

Corollary 4.14 Let M and N be smooth manifolds with M compact. Then the D-topology
on C∞(M,N) coincides with the weak topology.

Proof The D-topology is trapped between the weak topology (Proposition 4.4) and the
strong topology (Theorem 4.13), and these coincide when M is compact. ut

Here is one application of our results:

Corollary 4.15 Let M be a smooth compact manifold, and let Diff(M) be the set of all
diffeomorphisms from M to itself with the sub-diffeology of C∞(M,M). Then Diff(M) is
D-open in C∞(M,M). Hence, τ1(Diff(M)) = τ2(Diff(M)) in the sense of Section 3.3.

Proof As mentioned in Corollary 4.14, when M is compact, the weak, strong and D-topolo-
gies on C∞(M,M) all coincide. The first claim is then the restatement of [Hi, Theorem 2.1.7],
and the second part follows from Lemma 3.17. ut

Similarly, many results in [Hi, Chapter 2] can be translated into those for the D-topology.

When M is non-compact and N has positive dimension, the weak topology is different
from the strong topology [Hi, pp. 35–36]. Since the weak topology and the D-topology
coincide for C∞(M,Rn), it follows that the D-topology and the strong topology are different
for C∞(M,Rn) when M is non-compact. We can make this explicit in the next example.

Example 4.16 It is not hard to show that the strong topology on C∞(R,R) has a basis
{Bk

δ
( f ) | k ∈ N, δ : R→ R+ continuous, f ∈ C∞(R,R)}, where Bk

δ
( f ) = {g ∈ C∞(R,R) |

∑
k
i=0( f (i)(x)− g(i)(x))2 < δ (x) for each x ∈ R}. On the other hand, since the D-topology

agrees with the weak topology on C∞(R,R), it has a basis {B̃k
ε( f ) | k ∈ N,ε ∈ R+,

f ∈ C∞(R,R)}, where B̃k
ε( f ) = {g ∈ C∞(R,R) | ∑

k
i=0( f (i)(x)− g(i)(x))2 < ε for each

x ∈ [−k,k]}. It follows that the strong topology is strictly finer than the D-topology on
C∞(R,R).

On the other hand, it can be the case that the D-topology is different from the weak
topology but agrees with the strong topology. For example, this happens in case (1) of Ex-
ample 4.6, where it is easy to see that the strong topology is also discrete.
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Remark 4.17 The book [KM] also studies function spaces between smooth manifolds, but
uses a different smooth structure on the function space to ensure that the resulting object has
the desired local models. By [KM, Lemma 42.5], the smooth structure has fewer smooth
curves than the diffeology studied here, and as a result the natural topology discussed
in [KM, Remark 42.2] is larger than the D-topology. In fact, according to that remark, it
is larger than the strong topology (which is called the WO∞-topology in [KM]).

A Appendix: The weak topology on function spaces

In this Appendix, our goal is to prove a theorem about the weak topology on function spaces
which is analogous to the Special Curve Lemma (Lemma 3.6). This is Theorem A.5. Be-
fore proving the theorem, we collect together and prove some basic results about the weak
topology on function spaces, and state the following lemma.

Lemma A.1 Let M and N be smooth manifolds.

(a) There exists a locally finite countable atlas {(Ui,φi)}i∈N of M and a compact set Ki⊆Ui,
for each i, such that M = ∪i Ko

i , where Ko
i denotes the interior of Ki.

(b) For any smooth map f : M→ N, there exist {(Ui,φi,Ki)}i∈N as in (a) and a countable
atlas {(Vi,ψi)}i∈N of N such that f (Ki)⊆Vi for each i. ut

Recall that for M and N smooth manifolds, the weak topology on C∞(M,N) has as
subbasic neighbourhoods the sets Nr( f ,(U,φ),(V,ψ),K,ε) described at the beginning of
Section 4.

Lemma A.2 Let M and N be smooth manifolds. Then the weak topology on C∞(M,N) con-
tains the compact-open topology.

Proof Consider A(K,W ) = {g ∈C∞(M,N) | g(K)⊆W} where K ⊆M is compact and W ⊆
N is open. Let f ∈ A(K,W ). Choose charts for M and N and compact sets Ki as described in
Lemma A.1(b). Choose j so that K ⊆ ∪ j

i=1 Ki. Then

f ∈ ∩ j
i=1 N0( f ,(Ui,φi),(Vi∩V,ψi),Ki∩K,1)⊆ A(K,W ),

so A(K,W ) is open in the weak topology. ut

Lemma A.3 Let M be a smooth manifold. The sets Nr( f ,(U,φ),(Rd , id),K,ε), where
r ∈N, f ∈C∞(M,Rd), (U,φ) is a chart of M, K ⊆U is compact and ε > 0, form a subbasis
for the weak topology on C∞(M,Rd). In particular, the weak topology on C∞(M,Rd) has a
basis of convex sets.

Proof Consider a subbasic set A := Nr( f ,(U,φ),(V,ψ),K,ε) containing a function g. First
observe that g ∈ A′ := Nr(g,(U,φ),(V,ψ),K,ε ′) ⊆ A for some ε ′, since these sets are de-
termined by comparing finitely many norms on a compact set. One can then show that
A′′ := Nr(g,(U,φ),(V, id),K,ε ′′)⊆ A′ for some ε ′′, using bounds on the derivatives of ψ on
g(K). Finally, we claim that A′′′ := Nr(g,(U,φ),(Rd , id),K,ε ′′′) ⊆ A′′ for some ε ′′′. To see
this, cover g(K) by finitely many open balls B1, . . . ,Bn such that 2B` ⊆V for each `, and let
ε ′′′ be the minimum of the radii and ε ′′. Then if h ∈ A′′′ and x ∈ K, we have g(x) ∈ B` for
some ` and |g(x)−h(x)|< ε ′′′, so h(x) ∈ 2B` ⊆V . ut



The D-topology for diffeological spaces 17

For N open in Rd , we will implicitly use that the inclusion map induces a continuous
map C∞(M,N) ⊆ C∞(M,Rd) in the weak topologies, which follows from the fact that the
weak topology is functorial in the second variable (see [Hi, Exercise 10(a), page 64]). (In
fact, the weak topology and the subspace topology on C∞(M,N) agree, but we won’t need
this.) Although C∞(M,N) need not be an open subset of C∞(M,Rd), it has the following
weaker property.

Lemma A.4 Let M be a smooth manifold and let N be an open subset of Rd . If
f ∈C∞(M,N) and K is a compact subset of M, then there is a convex basic weak C∞(M,Rd)-
neighborhood of f whose elements map K into N.

Proof The set {g ∈ C∞(M,Rd) | g(K) ⊆ N} is open in the compact-open topology on
C∞(M,Rd) and so is open in the weak topology by Lemma A.2. By Lemma A.3, the weak
topology on C∞(M,Rd) has a basis of convex sets. Thus any f : M→ N has such a convex
basic set as a weak neighbourhood. ut

Theorem A.5 Let M and N be smooth manifolds. Suppose p : R→C∞(M,N) is weak con-
tinuous and tr is a sequence of real numbers converging to zero. Then there is a subse-
quence tr j and a smooth curve q : R→C∞(M,N) such that q(2− j) = p(tr j ) for each j and
q(0) = p(0).

Proof We first reduce to the case where N is open in Rd . As in Theorem 4.13, choose an
embedding N ↪→ Rd , and let U be an open tubular neighborhood of N in Rd , so that the
inclusion i : N →U has a smooth retract r : U → N. By [Hi, Exercise 10(a), page 64], the
map R→ C∞(M,U) sending t to i ◦ p(t) is weak continuous, so if the Theorem holds for
C∞(M,U), then there is a smooth curve q : R→C∞(M,U) such that q(2− j) = i◦ p(tr j ) for
each j and q(0) = i◦ p(0). Then the map sending t to r ◦q(t) is smooth, r ◦q(2− j) = p(tr j )

for each j, and r ◦q(0) = p(0), so we are done. Thus we may assume that N is open in Rd .
If tr is eventually constant we may take q to be a constant function, so suppose it is not.

Choose charts (Uk,φk)
∞
k=1 for M and compact sets Kk ⊆Uk as described in Lemma A.1(a).

Let f = p(0). For j = 1,2, . . . , the sets,

A j = ∩ j
k=1N j( f ,(Uk,φk),(Rd , id),Kk,2−( j+1)2

)

are weak C∞(M,Rd)-neighborhoods of f so we may choose a strictly monotone subse-
quence tr j such that p(tr j )∈A j for each j. Set f j = p(tr j ). Now compose p with a continuous
function taking 2− j to tr j for each j to obtain a weak continuous function p0 that satisfies
p0(2− j) = f j for j = 1,2, . . . and p0(0) = f .

Fix k. By Lemma A.4, for each t ∈ [0,1], there is a convex neighborhood of p0(t) whose
elements map Kk into N. By compactness, there is a δk > 0 such that any subinterval of
[0,1] of length at most 2δk is mapped by p0 into one of these neighborhoods. Thus, for
each t, any convex combination of elements in p([t−δk, t +δk]∩ [0,1]) maps Kk into N. Let
τ0,τ1, . . . be the strictly decreasing sequence obtained by ordering the set {1,1/2,1/4, . . .}∪
{δk,2δk, . . . ,b1/δkcδk}. Note that τ0 = 1 and τ j−1− τ j ≤ δk for j = 1,2, . . . .

Fix a non-decreasing µ ∈ C∞(R, [0,1]) such that µ = 0 in a neighborhood of (−∞,0]
and µ = 1 in a neighborhood of [1,∞). Let M` = 1+2max`′≤` maxt∈[0,1] |µ(`′)(t)|.

Define qk : R→C∞(M,Rd) by qk(t) = p0(0) for t ≤ 0, qk(t) = p0(1) for t ≥ 1, and

qk(t) = p0(τ j)+µ

(
t−τ j

τ j−1−τ j

)
(p0(τ j−1)− p0(τ j))
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for τ j ≤ t ≤ τ j−1, j = 1,2, . . . . Note that for each t ∈ (0,1], qk(t) is a convex combination
of elements of p0([t − δk, t + δk]∩ [0,1]). Clearly, qk is constant on (−∞,0] and constant
on [1,∞). The choice of µ ensures that it is constant in a neighborhood of τ j−1 for each
j and smooth on (τ j,τ j−1). Thus, qk is smooth on (R \ {0})×M. To see that it is also
smooth at t = 0, fix a positive integer κ , set F = f ◦ φ−1

κ , Fj = f j ◦ φ−1
κ for each j, and

Q(t,s) = qk(t)(φ−1
κ (s))−F(s). It will suffice to show that all partial derivatives of Q exist

and equal zero on S := {0}× φκ(Ko
κ). Certainly Q = 0 there and if D is any composition

of partial differentiation operators such that DQ vanishes on S then the partial derivative of
DQ with respect to any of s1, . . . ,sm also vanishes there. To complete the induction, it is
enough to show that the partial derivative of DQ with respect to t also vanishes on S.

Where Q is C∞, the order of mixed partials is unimportant so DQ = D`
t Di

sQ off S for
some `≥ 0 and some multi-index i. Choose J so that 2−J < δk. Then 2−J ,2−J−1,2−J−2, . . .
is a tail of the sequence τ0,τ1, . . . . So if j > J and 2− j ≤ t ≤ 21− j, then

qk(t) = f j +µ(2 jt−1)( f j−1− f j)

and, for s ∈ φκ(Uκ),

(D`
t Di

sQ)(t,s) =

{
(Di

s(Fj−F))(s)+µ(2 jt−1)(Di
s(Fj−1−Fj))(s), `= 0,

µ(`)(2 jt−1)2` j (Di
s(Fj−1−Fj))(s), `≥ 1.

If j > max(J,κ, |i|, `+2), then

f j ∈ A j ⊆ N j( f ,(Uκ ,φκ),(Rd , id),Kκ ,2−( j+1)2
)

and
f j−1 ∈ A j−1 ⊆ N j−1( f ,(Uκ ,φκ),(Rd , id),Kκ ,2− j2)

so
|Di

s(Fj−F)| ≤ 2−( j+1)2 ≤ 2− j2 and |Di
s(Fj−1−F)| ≤ 2− j2

on φκ(Kκ). Thus, for any s ∈ φk(Ko
κ),

|(DQ)(t,s)− (DQ)(0,s)|= |(D`
t Di

sQ)(t,s)| ≤M` 2` j 2− j2 ≤M` t2,

where we have used that ` < j−2 in the last inequality. Since j can be arbitrarily large, this
inequality holds for all sufficiently small t, so the partial derivative of DQ with respect to t
(from the right) exists and equals zero. The partial derivative from the left is trivially zero.
This completes the induction and the proof that qk is smooth.

Before allowing k to vary, observe that qk(τ j) = p0(τ j) for each j and, in particular,
qk(2− j) = p0(2− j) = f j for each j.

Let (νk)
∞
k=1 be a smooth partition of unity on M with νk supported in Ko

k and define
q by q(t)(x) = ∑

∞
k=1 νk(x)qk(t)(x). Then q : R→ C∞(M,Rd) is a smooth curve such that

q(2− j) = f j = p(tr j ) for each j, and of course q(0) = p(0). It remains to show that q(t)
takes values in N for each t ∈ R. Let x ∈M. There are finitely many k such that νk(x) 6= 0;
among them, choose k′ so that δk′ is as large as possible. Then, for any t and any k such that
νk(x) 6= 0, qk(t) is a convex combination of elements of p0([t− δk′ , t + δk′ ]∩ [0,1]). Thus,
∑

∞
k=1 νk(x)qk(t) is also a convex combination of elements of p0([t−δk′ , t +δk′ ]∩ [0,1]) and

therefore maps Kk′ to N. But νk′(x) 6= 0 so x ∈ Kk′ . Hence, ∑
∞
k=1 νk(x)qk(t)(x) ∈ N, that is,

q(t)(x) ∈ N. We conclude that q : R→C∞(M,N). This completes the proof. ut
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Manifolds (Santiago de Compostela, 1994), World Sci. Publishing, (1995), pp. 55-80.
Hi. M.W. HIRSCH, Differential topology, Graduate Texts in Mathematics, 33, Springer-Verlag, 1976.
I1. P. IGLESIAS-ZEMMOUR, Fibrations difféologiques et Homotopie, Thèse de Doctorat Es-sciences,
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