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1. Introduction

The operator Rα is defined by

Rαf(r, x) =
α

π

∫ 1

−1

∫ 1

−1
f(r|s|

√
1− t2, x + tr)(1− t2)α−1/2(1− s2)α−1 dt ds

for α > 0 and by

R0f(r, x) =
1
π

∫ 1

−1
f(r
√

1− t2, x + tr)(1− t2)−1/2 dt

when α = 0. These operators have been extensively studied in [1] and [6], as well
as in a more general form in [3]. They arise in connection with the system

∆1 =
∂

∂x
, ∆2 =

∂2

∂r2
+

2α + 1
r

∂

∂r
− ∂2

∂x2

of partial differential operators. The boundedness of integral operators associated
with a related differential operator is studied in [4].

The Lebesgue spaces Lp with weights of the form |x|α are a natural collection to
consider when boundedness of integral operators is concerned, see [7, 8, 10]. This
is particularly true when studying integral operators connected with differential
systems. Knowing the range of the parameter α and the index p for which an
operator is bounded on weighted Lebesgue space gives quantitative information
about the rate of growth of the transformed functions, about the operator itself,
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and about the original differential system. For some research in this direction, see
[2, 5, 9, 11, 12].

In this paper we consider the boundedness of the operators Rα on the weighted
Lebesgue spaces Lp((0,∞) × (−∞,∞), rβdrdx). For convenience we refer to this
space as Lp

β and denote its norm by

‖f‖p,β =
(∫ ∞

−∞

∫ ∞

0
|f(r, x)|prβ dr dx

)1/p

.

Here β can be any real number. The space L∞β ≡ L∞ does not depend on β, and

‖f‖∞,β ≡ ‖f‖∞ = ess sup{|f(r, x)| : (r, x) ∈ (0,∞)× (−∞,∞)}.

Our object is to investigate whether or not Rα is a bounded operator on Lp
β,

that is, whether or not there exists a constant C such that the inequality

‖Rαf‖p,β ≤ C‖f‖p,β

holds for all f ∈ Lp
β. This question is completely answered. In addition, we provide

a formula for the least possible constant C for which the inequality holds. This is
called the operator norm of Rα on Lp

β .
As usual, for p ∈ [1,∞] we define p′ by 1/p + 1/p′ = 1.

2. Determining the Operator Norm

Making the substitution t = sin θ and observing that the integral defining Rα is
symmetric in s, places the operators Rα and R0 in the form that we will use most
often:

Rαf(r, x) =
2α

π

∫ 1

0

∫ π/2

−π/2
f(rs cos θ, x + r sin θ)(cos θ)2α(1− s2)α−1 dθ ds

for α > 0 and

R0f(r, x) =
1
π

∫ π/2

−π/2
f(r cos θ, x + r sin θ) dθ.

It is clear from this form that R0f(r, x) is the average of f over the right semicircle
of radius r, centred at (0, x).

To see that Rα is also an averaging operator for α > 0 we make the change of
variable

u = rs cos θ, v = x + r sin θ.

The Jacobian determinant is |∂(u, v)/∂(θ, s)| = r2(cos θ)2 and the map (θ, s) →
(u, v) takes the open rectangle (−π/2, π/2) × (0, 1) one-to-one and onto the open
half disc D+

r (0, x) = {(u, v) : u > 0, u2 + (v − x)2 < r2}. We have

Rαf(r, x) =
2α

r2απ

∫∫
D+

r (0,x)
f(u, v)(r2 − u2 − (v − x)2)α−1 dudv.
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An easy calculation gives

2α

r2απ

∫∫
D+

r (0,x)
(r2 − u2 − (v − x)2)α−1 dudv = 1

showing that Rα is also an averaging operator. Indeed, Rαf(r, x) is the weighted
average of f over D+

r (0, x), where the weight (r2 − u2 − (v− x)2)α−1 is a power of
the distance to the boundary of the disc.

Our first result is an immediate consequence of these observations.

Theorem 2.1 If α ≥ 0 then Rα is a bounded operator on L∞ with operator norm
equal to 1. That is, the inequality ‖Rαf‖∞ ≤ ‖f‖∞ holds for all bounded f and
when C < 1 the inequality ‖Rαf‖∞ ≤ C‖f‖∞ fails to hold for some bounded f .

Proof. Let f be a bounded function and view ‖f‖∞ as a constant function.
Certainly, f ≤ ‖f‖∞ almost everywhere. Since Rα is an averaging operator, for
each (r, x) we have,

|Rαf(r, x)| ≤ Rα(‖f‖∞)(r, x) = ‖f‖∞.

Taking the essential supremum over all (r, x) proves that ‖Rαf‖∞ ≤ ‖f‖∞ and
shows that the operator norm ofRα is at most 1. Taking f to be a non-zero constant
function reduces the above inequality to equality, showing that ‖Rαf‖∞ ≤ C‖f‖∞
fails when C < 1 and proving that the operator norm is at least 1. This completes
the proof.

The case p = 1 is also treated separately both for technical reasons and because
the operator norm is achieved for all non-negative functions f .

Theorem 2.2 If α ≥ 0 and β < 0 then Rα is a bounded operator on L1
β with

operator norm equal to

Γ(α + 1)Γ(−β
2 )

Γ(α + 1
2 −

β
2 )Γ(1

2)
.

If β ≥ 0, then Rα is not a bounded operator on L1
β.

Proof. Suppose f ∈ L1
β. Then

‖R0f‖1,β =
∫ ∞

−∞

∫ ∞

0
|R0f(r, x)|rβ dr dx

≤
∫ ∞

−∞

∫ ∞

0

1
π

∫ π/2

−π/2
|f(r cos θ, x + r sin θ)| dθ rβ dr dx.

Interchanging the order of integration and making the change of variable t = r cos θ
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and y = x + r sin θ yields

‖R0f‖1,β ≤
1
π

∫ π/2

−π/2

∫ ∞

−∞

∫ ∞

0
|f(r cos θ, x + r sin θ)|rβ dr dx dθ

=
1
π

∫ π/2

−π/2

∫ ∞

−∞

∫ ∞

0
|f(t, y)|tβ dt dy (cos θ)−β−1 dθ

=
1
π

∫ π/2

−π/2
(cos θ)−β−1 dθ‖f‖1,β

=
Γ(−β

2 )

Γ(1
2 −

β
2 )Γ(1

2)
‖f‖1,β ,

provided β < 0. The last integral above diverges when β ≥ 0.
Since this inequality reduces to equality when f is non-negative, the constant is

best possible. In particular, when β ≥ 0 the best constant is infinite so R0 is not
a bounded operator on L1

β . This completes the proof in the case α = 0.
When α > 0 we proceed similarly,

‖Rαf‖1,β =
∫ ∞

−∞

∫ ∞

0
|Rαf(r, x)|rβ dr dx

≤
∫ ∞

−∞

∫ ∞

0

2α

π

∫ 1

0

∫ π/2

−π/2
|f(rs cos θ, x + r sin θ)| ×

(cos θ)2α(1− s2)α−1 dθ ds rβ dr dx.

Interchanging again and making the change of variable, t = rs cos θ and y =
x + r sin θ, yields

‖Rαf‖1,β ≤
2α

π

∫ 1

0

∫ π/2

−π/2

∫ ∞

−∞

∫ ∞

0
|f(rs cos θ, x + r sin θ)| ×

rβ dr dx(cos θ)2α(1− s2)α−1 dθ ds

=
2α

π

∫ 1

0

∫ π/2

−π/2

∫ ∞

−∞

∫ ∞

0
|f(t, y)|tβ dt dy ×

(cos θ)2α−β−1s−β−1(1− s2)α−1 dθ ds

=
2α

π

∫ 1

0
s−β−1(1− s2)α−1 ds

∫ π/2

−π/2
(cos θ)2α−β−1 dθ‖f‖1,β

=
Γ(α + 1)Γ(−β

2 )

Γ(α + 1
2 −

β
2 )Γ(1

2)
‖f‖1,β ,

provided β < 0. The “ds” integral above diverges when β ≥ 0.
Since this inequality also reduces to equality when f is non-negative, the constant

is best possible. In particular, when β ≥ 0 the best constant is infinite so Rα is not
a bounded operator on L1

β . This completes the proof.

The next two theorems determine the values of β for which Rα is a bounded
operator on Lp

β when 1 < p < ∞. We begin by looking at the case α = 0.
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Theorem 2.3 Suppose 1 < p < ∞. Then R0 is a bounded operator on Lp
β if and

only if β < p− 1. Moreover, if β < p− 1 then the operator norm is

Γ(1
2 −

β+1
2p )

Γ(1− β+1
2p )Γ(1

2)
.

Proof. Suppose first that β > p−1 and define the function f by setting f(t, y) =
1/t when (t, y) ∈ (0, 1)× (−2, 2) and f(t, y) = 0 otherwise. Then

‖f‖p
p,β =

∫ ∞

−∞

∫ ∞

0
|f(t, y)|ptβ dt dy = 4

∫ 1

0
tβ−p dt < ∞

so f ∈ Lp
β. On the other hand, if 0 < r < 1 and −1 < x < 1, then

R0f(r, x) =
1
π

∫ π/2

−π/2

1
r cos θ

dθ = ∞

so R0f /∈ Lp
β. Thus R0 is not a map from Lp

β to Lp
β .

When β = p−1 a similar argument shows R0 does not map Lp
β to Lp

β . This time,
let f(t, y) = 1/(t(1− log t)) when (t, y) ∈ (0, 1)× (−2, 2) and f(t, y) = 0 otherwise.
We have

‖f‖p
p,β =

∫ ∞

−∞

∫ ∞

0
|f(t, y)|ptβ dt dy = 4

∫ 1

0

1
t(1− log t)p

dt < ∞

so f ∈ Lp
β. But, if 0 < r < 1 and −1 < x < 1, then

R0f(r, x) =
1
π

∫ π/2

−π/2

1
r cos θ(1− log(r cos θ))

dθ = ∞

so R0f /∈ Lp
β.

Now suppose that β < p − 1 and fix f ∈ Lp
β . Let γ be a real constant to be

determined later. Then, by Hölder’s inequality,

|R0f(r, x)| ≤ 1
π

∫ π/2

−π/2
|f(r cos θ, x + r sin θ)| dθ

≤ C
1/p′

1

π

(∫ π/2

−π/2
|f(r cos θ, x + r sin θ)|p(cos θ)pγ dθ

)1/p

,

where

C1 =
∫ π/2

−π/2
(cos θ)−p′γ dθ.
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Using this estimate we get,

‖R0f‖p
p,β ≤

C
p/p′

1

πp

∫ ∞

−∞

∫ ∞

0

∫ π/2

−π/2
|f(r cos θ, x + r sin θ)|p ×

(cos θ)pγ dθ rβ dr dx

=
C

p/p′

1

πp

∫ π/2

−π/2

∫ ∞

−∞

∫ ∞

0
|f(r cos θ, x + r sin θ)|p ×

rβ dr dx(cos θ)pγ dθ.

The change of variable t = r cos θ and y = x + r sin θ yields

‖R0f‖p
p,β ≤

C
p/p′

1

πp

∫ π/2

−π/2

∫ ∞

−∞

∫ ∞

0
|f(t, y)|ptβ dt dy(cos θ)pγ−β−1 dθ

=
C

p/p′

1 C2

πp
‖f‖p

p,β,

where

C2 =
∫ π/2

−π/2
(cos θ)pγ−β−1 dθ.

If there exists a γ that makes both the integrals C1 and C2 finite, then R0 is
a bounded operator on Lp

β . For C1 to be finite requires that −p′γ > −1 and for
C2 to be finite requires that pγ − β − 1 > −1. These reduce to the requirement
that γ ∈ (β/p, 1/p′), which is a non-empty interval because we have assumed that
β < p− 1.

To obtain a specific upper bound for the operator norm let γ = (β + 1)/(pp′)
and verify that it lies in the above interval. The upper bound obtained is,

C
1/p′

1 C
1/p
2

π
=

Γ(1
2 −

β+1
2p )

Γ(1− β+1
2p )Γ(1

2)
.

To get a lower bound for the operator norm we fix η > 0 and M > 1, and define
f by setting f(t, y) = t(η−β−1)/p when (t, y) ∈ (0, 1) × (−M,M) and f(t, y) = 0
otherwise. The norm of f in Lp

β is

‖f‖p,β =
(∫ M

−M

∫ 1

0

(
t(η−β−1)/p

)p
tβ dt dy

)1/p

= (2M/η)1/p .

On the other hand, if 0 < r < 1 and 1 − M < x < M − 1 then for any θ ∈
(−π/2, π/2), we have 0 < r cos θ < 1 and −M < x + r sin θ < M so

R0f(r, x) =
1
π

∫ π/2

−π/2
(r cos θ)(η−β−1)/p dθ = r(η−β−1)/p

Γ(1
2 + η−β−1

2p )

Γ(1 + η−β−1
2p )Γ(1

2)
.
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It follows that

‖R0f‖p,β ≥
Γ(1

2 + η−β−1
2p )

Γ(1 + η−β−1
2p )Γ(1

2)

(∫ M−1

1−M

∫ 1

0

(
r(η−β−1)/p

)p
rβ dr dx

)1/p

=
Γ(1

2 + η−β−1
2p )

Γ(1 + η−β−1
2p )Γ(1

2)
(2(M − 1)/η)1/p .

For each η and M the ratio ‖R0f‖p,β/‖f‖p,β is a lower bound for the operator
norm of R0. Letting M →∞ first and then letting η → 0 gives the lower bound,

Γ(1
2 −

β+1
2p )

Γ(1− β+1
2p )Γ(1

2)

as required. The upper and lower bounds coincide so the operator norm is deter-
mined.

Theorem 2.4 Suppose 1 < p < ∞. Then Rα is a bounded operator on Lp
β if and

only if β < p− 1. Moreover, if β < p− 1 then the operator norm is

Γ(α + 1)Γ(1
2 −

β+1
2p )

Γ(α + 1− β+1
2p )Γ(1

2)
.

Proof. Suppose that β > p− 1 and define the function f by setting f(t, y) = 1/t
when (t, y) ∈ (0, 1)× (−2, 2) and f(t, y) = 0 otherwise. Then

‖f‖p
p,β =

∫ ∞

−∞

∫ ∞

0
|f(t, y)|ptβ dt dy = 4

∫ 1

0
tβ−p dt < ∞

so f ∈ Lp
β. On the other hand, if 0 < r < 1 and −1 < x < 1, then

Rαf(r, x) =
2α

π

∫ π/2

−π/2

1
r cos θ

(cos θ)2α dθ

∫ 1

0
(1− s2)α−1 ds

s
= ∞

so Rαf /∈ Lp
β . Thus Rα is not a map from Lp

β to Lp
β.

When β = p−1 a similar argument shows Rα does not map Lp
β to Lp

β . This time,
let f(t, y) = 1/(t(1− log t)) when (t, y) ∈ (0, 1)× (−2, 2) and f(t, y) = 0 otherwise.
We have

‖f‖p
p,β =

∫ ∞

−∞

∫ ∞

0
|f(t, y)|ptβ dt dy = 4

∫ 1

0

1
t(1− log t)p

dt < ∞

so f ∈ Lp
β. But, if 0 < r < 1 and −1 < x < 1, then

Rαf(r, x) =
2α

π

∫ π/2

−π/2

∫ 1

0

(cos θ)2α(1− s2)α−1

rs cos θ(1− log(rs cos θ))
ds dθ = ∞

so R0f /∈ Lp
β.

Now suppose that β < p− 1 and fix f ∈ Lp
β. Let γ, δ, and ε be real constants to

be determined later. Clearly, |Rαf(r, x)| ≤ Rα|f |(r, x) and by Hölder’s inequality
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this is no greater than

2αC
1/p′

1

π

(∫ 1

0

∫ π/2

−π/2
|f(rs cos θ, x + r sin θ)|p(cos θ)γpsδp(1− s2)εp dθ ds

)1/p

,

where

C1 =
∫ π/2

−π/2
(cos θ)(2α−γ)p′

dθ

∫ 1

0
s−δp′

(1− s2)(α−1−ε)p′
ds.

Using this estimate we get,

‖Rαf‖p
p,β ≤

(2α)pC
p/p′

1

πp

∫ ∞

−∞

∫ ∞

0

∫ 1

0

∫ π/2

−π/2
|f(rs cos θ, x + r sin θ)|p ×

(cos θ)γpsδp(1− s2)εp dθ ds rβ dr dx

=
(2α)pC

p/p′

1

πp

∫ 1

0

∫ π/2

−π/2

∫ ∞

−∞

∫ ∞

0
|f(rs cos θ, x + r sin θ)|p ×

rβ dr dx(cos θ)γpsδp(1− s2)εp dθ ds.

The change of variable t = rs cos θ and y = x + r sin θ yields

‖Rαf‖p
p,β ≤

(2α)pC
p/p′

1

πp

∫ 1

0

∫ π/2

−π/2

∫ ∞

−∞

∫ ∞

0
|f(t, y)|ptβ dt dy ×

(cos θ)γp−β−1sδp−β−1(1− s2)εp dθ ds

=
(2α)pC

p/p′

1 C2

πp
‖f‖p

p,β,

where

C2 =
∫ π/2

−π/2
(cos θ)γp−β−1 dθ

∫ 1

0
sδp−β−1(1− s2)εp ds.

If there exist γ, δ, and ε that make the four integrals in C1 and C2 all finite, then
Rα is a bounded operator on Lp

β. The requirements are that

(2α− γ)p′, −δp′, (α− 1− ε)p′, γp− β − 1, δp− β − 1, εp

all be greater than −1. These conditions reduce to

γ ∈ (β/p, 2α + 1/p′), δ ∈ (β/p, 1/p′), ε ∈ (−1/p, α− 1/p).

Since α > 0 and β < p − 1 all three intervals are non-empty so it is possible to
choose γ, δ, and ε that make C1 and C2 finite. Thus Rα is a bounded operator on
Lp

β .
To obtain a specific upper bound for the operator norm let γ = (2αp′ + β +
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1)/(pp′), δ = (β + 1)/(pp′) and ε = (α− 1)/p. The upper bound obtained is,

2αC
1/p′

1 C
1/p
2

π
=

Γ(α + 1)Γ(1
2 −

β+1
2p )

Γ(α + 1− β+1
2p )Γ(1

2)
.

To get a lower bound for the operator norm we fix η > 0 and M > 1, and define
f by setting f(t, y) = t(η−β−1)/p when (t, y) ∈ (0, 1) × (−M,M) and f(t, y) = 0
otherwise. The norm of f in Lp

β is

‖f‖p,β =
(∫ M

−M

∫ 1

0

(
t(η−β−1)/p

)p
tβ dt dy

)1/p

= (2M/η)1/p .

On the other hand, if 0 < r < 1 and 1 −M < x < M − 1 then for any s ∈ (0, 1)
and θ ∈ (−π/2, π/2), we have 0 < rs cos θ < 1 and −M < x + r sin θ < M so

Rαf(r, x) =
2α

π

∫ 1

0

∫ π/2

−π/2
(rs cos θ)(η−β−1)/p(cos θ)2α(1− s2)α−1 dθ ds

= r(η−β−1)/p
Γ(α + 1)Γ(1

2 + η−β−1
2p )

Γ(α + 1 + η−β−1
2p )Γ(1

2)
.

It follows that

‖Rαf‖p,β ≥
Γ(α + 1)Γ(1

2 + η−β−1
2p )

Γ(α + 1 + η−β−1
2p )Γ(1

2)

(∫ M−1

1−M

∫ 1

0

(
r(η−β−1)/p

)p
rβ dr dx

)1/p

=
Γ(α + 1)Γ(1

2 + η−β−1
2p )

Γ(α + 1 + η−β−1
2p )Γ(1

2)
(2(M − 1)/η)1/p .

For each η and M the ratio ‖Rαf‖p,β/‖f‖p,β is a lower bound for the operator
norm of Rα. Letting M →∞ first and then letting η → 0 gives the lower bound,

Γ(α + 1)Γ(1
2 −

β+1
2p )

Γ(α + 1− β+1
2p )Γ(1

2)

as required.
In is important to point out the operator norms calculated in the previous four

theorems are all related. We do this in the following summary.

Theorem 2.5 Suppose 1 ≤ p ≤ ∞ and α ≥ 0. The operator Rα is a bounded map
on Lp

β if and only if β < p− 1. In this case the operator norm is

Γ(α + 1)Γ(1
2 −

β+1
2p )

Γ(α + 1− β+1
2p )Γ(1

2)
.

Earlier work suggests that Lp
2α+1 is a natural space for the operator Rα. In a

final corollary we restrict our attention to the case β = 2α + 1.
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Corollary 2.6 Suppose 1 ≤ p ≤ ∞ and α ≥ 0. The operator Rα is a bounded
map on Lp

2α+1 if and only if α < (p/2)− 1. In this case the operator norm is

Γ(α + 1)Γ(1
2 −

α+1
p )

Γ(α+1
p′ )Γ(1

2)
.

REFERENCES

(1) C. Baccar, N. B. Hammadi, and L. T. Rachdi, Inversion formulas for
Riemann-Liouville transform and its dual associated with singular partial
differential operators, International Journal of Mathematics and Mathe-
matical Sciences, Volume 2006, Article ID 86238, 1–26.
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des opérateurs aux derivées partielles. J. Math. Pures et Appl. 70(1991)
1-73.


