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Abstract. For a large class of operators acting between weighted
ℓ∞ spaces, exact formulas are given for their norms and the norms
of their restrictions to the cones of nonnegative sequences; nonneg-
ative, nonincreasing sequences; and nonnegative, nondecreasing se-
quences. The weights involved are arbitrary nonnegative sequences
and may differ in the domain and codomain spaces. The results are
applied to the Cesàro and Copson operators, giving their norms
and their distances to the identity operator on the whole space
and on the cones. Simplifications of these formulas are derived in
the case of these operators acting on power-weighted ℓ∞. As an
application, best constants are given for inequalities relating the
weighted ℓ∞ norms of the Cesàro and Copson operators both for
general weights and for power weights.

1. Introduction

The Cesàro matrix, C, and its transpose the Copson matrix, C∗, are
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and C∗ =
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.

The same names denote the operators associated with these infinite
matrices, defined by

(Cx)n =
1

n

n∑
k=1

xk and (C∗x)n =
∞∑
k=n

xk

k

for x an appropriate real sequence. The motivation for this work is to
determine best constants in the weighted two-operator inequalities

∥Cx∥ℓ∞(v) ≤ A∥C∗x∥ℓ∞(1/u) and ∥C∗x∥ℓ∞(v) ≤ A∥Cx∥ℓ∞(1/u) (1)
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for all x and also for all nonnegative x.
The Cesàro and Copson operators, together with their integral ana-

logues,

Hf(x) =
1

x

∫ x

0

f(t) dt and H∗f(x) =

∫ ∞

x

f(t)
dt

t
,

appear throughout classical and modern analysis. They were already
standard tools in Fourier analysis when Hardy used them to give a
simple proof of Hilbert’s double series theorem from complex analysis.
They serve as base cases and motivating examples for summability,
positive operators, convolution inequalities, interpolation of operators,
maximal functions and more.

Most relevant to our study, is their appearance in the theory of
weighted norm inequalities. A remarkable array of techniques have
been tried out on these operators for the first time and often the results
set the standard for subsequent progress.

Recently, techniques for determination of exact operator norms, ex-
act distances between operators, and best constants in two-operator
inequalities have been worked out using H, H∗, C and C∗ as motivat-
ing examples.

For the operators H and H∗ a great deal of progress has been made
in recent years. We refer to [9] and [10], which, besides establishing
the current best results for exact operator norms, include in their intro-
ductions detailed accounts of recent work. The contributions of Boza
and Soria deserve special mention, recently from [6] and [7], but going
back to [5]. In the first, they make a clear case for the independent
study of restrictions of operators to cones of monotone functions. In
the second, they point out the significance of understanding the action
of operators in endpoint cases, i.e., the p = 1, p = ∞, and weak type
cases among ℓp spaces.
For the operators C and C∗, exact norms, distances and constants

had already found an important place in Bennett’s 1996 memoir [1].
Some were proved and others were left as open problems. A few of the
open problems have settled quite recently, see [3, 4, 8].

Our focus on weighted ℓ∞ spaces puts us firmly in the endpoint case,
and greatly simplifies norm estimates. On the other hand our results
apply for general weight sequences, something which is beyond the
current reach when seeking exact operator norms in the ℓp spaces for
1 < p < ∞. We also consider the restrictions of operators to cones of
monotone sequences, something of proven value.
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Our approach is in two steps. First, we reduce the best constant
problems for the two-operator inequalities (1) for general x or for non-
negative x to the determination of the operator norm of a related ma-
trix operator on a related cone of sequences. See Theorems 2.3 and
2.4. Second, we prove and apply a result on matrix operator norms
between cones in weighted ℓ∞ spaces that is general enough to include
the ones we need to solve the best constant problems. See Theorem
3.3. This result is of independent interest and we apply it to give the
operator norms of a number of related matrix operators that have ap-
peared in recent literature. Here the operators C− I and C∗− I figure
prominently. The results of our analysis of (1) are in Theorem 4.1.

The most commonly studied and applied weight sequences are the
power weights. We illustrate our results throughout by giving concrete
expressions for the best constants in the case of power weighted ℓ∞.
See Theorems 3.5 and 3.7 for exact operator norms for C and C∗ on
all four cones. See 3.9 for exact distances from C to the identity on all
four cones. The exact distance from C∗ to the identity is given in 3.11
on two of the cones. (The case of nondecreasing sequences is trivial and
the case of nonincreasing sequences remains open.) The best constants
in the two-operator inequalities are given in 4.2 and 4.3 on the cone of
all sequences and on the cone of all nonnegative sequences.

1.1. Notation and Definitions. For an infinite matrix to represent
an operator on sequences, we have to decide in what sense the sums
involved in matrix multiplication should converge.

Definition 1.1. Let B = (bn,k)n≥1,k≥1 be a real matrix. The domain,
denoted D(B), of the associated matrix operator is the set of all real
sequences x such that for each n, the sum

∑∞
k=1 bn,kxk converges to

a real number. For x ∈ D(B), we define the sequence Bx by setting
(Bx)n =

∑∞
k=1 bn,kxk.

If all entries of B and x are nonnegative, we use (Bx)n to denote
the above sum even when x /∈ D(B) by permitting (Bx)n to take the
value ∞.

This definition gives us larger domains than if we insisted on absolute
convergence in all matrix sums. It means that our matrix operators
don’t correspond to standard integral operators as well as they corre-
spond to operators defined by principal value integrals.

Besides C and C∗ we will encounter the matrices I, S, S∗, D and
E. The first three are standard, the identity matrix, the right shift
(with ones on the subdiagonal) and the left shift (with ones on the
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superdiagonal.) The other two are defined by

D =


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and E =
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so that (Dx)n = xn/(n+1) and (Ex)n =

∑n
k=1 xk. The domain of each

these matrix operators, with the exception of C∗, consists of all real
sequences. Evidently, D(C∗) consists of all real sequences x for which∑∞

k=1
xk

k
converges in R.

Let ℓ, ℓ+, ℓ↓ and ℓ↑ denote, respectively, the set of all sequences of
real numbers, the set of all sequences of nonnegative real numbers, the
set of all nonincreasing sequences of nonnegative real numbers, and
the set of all nondecreasing sequences of nonnegative real numbers.
Inequalities between sequences are termwise so for x, y ∈ ℓ, x ≤ y
means y − x ∈ ℓ+, that is, xk ≤ yk for all k.

For weights u, v ∈ ℓ+ and for any x, y ∈ ℓ we define

∥y∥ℓ∞(v) = sup
n

|yn|vn and ∥x∥ℓ∞(1/u) = sup
k

|xk|/uk.

The two definitions agree, except that if uk = 0 for some k, the sequence
(1/u1, 1/u2, . . . ) is not in ℓ+. In this case we apply the convention
0/0 = 0: If uk = 0 for some k then |xk|/uk = ∞ when xk ̸= 0 and
|xk|/uk = 0 when xk = 0. Note that we permit these weighted “norms”
to take the value ∞.
For a real number x, let x+ = (|x| + x)/2 ≥ 0 and x− = (|x| −

x)/2 ≥ 0. Note that x = x+ − x−. This notation extends termwise
to sequences and entrywise to matrices: If x = (xn) is a real sequence,
then x+ = ((xn)

+), x− = ((xn)
−), and |x| = (|xn|). If B = (bn,k) then

B+ = ((bn,k)
+), B− = ((bn,k)

−) and |B| = (|bn,k|).
For u ∈ ℓ+ we define the greatest nonincreasing minorant u↓ of u

and the greatest nondecreasing minorant u↑ of u by

u↓
k = (u↓)k = min

j≤k
uj and u↑

k = (u↑)k = inf
j≥k

uj.

Their relevance emerges from the following simple observation.

Lemma 1.2. Let u ∈ ℓ+.

(i) If x ∈ ℓ↓, then ∥x∥ℓ∞(1/u) = ∥x∥ℓ∞(1/u↓);

(ii) If x ∈ ℓ↑, then ∥x∥ℓ∞(1/u) = ∥x∥ℓ∞(1/u↑);

(iii) If x ∈ ℓ↓ and x ≤ u then x ≤ u↓.
(iv) If x ∈ ℓ↑ and x ≤ u then x ≤ u↑.
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Proof. First observe that, since u↓ ≤ u and u↑ ≤ u,

∥x∥ℓ∞(1/u) ≤ ∥x∥ℓ∞(1/u↓) and ∥x∥ℓ∞(1/u) ≤ ∥x∥ℓ∞(1/u↑).

Let x ∈ ℓ↓. For each k,
xk

u↓
k

= max
j≤k

xk

uj

≤ max
j≤k

xj

uj

≤ ∥x∥ℓ∞(1/u).

Take the supremum over all k to get ∥x∥ℓ∞(1/u↓) ≤ ∥x∥ℓ∞(1/u).

Let x ∈ ℓ↑. For each k,
xk

u↑
k

= sup
j≥k

xk

uj

≤ sup
j≥k

xj

uj

≤ ∥x∥ℓ∞(1/u).

Take the supremum over all k to get ∥x∥ℓ∞(1/u↑) ≤ ∥x∥ℓ∞(1/u).

If x ∈ ℓ↓ and x ≤ u, then ∥x∥ℓ∞(1/u) ≤ 1 so ∥x∥ℓ∞(1/u↓) ≤ 1 and there-

fore x ≤ u↓. If x ∈ ℓ↑ and x ≤ u, then ∥x∥ℓ∞(1/u) ≤ 1 so ∥x∥ℓ∞(1/u↑) ≤ 1

and therefore x ≤ u↑. □

2. Two Identities

In this section we use two matrix identities to connect the inequalities
(1) to norm inequalities for related operators. The identities are

C = (C − S∗)C∗ and C∗ = (C∗ − S)DE.

In Section 10 of [1], Bennett uses the first identity and one closely re-
lated to the second, namely, C∗ = (C∗−I)SC, to explore two-operator
inequalities involving C and C∗. Either of the two second identities
would suffice in this analysis; our aim was to simplify intermediate
results.

In matrix form, the identity (C − S∗)C∗ = C may be written as
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
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.

Viewed as an operator identity we can prove that it is valid on D(C∗),
the domain of the operator C∗.

Lemma 2.1. If x ∈ D(C∗) then (C − S∗)C∗x = Cx.

Proof. Let x ∈ D(C∗) and set y = C∗x to see that (Cx)n is equal to

1

n

n∑
j=1

xj

j

j∑
k=1

1 =
1

n

n∑
k=1

n∑
j=k

xj

j
=

1

n

n∑
k=1

(yk − yn+1) = (Cy)n − yn+1.

Therefore (Cx)n = ((C − S∗)y)n = ((C − S∗)C∗x)n for all n. □
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The second identity is a bit more complicated because the matrix
multiplication involves infinite sums and extra care has to be taken
with the domain of the matrix operators.

In matrix form, the identity (C∗ − S)DE = C∗ may be written as
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Next we show that it is also an operator identity on D(C∗).

Lemma 2.2. For x ∈ ℓ, x ∈ D(C∗) if and only if

Ex ∈ D(C∗D) and (DEx)N → 0 as N → ∞.

In this case (C∗ − S)DEx = C∗x.

Proof. Fix a real sequence x and a positive integer n. If N > n, then

N∑
j=1

xj

( 1

N + 1
+

N∑
k=max(n,j)

1

k(k + 1)

)
= (DEx)N +

N∑
k=n

1

k(k + 1)

k∑
j=1

xj,

which telescopes to

N∑
j=n

xj

j
+

1

n

n−1∑
j=1

xj =
N∑
j=1

xj

max(n, j)
= (DEx)N +

N∑
k=n

(DEx)k
k

. (2)

Suppose Ex ∈ D(C∗D) and (DEx)N → 0 as N → ∞. Then the right-
hand side of (2) converges as N → ∞. So does the left-hand side, so
x ∈ D(C∗).

Conversely, suppose x ∈ D(C∗) and let N → ∞ in (2). Since the
left-hand side converges, so does the right-hand side. Setting y = C∗x
we get yN → 0. It follows that the averages (Cy)N → 0 and the shifts
(S∗y)N → 0. Now Lemma 2.1 shows that (Cx)N = (Cy)N − (S∗y)N →
0. But (DEx)N = N

N+1
(Cx)N so (DEx)N → 0. Since the first term

of the right-hand side of (2) converges, so does the second term. It
follows that Ex ∈ D(C∗D), which completes the equivalence.

Letting N → ∞, (2) becomes (C∗x)n + (SDEx)n = (C∗DEx)n.
Since n was arbitrary, (C∗ − S)DEx = C∗x. □

These two identities are the keys to proving the following two theo-
rems that reduce inequalities relating C and C∗ to inequalities involving
a single operator.
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Theorem 2.3. Let u, v ∈ ℓ+ and A ∈ [0,∞). Then (3) if and only if
(4), and (5) if and only if (6), where

∥Cx∥ℓ∞(v) ≤ A∥C∗x∥ℓ∞(1/u) for x ∈ D(C∗); (3)

∥(C − S∗)y∥ℓ∞(v) ≤ A∥y∥ℓ∞(1/u) for y ∈ ℓ, yn → 0; (4)

∥Cx∥ℓ∞(v) ≤ A∥C∗x∥ℓ∞(1/u) for x ∈ ℓ+ ∩ D(C∗); (5)

∥(C − S∗)y∥ℓ∞(v) ≤ A∥y∥ℓ∞(1/u) for y ∈ ℓ↓, yn → 0. (6)

Proof. Let x ∈ D(C∗), set y = C∗x, and note that yn → 0 as n → ∞.
If (4) holds, then by Lemma 2.1,

∥Cx∥ℓ∞(v) = ∥(C − S∗)y∥ℓ∞(v) ≤ A∥y∥ℓ∞(1/u) = A∥C∗x∥ℓ∞(1/u),

so (3) holds. If (6) holds and x ∈ ℓ+ ∩D(C∗), then y ∈ ℓ↓ so the same
estimate gives (5).

Now let y ∈ ℓ with yn → 0 and set xk = k(yk − yk+1). We have

N∑
k=n

xk

k
=

N∑
k=n

(yk − yk+1) = yn − yN → yn

as N → ∞. So x ∈ D(C∗) and C∗x = y. If (3) holds, then Lemma 2.1
shows

∥(C − S∗)y∥ℓ∞(v) = ∥Cx∥ℓ∞(v) ≤ A∥C∗x∥ℓ∞(1/u) = A∥y∥ℓ∞(1/u),

so (4) holds. If (5) holds, and y ∈ ℓ↓ with yn → 0, then x ∈ ℓ+ and the
same estimate gives (6). □

Theorem 2.4. Let u, v ∈ ℓ+ and A ∈ [0,∞). Set wk = kuk for each
k. Then (7) if and only if (8), and (9) if and only if (10), where

∥C∗x∥ℓ∞(v) ≤ A∥Cx∥ℓ∞(1/u), x ∈ D(C∗); (7)

∥(C∗ − S)Dz∥ℓ∞(v) ≤ A∥z∥ℓ∞(1/w), z ∈ D(C∗D), (Dz)n → 0; (8)

∥C∗x∥ℓ∞(v) ≤ A∥Cx∥ℓ∞(1/u), x ∈ ℓ+ ∩ D(C∗); (9)

∥(C∗ − S)Dz∥ℓ∞(v) ≤ A∥z∥ℓ∞(1/w), z ∈ ℓ↑ ∩ D(C∗D), (Dz)n → 0.
(10)

Proof. Let x ∈ D(C∗) and set z = Ex. The definition of E shows
∥z∥ℓ∞(1/w) = ∥Cx∥ℓ∞(1/u). From Lemma 2.2 we get (Dz)n → 0, z ∈
D(C∗D) and C∗x = (C∗ − S)Dz. If (8) holds, then

∥C∗x∥ℓ∞(v) = ∥(C∗ − S)Dz∥ℓ∞(v) ≤ A∥z∥ℓ∞(1/w) = A∥Cx∥ℓ∞(1/u),

that is, (7) holds. If x ∈ ℓ+ then z ∈ ℓ↑ so the same estimate shows
that if (10) holds, so does (9).
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Now let z ∈ D(C∗D) with (Dz)N → 0 as N → ∞, set z0 = 0 and
xk = zk − zk−1 for all k. Then z = Ex so Lemma 2.2 shows that
x ∈ D(C∗) and (C∗ − S)Dz = C∗x. If (7) holds, then

∥(C∗ − S)Dz∥ℓ∞(v) = ∥C∗x∥ℓ∞(v) ≤ A∥Cx∥ℓ∞(1/u) = A∥z∥ℓ∞(1/w),

so (8) holds. If (9) holds and z ∈ ℓ↑, then x ∈ ℓ+ so the same estimate
gives (10). This completes the proof.

3. Operator norms for some matrix operators on cones

The simple form of weighted ℓ∞ norms permits direct computation
of the norms of matrix operators from one weighted space to another
and from the positive cone of one weighted space to another. For the
cones of decreasing sequences and increasing sequences, the situation is
more delicate but for each of these cones we identify a class of matrix
operators for which it simplifies nicely. The operators involved in our
analysis of the inequalities in (1) are in those classes.

Definition 3.1. Let b ∈ ℓ. We say that b has positives before negatives
provided that for all j, k ∈ Z+, bj > 0 > bk only if j < k. We say that
b has negatives before positives if −b has positives before negatives.

Note that if b has positives before negatives or has negatives before
positives then

∑N
k=1 bk is a monotone function of N for sufficiently

large N so the sum
∑∞

k=1 bk, exists in [−∞,∞]. We call it the sum of
b.

Let u, v ∈ ℓ+. For a matrix B, let A(B), A+(B), A↓(B) and A↑(B)
denote the smallest constant A ∈ [0,∞] such that inequality

∥Bx∥ℓ∞(v) ≤ A∥x∥ℓ∞(1/u) (11)

holds for all x ∈ D(B), x ∈ ℓ+∩D(B), x ∈ ℓ↓∩D(B), and x ∈ ℓ↑∩D(B),
respectively.

Remark 3.2. Multiplying the matrix B on the left by a complex di-
agonal matrix has no effect on the left-hand side of (11), provided the
weight sequence v is adjusted appropriately. This simple observation
substantially extends the applicability of the next theorem. Rather than
unduly complicate its statement, we trust that, in applications, suitable
row-by-row “preprocessing” will have been carried out to ensure that
the hypotheses of the theorem are satisfied. One simple form of this
preprocessing allows some subset of the rows of a real matrix B to be
multiplied by −1 to permit the use of parts (iii) or (iv) of the theorem.

Some expressions in what follows need to be understood according
to the convention ∞ · 0 = 0.
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Theorem 3.3. Let B be a matrix with real entries.

(i) The least A ∈ [0,∞] such that (11) holds for all x ∈ D(B) is

A(B) = ∥|B|u∥ℓ∞(v).

(ii) The least A ∈ [0,∞] such that (11) holds for all x ∈ ℓ+ ∩D(B)
is

A+(B) = max(∥B+u∥ℓ∞(v), ∥B−u∥ℓ∞(v)).

(iii) Suppose each row of B has positives before negatives and a non-
negative sum. The least A ∈ [0,∞] such that (11) holds for all
x ∈ ℓ↓ ∩ D(B) is

A↓(B) = ∥B+(u↓)∥ℓ∞(v).

(iv) Suppose each row of B has negatives before positives and a non-
negative sum. If each row of B has a finite sum then the least
A ∈ [0,∞] such that (11) holds for all x ∈ ℓ↑ ∩ D(B) is

A↑(B) = ∥B+(u↑)∥ℓ∞(v).

If some row of B has an infinite sum, then ℓ↑ ∩D(B) = {0} so
(11) holds trivially with A↑(B) = 0.

Proof. Let ρ+ be the result of replacing all nonzero entries of B+ by
1 and let ρ− be the result of replacing all nonzero entries of B− by 1.
Then bn,kρ

+
n,k = b+n,k and bn,kρ

−
n,k = −b−n,k for all n and k.

If x ∈ D(B) and |x| ≤ u, then ∥x∥ℓ∞(1/u) ≤ 1 and, for each n,
|(Bx)n| ≤ (|B||x|)n ≤ (|B|u)n so we get ∥Bx∥ℓ∞(v) ≤ ∥|B|u∥ℓ∞(v). By
positive homogeneity of the norm, A(B) ≤ ∥|B|u∥ℓ∞(v).
Fix n and K. Define a sequence x by setting xk = (ρ+ − ρ−)n,kuk

if k ≤ K and xk = 0 if k > K. Then x ∈ D(B) and ∥x∥ℓ∞(1/u) ≤ 1.
Since |bn,k| = bn,k(ρ

+ − ρ−)n,k for all k, we have

vn

K∑
k=1

|bn,k|uk = vn(Bx)n ≤ ∥Bx∥ℓ∞(v) ≤ A(B).

Letting K → ∞ and taking the supremum over all n we get

∥|B|u∥ℓ∞(v) = sup
n

vn(|B|u)n ≤ A(B).

This proves (i).
If x ∈ ℓ+ ∩ D(B) and x ≤ u, then ∥x∥ℓ∞(1/u) ≤ 1 and, for each n,

0 ≤ (B+x)n ≤ (B+u)n and 0 ≤ (B−x)n ≤ (B−u)n. If (B+u)n and
(B−u)n are both finite, then

|(Bx)n| = |(B+x)n − (B−x)n| ≤ max((B+u)n, (B
−u)n),
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an inequality that also holds if (B+u)n = ∞ or (B−u)n = ∞. Multiply-
ing both sides by vn, taking the supremum over all n, and interchanging
the supremum and the maximum, yields

∥Bx∥ℓ∞(v) ≤ max(∥B+u∥ℓ∞(v), ∥B−u∥ℓ∞(v)).

By positive homogeneity of the norm,

A+(B) ≤ max(∥B+u∥ℓ∞(v), ∥B−u∥ℓ∞(v)).

Fix n and K. First, define a sequence x by setting xk = ρ+n,kuk if
k ≤ K and xk = 0 if k > K. Then x ∈ D(B) and ∥x∥ℓ∞(1/u) ≤ 1. Since
b+n,k = bn,kρ

+
n,k,

vn

∣∣∣ K∑
k=1

b+n,kuk

∣∣∣ = vn|(Bx)n| ≤ ∥Bx∥ℓ∞(v) ≤ A+(B).

Next, define a sequence x by setting xk = ρ−n,kuk if k ≤ K and xk = 0

if k > K. Then x ∈ D(B) and ∥x∥ℓ∞(1/u) ≤ 1. Since b−n,k = −bn,kρ
−
n,k,

vn

∣∣∣ K∑
k=1

b−n,kuk

∣∣∣ = vn|(Bx)n| ≤ ∥Bx∥ℓ∞(v) ≤ A+(B).

Letting K → ∞ and taking the supremum over all n in the two esti-
mates above, we get

max(∥B+u∥ℓ∞(v), ∥B−u∥ℓ∞(v)) ≤ A+(B).

This proves (ii).
To prove (iii), suppose each row of B has positives before negatives

and a nonnegative sum. Fix n and set m = sup{k : bn,k > 0}, taking
sup ∅ = 0 if necessary. If m = 0, then bn,k ≤ 0 for all k, but the nth
row of B has a nonnegative sum so bn,k = 0 for all k. If m = ∞,
then bn,k ≥ 0 for all k because the nth row of B has positives before
negatives. In the remaining case, m ∈ Z+, bn,k ≥ 0 for k ≤ m and
bn,k ≤ 0 for k > m. This implies that for all x ∈ ℓ↓ ∩ D(B), bn,kxk ≥
bn,kxm for all k and so (Bx)n ≥ xm

∑∞
k=1 bn,k ≥ 0, because the nth row

of B has a nonnegative sum. In all three cases we get (Bx)n ≥ 0.
If x ∈ ℓ↓ ∩ D(B) and x ≤ u, then x ≤ u↓ by Lemma 1.2. Therefore,

vn|(Bx)n| = vn(Bx)n ≤ vn(B
+x)n ≤ vn(B

+(u↓))n.

Taking the supremum over all n, we get ∥Bx∥ℓ∞(v) ≤ ∥B+(u↓)∥ℓ∞(v).
Positive homogeneity of the norm shows that A↓(B) ≤ ∥B+(u↓)∥ℓ∞(v).

Fix n and K, and define m as above. Define x by setting xk = u↓
k

if k ≤ min(m,K) and xk = 0 otherwise. Then x ∈ ℓ↓ ∩ D(B) and, by
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Lemma 1.2, ∥x∥ℓ∞(1/u) = ∥x∥ℓ∞(1/u↓) ≤ 1. We have seen that b+n,k = bn,k
for k ≤ m and b+n,k = 0 for k > m. Therefore,

vn

K∑
k=1

b+n,ku
↓
k = vn(Bx)n ≤ ∥Bx∥ℓ∞(v) ≤ A↓(B).

Letting K → ∞ we get

∥B+(u↓)∥ℓ∞(v) ≤ A↓(B).

To prove (iv), suppose each row of B has negatives before positives
and a nonnegative sum. Fix n and set m = sup{k : bn,k < 0}, taking
sup ∅ = 0 if necessary. If m = ∞, then bn,k ≤ 0 for all k because the
nth row of B has negatives before positives, but the nth row of B has
a nonnegative sum so bn,k = 0 for all k. If m = 0, then bn,k ≥ 0 for all
k. In the remaining case, m ∈ Z+, bn,k ≤ 0 for k ≤ m and bn,k ≥ 0 for
k > m. This implies that for all x ∈ ℓ↑ ∩ D(B), bn,kxk ≥ bn,kxm for all
k and so (Bx)n ≥ xm

∑∞
k=1 bn,k ≥ 0, because the nth row of B has a

nonnegative sum. In all three cases we get (Bx)n ≥ 0.
If x ∈ ℓ↑ ∩ D(B) and x ≤ u, then x ≤ u↑ by Lemma 1.2. Therefore,

vn|(Bx)n| = vn(Bx)n ≤ vn(B
+x)n ≤ vn(B

+(u↑))n.

Taking the supremum over all n, we get ∥Bx∥ℓ∞(v) ≤ ∥B+(u↑)∥ℓ∞(v).
Positive homogeneity of the norm shows that A↑(B) ≤ ∥B+(u↑)∥ℓ∞(v).
Case 1. Every row of B has a finite (nonnegative) sum. First we show

that D(B) contains every nonnegative, bounded sequence. Suppose x
is such a sequence and choose P so that 0 ≤ xk ≤ P for all k. Fix n
and let m = sup{k : bn,k < 0} again. As we have seen, if m = ∞, then
bn,k = 0 for all k, so

∑∞
k=1 bn,kxk is trivially convergent. Otherwise,∑K

k=1 bn,kxk is a nondecreasing for K > m and is bounded above by

m∑
k=1

bn,kxk + P

∞∑
k=m+1

bn,k < ∞.

Again,
∑∞

k=1 bn,kxk is convergent. Since n was arbitrary, x ∈ D(B).
Now fix n and a real number P . Let m = sup{k : bn,k < 0}. Define

x by setting xk = 0 if k ≤ m and xk = min(u↑
k, P ) if k > m. Since

x is bounded above by P , x ∈ ℓ↑ ∩ D(B). Moreover, |x| ≤ u↑ so
∥x∥ℓ∞(1/u) = ∥x∥ℓ∞(1/u↑) ≤ 1 by Lemma 1.2. Therefore,

vn

∞∑
k=1

b+n,k min(u↑
k, P ) = vn

∞∑
k=1

bn,kxk ≤ ∥Bx∥ℓ∞(v) ≤ A↑(B).
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Taking the limit as P → ∞, we get

vn

∞∑
k=1

b+n,ku
↑
k ≤ A↑(B).

Taking the supremum over all n, we get ∥B+(u↑)∥ℓ∞(v) ≤ A↑(B).
Case 2. For some n, the nth row of B has an infinite sum. Since its

sum is nonnegative by hypothesis, the sum is ∞. Since this row has
negatives before positives, there exists an m such that bn,k ≥ 0 when
k ≥ m. If x ∈ ℓ↑ is not the zero sequence, then there exists a K ≥ m
such that xK > 0. Therefore,

∞∑
k=K

bn,kxk ≥ xK

∞∑
k=K

bn,k = ∞.

Thus, x /∈ D(B). We conclude that ℓ↑ ∩ D(B) contains only the zero
sequence, so A↑(B) = 0. □

3.1. The Cesàro and Copson operators. The Cesàro matrix C is
nonnegative so all four parts of Theorem 3.3 apply.

Corollary 3.4. Let u, v ∈ ℓ+. The inequality

sup
n

∣∣∣ 1
n

n∑
k=1

xk

∣∣∣vn ≤ A sup
k

|xk|
uk

holds for all real sequences x with A = A(C); for all nonnegative se-
quences x with A = A+(C); for all nonnegative, nonincreasing se-
quences x with A = A↓(C); and for all nonnegative, nondecreasing
sequences x with A = A↑(C). In each case the constant A is best pos-
sible. Here

A(C) = A+(C) = ∥Cu∥ℓ∞(v) = sup
n

vn
n

n∑
k=1

uk;

A↓(C) = ∥C(u↓)∥ℓ∞(v) = sup
n

vn
n

n∑
k=1

min
j≤k

uj;

A↑(C) = ∥C(u↑)∥ℓ∞(v) = sup
n

vn
n

n∑
k=1

inf
j≥k

uj.

Even using the formulas from this corollary, the operator norms of
C as a map on cones in a power weighted ℓ∞ space requires some work
to simplify. This is done in the next theorem.
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Theorem 3.5. Let α ∈ R. The inequality

sup
n

∣∣∣ 1
n

n∑
k=1

xk

∣∣∣nα ≤ A sup
k

|xk|kα

holds for all real sequences x if and only if it holds for all nonnegative
sequences x if and only if it holds for all nonnegative, nonincreasing
sequences x. In this case the best constant A is

A =


1, α < 0;

1

1− α
, 0 ≤ α < 1;

∞, α ≥ 1.

The inequality holds for all nonnegative, nondecreasing sequences x
with best constant

A =

{
1, α ≤ 0;

0, α > 0.

Proof. Take uk = k−α and vn = nα in Corollary 3.4 to get

A(C) = A+(C) = sup
n

nα−1

n∑
k=1

k−α;

A↓(C) = sup
n

nα−1

n∑
k=1

min
j≤k

j−α;

A↑(C) = sup
n

nα−1

n∑
k=1

inf
j≥k

j−α.

We will make use of Proposition 3 of [2], which shows that

nα−1

n∑
k=1

k−α

increases with n when α ≥ 0 and decreases with n when α ≤ 0. If
α ≥ 0, then minj≤k j

−α = k−α so A(C) = A+(C) = A↓(C) and their
common value is

lim
n→∞

1

n

n∑
k=1

(k
n

)−α

=

∫ 1

0

x−α dx =


1

1− α
, 0 ≤ α < 1;

∞, α ≥ 1.

If α < 0, then minj≤k j
−α = 1 so

A(C) = A+(C) = sup
n

nα−1

n∑
k=1

k−α = 1 and A↓(C) = sup
n

nα = 1.
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If α > 0, then infj≥k j
−α = 0 and if α ≤ 0, then infj≥k j

−α = k−α.
Therefore, A↑(C) = 0 when α > 0 and

A↑(C) = sup
n

nα−1

n∑
k=1

k−α = 1

when α ≤ 0. □

The Copson matrix C∗ is nonnegative so all four parts of Theorem
3.3 apply, although the fourth part applies trivially. Recall that D(C∗)
consists of all real sequences x for which

∑∞
k=1

xk

k
converges in R.

Corollary 3.6. Let u, v ∈ ℓ+. The inequality

sup
n

∣∣∣ ∞∑
k=n

xk

k

∣∣∣vn ≤ A sup
k

|xk|
uk

holds for all real sequences x ∈ D(C∗) with A = A(C∗); for all non-
negative sequences x ∈ D(C∗) with A = A+(C∗); for all nonnegative,
nonincreasing sequences x ∈ D(C∗) with A = A↓(C∗); and for all non-
negative, nondecreasing sequences x ∈ D(C∗) with A = A↑(C∗). In
each case the constant A is best possible. Here

A(C∗) = A+(C∗) = ∥C∗u∥ℓ∞(v) = sup
n

vn

∞∑
k=n

uk

k
;

A↓(C∗) = ∥C∗(u↓)∥ℓ∞(v) = sup
n

vn

∞∑
k=n

1

k
min
j≤k

uj;

A↑(C∗) = 0. (ℓ↑ ∩ D(C∗) = {0}.)

The operator norms of C∗ as a map on cones in a power weighted ℓ∞

space are given in the next theorem. We use ζ to denote the Riemann
zeta function.

Theorem 3.7. Let α ∈ R. The inequality

sup
n

∣∣∣ ∞∑
k=n

xk

k

∣∣∣nα ≤ A sup
k

|xk|kα

holds for all real sequences x ∈ D(C∗) if and only if it holds for all non-
negative sequences x ∈ D(C∗) if and only if it holds for all nonnegative,
nonincreasing sequences x ∈ D(C∗). In this case the best constant A is

A =

{
∞, α ≤ 0;

ζ(α + 1), α > 0.
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Except for the zero sequence, there are no nonnegative, nondecreasing
sequences in D(C∗). The inequality holds for the zero sequence x with
best constant A = 0.

Proof. Take uk = k−α and vn = nα in Corollary 3.6 to get

A(C∗) = A+(C∗) = sup
n

nα

∞∑
k=n

k−α−1;

A↓(C∗) = sup
n

nα

∞∑
k=n

1

k
min
j≤k

j−α.

If α > 0, then minj≤k j
−α = k−α so A(C∗) = A+(C∗) = A↓(C∗); their

common value is

sup
n

nα

∞∑
k=n

k−α−1 ≥
∞∑
k=1

k−α−1 = ζ(α + 1).

We show this is actually equality by supplying a proof of the first in-
equality from Remark 4.10 of [1], namely, that nα

∑∞
k=n k

−α−1 decreases
with n: The derivative of log(xα+1(x−α − (x+ 1)−α)) is(

1 + 1
x

)α+1 −
(
1 + α+1

x

)
(1 + x)α+1(x−α − (x+ 1)−α)

,

which is positive for x > 0 by Bernoulli’s inequality. Thus,

ak =
1

kα+1(k−α − (k + 1)−α)

is a decreasing sequence, and so is its moving average∑∞
k=n ak(k

−α − (k + 1)−α)∑∞
k=n(k

−α − (k + 1)−α)
= nα

∞∑
k=n

k−α−1.

If α ≤ 0, then minj≤k j
−α = 1 and we have

A(C∗) = A+(C∗) ≥ A↓(C∗) = sup
n

nα

∞∑
k=n

1

k
= ∞.

The final statement of the theorem is evident. □

3.2. The Cesàro and Copson operators minus identity. The ma-
trices we consider here are,

C − I =



0
1
2

− 1
2

1
3

1
3

− 2
3

1
4

1
4

1
4

− 3
4

...
...

...
...
...


and C∗ − I =



0 1
2

1
3

1
4

...

− 1
2

1
3

1
4

...

− 2
3

1
4

...

− 3
4

...

...


.
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Parts (i), (ii), and (iii) of Theorem 3.3 apply to C − I and part (iv)
applies to I − C. (See Remark 3.2.)

Corollary 3.8. Let u, v ∈ ℓ+. The inequality

sup
n

∣∣∣( 1
n

n∑
k=1

xk

)
− xn

∣∣∣vn ≤ A sup
k

|xk|
uk

holds for all real sequences x with A = A(C − I); for all nonnegative
sequences x with A = A+(C − I); for all nonnegative, nonincreasing
sequences x with A = A↓(C−I) and for all nonnegative, nondecreasing
sequences x with A = A↑(I − C). In each case the constant A is best
possible. Here

A(C − I) = ∥|C − I|u∥ℓ∞(v) = sup
n

vn
n

(
(n− 1)un +

n−1∑
k=1

uk

)
;

A+(C − I) = max(∥(C − I)+u∥ℓ∞(v), ∥(C − I)−u∥ℓ∞(v))

= sup
n

vn
n

max
(
(n− 1)un,

n−1∑
k=1

uk

)
;

A↓(C − I) = ∥(C − I)+(u↓)∥ℓ∞(v) = sup
n

vn
n

n−1∑
k=1

min
j≤k

uj;

A↑(I − C) = ∥(I − C)+(u↑)∥ℓ∞(v) = sup
n

vn
n
(n− 1) inf

j≥n
uj.

Proposition 3.5 of [7] may be compared with the case 0 ≤ α < 1 of the
next theorem: The norm of C−I restricted to the cone of nonnegative,
nonincreasing sequences coincides with the norm of H− I restricted to
the cone of nonnegative, nonincreasing functions.

On power-weighted ℓ∞, C − I exhibits different behavior on all four
different cones, the cone of real sequences, the cone of nonnegative
sequences, the cone of nonnegative, nonincreasing sequences and the
cone of nonnegative, nondecreasing sequences. The dependence of the
operator norm on the power gets particularly interesting for the third
cone.

Theorem 3.9. Let α ∈ R, set s1 = −∞ and set sm = 1 + log(1−1/m)
log(1+1/m)

for m = 2, 3, . . . . The inequality

sup
n

∣∣∣( 1
n

n∑
k=1

xk

)
− xn

∣∣∣nα ≤ A sup
k

|xk|kα
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holds for all real sequences x with best constant

A =


2− α

1− α
, α < 1;

∞, α ≥ 1.

It holds for all nonnegative sequences x with best constant

A =


1, α < 0;

1

1− α
, 0 ≤ α < 1;

∞, α ≥ 1.

It holds for all nonnegative, nonincreasing sequences x with best con-
stant

A =


(m+ 1)α−1m, sm < α ≤ sm+1, m = 1, 2, 3, . . . ;

1

1− α
, 0 ≤ α < 1;

∞, α ≥ 1.

It holds for all nonnegative, nondecreasing sequences x with best con-
stant

A =

{
1, α ≤ 0;

0, α > 0.

Proof. Take uk = k−α and vn = nα in Corollary 3.8 to get

A(C − I) = sup
n

(
1− 1

n
+ nα−1

n−1∑
k=1

k−α
)
;

A+(C − I) = sup
n

max
(
1− 1

n
, nα−1

n−1∑
k=1

k−α
)
;

A↓(C − I) = sup
n

nα−1

n−1∑
k=1

min
j≤k

j−α;

A↑(I − C) = sup
n

nα−1(n− 1) inf
j≥n

j−α.

Proposition 4 in [2] shows that nα−1
∑n−1

k=1 k
−α increases with n for all

α ∈ R. It tends to ∫ 1

0

x−α dx =


1

1− α
, α < 1;

∞, α ≥ 1.

The first two statements of the theorem follow.
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If α ≥ 0, then minj≤k j
−α = k−α so A↓(C − I) = A+(C − I). If

α < 0, then minj≤k j
−α = 1 so A↓(C− I) = supn n

α−1(n−1). Consider
the function g(x) = xα−1(x − 1) for x ≥ 1. Looking at g′(x) we find
that g is strictly increasing on (0, 1 − 1/α) and strictly decreasing on
(1− 1/α,∞). It follows that a positive integer m satisfies supn g(n) =
g(m + 1) if and only if g(m + 1) ≥ g(m) and g(m + 1) ≥ g(m + 2).
These two conditions may be expressed as sm ≤ α ≤ sm+1.

If α > 0, then infj≥n j
−α = 0 so A↑(I − C) = 0. If α ≤ 0, then

infj≥n j
−α = n−α so A↑(I − C) = supn(n− 1)/n = 1. □

Parts (i), (ii), and (iv) of Theorem 3.3 apply to C∗ − I, although
part (iv) gives a trivial result. Note that D(C∗ − I) = D(C∗).

Corollary 3.10. Let u, v ∈ ℓ+. The inequality

sup
n

∣∣∣( ∞∑
k=n

xk

k

)
− xn

∣∣∣vn ≤ A sup
k

|xk|
uk

holds for all real sequences x ∈ D(C∗) with A = A(C∗ − I); for all
nonnegative sequences x ∈ D(C∗) with A = A+(C∗ − I); and for all
nonnegative, nondecreasing sequences x ∈ D(C∗) with A = A↑(C∗−I).
In each case the constant A is best possible. Here

A(C∗ − I) = ∥|C∗ − I|u∥ℓ∞(v) = sup
n

vn

(n− 1

n
un +

∞∑
k=n+1

uk

k

)
;

A+(C∗ − I) = max(∥(C∗ − I)+u∥ℓ∞(v), ∥(C∗ − I)−u∥ℓ∞(v))

= sup
n

vn max
(n− 1

n
un,

∞∑
k=n+1

uk

k

)
;

A↑(C∗ − I) = 0. (The first row of C∗ − I has an infinite sum.)

We omit the trivial case when considering the power-weighted in-
equalities.

Theorem 3.11. Let α ∈ R. The inequality

sup
n

∣∣∣( ∞∑
k=n

xk

k

)
− xn

∣∣∣nα ≤ A sup
k

|xk|kα

holds for all real sequences x ∈ D(C∗) with

A =

∞, α ≤ 0;

1 +
1

α
, α > 0.
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It holds for all nonnegative sequences x ∈ D(C∗) with

A =


∞, α ≤ 0;
1

α
, 0 < α < 1;

1, α ≥ 1.

In each case the value of A is best possible.

Proof. Take uk = k−α and vn = nα in Corollary 3.10 to get

A(C∗ − I) = sup
n

(
1− 1

n
+ nα

∞∑
k=n+1

k−α−1
)
;

A+(C∗ − I) = sup
n

max
(
1− 1

n
, nα

∞∑
k=n+1

k−α−1
)
.

If α ≤ 0 the sum diverges so both of these are infinite. If α > 0 we
need the second inequality from Remark 4.10 of [1]: nα

∑∞
k=n+1 k

−α−1

increases with n. The derivative of log(xα+1((x− 1)−α − x−α)) is(
1− α+1

x

)
−

(
1− 1

x

)α+1

(x− 1)α+1((x− 1)−α − x−α)
,

which is negative for x > 1 by Bernoulli’s inequality. Thus,

ak =
1

kα+1((k − 1)−α − k−α)

is an increasing sequence, and so is its moving average∑∞
k=n+1 ak((k − 1)−α − k−α)∑∞
k=n+1((k − 1)−α − k−α)

= nα

∞∑
k=n+1

k−α−1.

We recognize these as (improper) Riemann sums, and get

nα

∞∑
k=n+1

k−α−1 =
1

n

∞∑
k=n+1

(k
n

)−α−1

→
∫ ∞

1

x−α−1 dx =
1

α

as n → ∞. Therefore A(C∗ − I) = 1 + 1/α and A+(C∗ − I) =
max(1, 1/α). This completes the proof. □

3.3. Two required operators. The next two operators appear in
Theorems 2.3 and 2.4. Their operators norms are needed to complete
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the work on (1). In matrix form, they are

C − S∗ =



1 −1
1
2

1
2

−1
1
3

1
3

1
3

−1
1
4

1
4

1
4

1
4

−1

...
...

...
...

...
...


and (C∗ − S)D =



1
2

1
6

1
12

1
20

...

− 1
2

1
6

1
12

1
20

...

− 1
3

1
12

1
20

...

− 1
4

1
20

...

... ...


.

Parts (i), (ii), and (iii) of Theorem 3.3 apply to C − S∗ and part (iv)
applies to S∗ − C.

Corollary 3.12. Let u, v ∈ ℓ+. The inequality

sup
n

∣∣∣( 1
n

n∑
k=1

xk

)
− xn+1

∣∣∣vn ≤ A sup
k

|xn|
un

holds for all real sequences x with A = A(C − S∗); for all nonnegative
sequences x with A = A+(C − S∗); for all nonnegative, nonincreasing
sequences x with A = A↓(C−S∗) and for all nonnegative, nondecreasing
sequences x with A = A↑(S∗ − C). In each case the constant A is best
possible. Here

A(C − S∗) = ∥|C − S∗|u∥ℓ∞(v) = sup
n

vn

(
un+1 +

1

n

n∑
k=1

uk

)
;

A+(C − S∗) = max(∥(C − S∗)+u∥ℓ∞(v), ∥(C − S∗)−u∥ℓ∞(v))

= sup
n

vn max
( 1
n

n∑
k=1

uk, un+1

)
;

A↓(C − S∗) = ∥(C − S∗)+(u↓)∥ℓ∞(v) = sup
n

vn
n

n∑
k=1

min
j≤k

uj;

A↑(S∗ − C) = ∥(S∗ − C)+(u↑)∥ℓ∞(v) = sup
n

vn inf
j≥n+1

uj.

Parts (i), (ii), and (iv) of Theorem 3.3 apply to (C∗ − S)D and part
(iii) applies to (S−C∗)D. Note that D((C∗−S)D) = D((S−C∗)D) =
D(C∗D).

Corollary 3.13. Let u, v ∈ ℓ+ and for convenience let u0 = x0 = 0.
The inequality

sup
n

∣∣∣( ∞∑
k=n

xk

k(k + 1)

)
− xn−1

n

∣∣∣vn ≤ A sup
k

|xn|
un

holds for all real sequences x ∈ D(C∗D) with A = A((C∗−S)D); for all
nonnegative sequences x ∈ D(C∗D) with A = A+((C∗ − S)D); for all
nonnegative, nonincreasing sequences x ∈ D(C∗D) with A = A↓((S −
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C∗)D); and for all nonnegative, nondecreasing sequences x ∈ D(C∗D)
with A = A↑((C∗ − S)D). In each case the constant A is best possible.
Here

A((C∗ − S)D) = ∥|(C∗ − S)D|u∥ℓ∞(v)

= sup
n

vn

(un−1

n
+

∞∑
k=n

uk

k(k + 1)

)
;

A+((C∗ − S)D) = max(∥((C∗ − S)D)+u∥ℓ∞(v), ∥((C∗ − S)D)−u∥ℓ∞(v))

= sup
n

vnmax
(un−1

n
,

∞∑
k=n

uk

k(k + 1)

)
;

A↓((S − C∗)D) = ∥((S − C∗)D)+(u↓)∥ℓ∞(v) = sup
n

vn
n

min
j≤n−1

uj;

A↑((C∗ − S)D) = ∥((C∗ − S)D)+(u↑)∥ℓ∞(v)

= sup
n

vn

∞∑
k=n

1

k(k + 1)
inf
j≥k

uj.

We forgo an investigation of the power-weighted case for these op-
erators. Their principal interest is their use in the proof of Theorem
4.1 and the special case is not required there. Theorems 4.2 and 4.3
deduce the power-weighted case of Theorem 4.1 directly.

4. Best constants in the two-operator inequalities

Combining Theorems 2.3 and 2.4 with the formulas given in the
previous subsection for

A(C − S∗), A↓(C − S∗), A((C∗ − S)D), and A↑((C∗ − S)D)

gives us answers to our original questions, the best constants in the
inequalities of (1).

Fix u, v ∈ ℓ+. Let A(C,C∗) and A+(C,C∗) denote the smallest
A ≥ 0 such that inequality

∥Cx∥ℓ∞(v) ≤ A∥C∗x∥ℓ∞(1/u)

holds for all x ∈ D(C∗) and for all x ∈ ℓ+ ∩ D(C∗), respectively.
Similarly, let A(C∗, C) and A+(C∗, C) denote the smallest A ≥ 0 such
that inequality

∥C∗x∥ℓ∞(v) ≤ A∥Cx∥ℓ∞(1/u)

holds for all x ∈ D(C∗) and for all x ∈ ℓ+ ∩ D(C∗), respectively.
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Theorem 4.1. Let u, v ∈ ℓ+. Then, taking u0 = 0, we have

A(C,C∗) = sup
n

vn

(
un+1 +

1

n

n∑
k=1

uk

)
;

A+(C,C∗) = sup
n

vn
n

n∑
k=1

min
j≤k

uj;

A(C∗, C) = sup
n

vn

(n− 1

n
un−1 +

∞∑
k=n

uk

k + 1

)
;

A+(C∗, C) = sup
n

vn

∞∑
k=n

1

k(k + 1)
inf
j≥k

juj.

Proof. Since (4) holds with A = A(C − S∗), Theorem 2.3 shows that
(3) does as well. Thus A(C,C∗) ≤ A(C − S∗). On the other hand, by
definition, (3) holds with A = A(C,C∗) and by Theorem 2.3, so does
(4). Fix n and let

y = (u1, u2, . . . , un,−un+1, 0, 0, . . . ).

Since yk → 0 as k → ∞ and ∥y∥ℓ∞(1/u) ≤ 1, we get

vn

(
un+1+

1

n

n∑
k=1

uk

)
= vn((C−S∗)y)n ≤ ∥(C−S∗)y∥ℓ∞(v) ≤ A(C,C∗).

Using this in the formula for A(C − S∗) from Corollary 3.12 yields

A(C − S∗) = sup
n

vn

(
un+1 +

1

n

n∑
k=1

uk

)
≤ A(C,C∗).

Therefore,

A(C,C∗) = sup
n

vn

(
un+1 +

1

n

n∑
k=1

uk

)
.

Clearly, (6) holds with A = A↓(C − S∗) and, by Theorem 2.3, so
does (5). Thus A+(C,C∗) ≤ A↓(C −S∗). By definition, (5) holds with
A = A+(C,C∗) and Theorem 2.3 shows that (6) does also. Fix n and
let

y = (u↓
1, u

↓
2, . . . , u

↓
n, 0, 0, . . . ).

Then y ∈ ℓ↓, yk → 0 as k → ∞ and, by Lemma 1.2, ∥y∥ℓ∞(1/u) =
∥y∥ℓ∞(1/u↓) ≤ 1. Therefore

vn

( 1
n

n∑
k=1

u↓
k

)
= vn((C − S∗)y)n ≤ ∥(C − S∗)y∥ℓ∞(v) ≤ A+(C,C∗).
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The formula for A↓(C − S∗) from Corollary 3.12 implies

A↓(C − S∗) = sup
n

vn
n

n∑
k=1

min
j≤k

uj ≤ A+(C,C∗).

Therefore,

A+(C,C∗) = sup
n

vn
n

n∑
k=1

min
j≤k

uj.

Let wk = kuk for all k and note that D((C∗ − S)D) = D(C∗D).
Replacing u by w in the formula for A((C∗ − S)D) from Corollary

3.13 shows that (8) holds with A replaced by

Ã = sup
n

vn

(wn−1

n
+

∞∑
k=n

wk

k(k + 1)

)
= sup

n
vn

(n− 1

n
un−1 +

∞∑
k=n

uk

k + 1

)
.

By Theorem 2.4, (7) also holds with A = Ã. Thus A(C∗, C) ≤ Ã. The-
orem 2.4 also shows that (7) and hence (8) holds with A = A(C∗, C).
Fix n and K > n, and let

z = (0, 0, . . . , 0,−wn−1, wn, wn+1, . . . wK , 0, 0, . . . ).

Evidently, z ∈ D(C∗D), (Dz)k → 0 as k → ∞, and ∥z∥ℓ∞(1/w) ≤ 1, so
we get ∥(C∗ − S)Dz∥ℓ∞(v) ≤ A(C∗, C). It follows that

vn

(wn−1

n
+

K∑
k=n

wk

k(k + 1)

)
= vn((C

∗ − S)Dz)n ≤ A(C∗, C).

Letting K → ∞ and taking the supremum over n, gives Ã ≤ A(C∗, C),
and we conclude that A(C∗, C) = Ã.
Replacing u by w in the formula for A↑((C∗ − S)D) from Corollary

3.13 shows that (10) holds with A replaced by

Ã↑ = sup
n

vn

∞∑
k=n

w↑
k

k(k + 1)
= sup

n
vn

∞∑
k=n

1

k(k + 1)
inf
j≥k

juj.

By Theorem 2.4, (9) also holds with A = Ã↑. Thus A+(C∗, C) ≤
Ã↑. Theorem 2.4 also shows that (9) and hence (10) holds with A =
A+(C∗, C). Fix n and K > n, and let

z = (0, 0, . . . , 0, w↑
n, w

↑
n+1, . . . w

↑
K , w

↑
K , w

↑
K , . . . ).
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Then (C∗Dz)K =
∑∞

k=K

w↑
K

k(k+1)
< ∞ so z ∈ ℓ↑∩D(C∗D), (Dz)k → 0 as

k → ∞, and, by Lemma 1.2, ∥z∥ℓ∞(1/w) = ∥z∥ℓ∞(1/w↑) ≤ 1. Therefore,

vn

K∑
k=n

w↑
k

k(k + 1)
≤ vn((C

∗−S)Dz)n ≤ ∥(C∗−S)Dz∥ℓ∞(v) ≤ A+(C∗, C).

Letting K → ∞ and taking the supremum over n, we get Ã↑ ≤
A+(C∗, C), and conclude that A+(C∗, C) = Ã↑. □

We split the power-weighted inequalities for the two-operator in-
equalities into two theorems because the techniques of simplification
differ.

Theorem 4.2. Let α ∈ R. The inequality

sup
n

∣∣∣ 1
n

n∑
k=1

xk

∣∣∣nα ≤ A sup
n

∣∣∣ ∞∑
k=n

xk

k

∣∣∣nα

holds for all x ∈ D(C∗) with

A =


1 + 2−α, α ≤ 0;
2− α

1− α
, 0 < α < 1;

∞, α ≥ 1.

It holds for all nonnegative x ∈ D(C∗) with

A =


1, α ≤ 0;

1

1− α
, 0 < α < 1;

∞, α ≥ 1.

In each case the constant A is best possible.

Proof. Take uk = k−α and vn = nα in Theorem 4.1 to see that the best
constant A, taken over all x ∈ D(C∗), is

A(C,C∗) = sup
n

(( n

n+ 1

)α

+ nα−1

n∑
k=1

k−α
)

and the best constant A, taken over all nonnegative x ∈ D(C∗), is

A+(C,C∗) = sup
n

nα−1

n∑
k=1

min
j≤k

j−α.
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By Proposition 3 of [2], nα−1
∑n

k=1 k
−α decreases with n when α ≤ 0

and increases with n when α > 0. The same is true of
(

n
n+1

)α
. So if

α ≤ 0, A(C,C∗) = 1 + 2−α and if α > 0,
(

n
n+1

)α → 1 and

nα−1

n∑
k=1

k−α =
1

n

n∑
k=1

(k
n

)−α

→
∫ 1

0

x−α dx =


1

1− α
, 0 < α < 1;

∞, α ≥ 1,

as n → ∞ so

A(C,C∗) =


2− α

1− α
, 0 < α < 1;

∞, α ≥ 1,

If α ≤ 0, then minj≤k j
−α = 1 so A+(C,C∗) = 1. If α > 0, then

minj≤k j
−α = k−α so as above we have

A+(C,C∗) = sup
n

nα−1

n∑
k=1

k−α =


1

1− α
, 0 < α < 1;

∞, α ≥ 1.

□

In the case of nonnegative sequences, the best constants given above
agree with those that appear in Theorem 3.7 of [7] for the operators
H and H∗ on nonnegative functions, except when α < 0. The best
constants given below, again for nonnegative sequences, agree with the
corresponding results from Theorem 3.7 of [7] for all values of α.

Theorem 4.3. Let α ∈ R and set Mα =
∑∞

k=1
k−α

k+1
. The inequality

sup
n

∣∣∣ ∞∑
k=n

xk

k

∣∣∣nα ≤ A sup
n

∣∣∣ 1
n

n∑
k=1

xk

∣∣∣nα

holds for all x ∈ D(C∗) with

A =


∞, α ≤ 0;

1 +
1

α
, 0 < α ≤ 1;

2αMα, α > 1.

It holds for all nonnegative x ∈ D(C∗) with

A =


∞, α ≤ 0;
1

α
, 0 < α ≤ 1;

0, α > 1.

In each case the constant A is best possible.
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Proof. Take uk = k−α and vn = nα in Theorem 4.1 to see that the best
constant A, taken over all x ∈ D(C∗), is

A(C∗, C) = max
(
Mα, sup

n≥2

((n− 1

n

)1−α

+ nα

∞∑
k=n

k−α

k + 1

))
and the best constant A, taken over all nonnegative x ∈ D(C∗), is

A+(C∗, C) = sup
n

nα

∞∑
k=n

1

k(k + 1)
inf
j≥k

j1−α.

We will need another monotonicity result in the spirit of Remark
4.10 of [1]: If 0 < α ≤ 1, then

nα

∞∑
k=n

k−α

k + 1

increases with n to 1/α and if α > 1, it decreases with n. For all x > 0,
the derivative of log((x+ 1)xα(x−α − (x+ 1)−α)) is(

1 + 1
x

)α −
(
1 + α

x

)
(x+ 1)α+1(x−α − (x+ 1)−α)

which is nonpositive when α ≤ 1 and nonnegative when α ≥ 1 by
Bernoulli’s inequality. Thus,

ak =
1

(k + 1)kα(k−α − (k + 1)−α)

is a nondecreasing sequence when α ≤ 1 and is a decreasing sequence
when α ≥ 1. Its moving average,∑∞

k=n ak(k
−α − (k + 1)−α)∑∞

k=n(k
−α − (k + 1)−α)

= nα

∞∑
k=n

k−α

k + 1
.

shares its monotonicity. If 0 < α ≤ 1, then the last expression goes to
1/α, as can be seen from the estimates

nα

∫ ∞

n+1

(x+ 1)−α−1 dx ≤ nα

∞∑
k=n

k−α

k + 1
≤ nα

∫ ∞

n−1

x−α−1 dx.

If α ≤ 0, A(C∗, C) = ∞ since the sums diverge. If 0 < α ≤ 1, then
A(C∗, C) = 1 + 1/α. If α > 1, then

A(C∗, C) = max(Mα, 2
α−1 + 2α(Mα − 1/2)) = 2αMα.

If α > 1, then infj≥k j
1−α = 0 so A+(C∗, C) = 0. If α ≤ 1, then

infj≥k j
1−α = k1−α so A+(C,C∗) = supn n

α
∑∞

k=1
k−α

k+1
, which is infinite

when α ≤ 0 and equals 1/α when 0 < α ≤ 1.
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