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Abstract. It is shown that if the Fourier transform is a bounded map on a

rearrangement-invariant space of functions on Rn, modified by a weight, then
the weight is bounded above and below and the space is equivalent to L2. Also,

if it is bounded from Lp to Lq , each modified by the same weight, then the

weight is bounded above and below and 1 ≤ p = q′ ≤ 2. Applications prove
the non-boundedness on these spaces of an operator related to the Schrödinger

equation.

1. Introduction

Plancherel’s theorem and the Hausdorff-Young inequality show that if 1 ≤ p ≤ 2
and 1/p+ 1/q = 1, then there exists a C such that for all f ∈ L1 ∩ Lp,

(1.1) ∥f̂∥Lq(Rn) ≤ C∥f∥Lp(Rn).

It is well known that these are the only (Lp, Lq) pairs between which the Fourier
transform is a bounded map. In addition, Theorem 1(ii) of [2] shows that if X is a
rearrangement invariant space of functions, then the Fourier transform is bounded
on X if and only if X = L2, with equivalent norms.

In this paper we modify these spaces by introducing a weight function and show
that the Fourier transform is bounded only if the weights are bounded above and
below, reducing both problems to their respective unweighted cases. This provides
a much larger class of spaces on which the Hausdorff-Young inequalities in (1.1) are
effectively the only possible Fourier norm inequalities. See Theorems 2.5 and 2.6.

Following Lemma 8 of [2] we apply these results to identify a large class of spaces
on which the Schrödinger multiplier exp(−4π2it|y|2) does not give rise to a bounded
convolution operator. See Corollaries 3.1 and 3.2.

If f : Rn → C is integrable, then its Fourier transform,

f̂(x) =

∫
Rn

e−2πix·tf(t) dt,

is a bounded continuous function. We restrict our attention throughout to inte-
grable functions and avoid unnecessary extensions of the Fourier transform.
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Modulation and translation operators εz and τz are defined by setting

εzf(x) = e−2πix·zf(x) and τzf(x) = f(x+ z).

Observe that if f is integrable, then τz f̂ = (εzf )̂ and (τzf )̂ = ε−z f̂ , for z ∈ Rn.
For each r > 0, let Qr = (−r/2, r/2)n denote the cube in Rn with centre zero

and side length r. Let qr = χQr denote its characteristic function. Notice that if
y = (y1, . . . , yn) ∈ Q1/(2r), then for each j, −π/4 ≤ πryj ≤ π/4 so∣∣∣ sin(πryj)

πryj

∣∣∣ ≥ sin(π/4)

π/4
≥ 1

2
.

Thus, for all y, z ∈ Rn,

(1.2) |(τzqr )̂ (y)| =
∣∣∣e2πiy·z

n∏
j=1

sin(πryj)

πyj

∣∣∣ ≥ rn

2n
q1/(2r)(y).

Let X be a rearrangement invariant space of complex valued functions on Rn.
For the definition, we refer the reader to [1] and only recall the properties of X that
we need here. The space X is a Banach space, equipped with a norm ∥ · ∥X , and
satisfying the following:

(a) Characteristic functions of sets of finite measure are in X.
(b) If g ∈ X and |f | ≤ |g| almost everywhere, then f ∈ X and ∥f∥X ≤ ∥g∥X .
(c) If 0 ≤ fk ∈ X for each k and fk increases pointwise almost everywhere to

f as k → ∞, then f ∈ X and ∥fk∥X → ∥f∥X as k → ∞.
(d) If g ∈ X and f and g are equimeasurable, that is, for all α > 0, the sets

{x ∈ Rn : |f(x)| > α} and {x ∈ Rn : |g(x)| > α} have the same (Lebesgue)
measure, then f ∈ X and ∥f∥X ≤ ∥g∥X .

(e) The associate space X ′ is defined to be the set of measurable g such that

∥g∥X′ = sup

{∫
R
|fg| : ∥f∥X ≤ 1

}
is finite. It is also a rearrangement invariant space, and (X ′)′ = X.

(f) If T is a sublinear operator on L1 + L∞ that maps L1 to L1 and L∞ to
L∞ such that ∥Tf∥L1 ≤ ∥f∥L1 for all f ∈ L1 and ∥Tf∥L∞ ≤ ∥f∥L∞ for all
f ∈ L∞, then T maps X to X and ∥Tf∥X ≤ ∥f∥X for all f ∈ X.

(g) If f ∈ X and z ∈ Rn, then τzf ∈ X and ∥τzf∥X = ∥f∥X .
(h) If r > 0, then rn = ∥qr∥X∥qr∥X′ .

The last property deserves some justification. Since qr = q2
r and rn is the

integral of qr, the definition of X ′ gives “≤”. With Tf = qr
1
rn

∫
Qr

|f |, we have

∥Tf∥L1 ≤ ∥f∥L1 for f ∈ L1 and ∥Tf∥L∞ ≤ ∥f∥L∞ for f ∈ L∞ so ∥Tf∥X′ ≤ ∥f∥X′

for all f ∈ X ′. If ∥f∥X′ ≤ 1, then ∥qr∥X′
∫
Rn |fqr| dx = rn∥Tf∥X′ ≤ rn. Taking

the supremum over all such f gives “≥”.

2. Main results

Let A = {α : Rn → (0,∞)|
∫
Rn α = 1}. These are the functions we will use to

smooth weight functions by convolution. We begin with a general duality result,
which we only need for rearrangement invariant spaces.



FOURIER TRANSFORM IN WEIGHTED R.I. SPACES 3

Lemma 2.1. Let P and Q be rearrangement invariant spaces of complex valued
functions on Rn, U and V be strictly positive measurable functions and C > 0.

Suppose that if f is integrable and Uf ∈ P , then V f̂ ∈ Q′ and

∥V f̂∥Q′ ≤ C∥Uf∥P .
Then, for all integrable g such that g/V ∈ Q, we have ĝ/U ∈ P ′ and

∥ĝ/U∥P ′ ≤ C∥g/V ∥Q.

Proof. Suppose g is integrable and g/V ∈ Q. Choose h ∈ P with ∥h∥P ≤ 1. For
each positive integer k, set hk(x) = qk(x)|h(x)||ĝ(x)|/ĝ(x) when h(x) ≤ kU(x) and
ĝ(x) ̸= 0. Set hk(x) = 0 otherwise. Evidently, |hk| ≤ |h| so ∥hk∥P ≤ 1. Also, hk/U
is integrable, so∫

Rn

|ĝ|
U

|hk| =
∫
Rn

ĝ
hk

U
=

∫
Rn

g
(hk

U

)̂
≤ ∥g/V ∥Q∥V (hk/U )̂ ∥Q′ ≤ C∥g/V ∥Q.

Letting k → ∞, the monotone convergence theorem implies∫
Rn

|ĝ|
U

|h| ≤ C∥g/V ∥Q < ∞.

Therefore ĝ/U ∈ P ′ and ∥ĝ/U∥P ′ ≤ C∥g/V ∥Q. □

Next we show that if a weighted Fourier inequality holds, it also holds with a
smoothed weight in the codomain.

Theorem 2.2. Let X and Y be rearrangement invariant spaces of complex valued
functions on Rn and let α ∈ A. Let u and v be non-negative, measurable functions
on Rn such that v is not almost everywhere zero. Suppose there exists a C > 0 such

that, if f is integrable and uf ∈ X, then vf̂ ∈ Y and

∥vf̂∥Y ≤ C∥uf∥X .

Then u > 0 almost everywhere; v ∗ q1 is bounded above; 0 < v ∗ α < ∞ almost

everywhere; and, if f is integrable and uf ∈ X, then (v ∗ α)f̂ ∈ Y and

∥(v ∗ α)f̂∥Y ≤ C∥uf∥X .

Proof. Suppose f is integrable, uf ∈ X, g ∈ Y ′ and ∥g∥Y ′ ≤ 1. Interchanging the
order of integration and replacing y by y + z produces the equation∫

Rn

∫
Rn

v(y − z)α(z) dz|f̂(y)g(y)| dy =

∫
Rn

∫
Rn

|v(y)(τz f̂)(y)(τzg)(y)| dy α(z) dz.

Since Y ′ is rearrangement invariant, ∥τzg∥Y ′ ≤ 1. Also, τz f̂ = (εzf )̂ , so we have∫
Rn

v ∗ α(y)|f̂(y)g(y)| dy ≤
∫
Rn

∥vτz f̂∥Y α(z) dz =

∫
Rn

∥v(εzf )̂ ∥Y α(z) dz.

But |εzf | = |f |, so∫
Rn

v ∗ α(y)|f̂(y)g(y)| dy ≤
∫
Rn

C∥uf∥Xα(z) dz = C∥uf∥X < ∞.

Therefore, (v ∗ α)f̂ ∈ Y and ∥(α ∗ v)f̂∥Y ≤ C∥uf∥X .
Choose a set F of finite, positive measure such that u is bounded on F . If u

is zero on a set of positive measure, choose the set F so that u is zero on F . Set
f = χF . Then f is bounded, integrable and not almost everywhere zero so its
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Fourier transform is continuous and not identically zero. Choose a ∈ Rn and δ > 0

so that if a− y ∈ Qδ, then |f̂(y)| ≥ δ. Then, for all y, z ∈ Rn,

δqδ(z − y) ≤ |f̂(a+ y − z)|qδ(z − y) = |(εa−zf )̂ (y) |qδ(z − y).

The choice of F ensures that uεa−zf is bounded and integrable so uεa−zf ∈ X.
Therefore,

δ

∥qδ∥Y ′
v ∗ qδ(z) ≤

∫
Rn

v(y)|(εa−zf )̂ (y)|
qδ(z − y)

∥qδ∥Y ′
dy ≤ ∥v(εa−zf )̂ ∥Y ≤ C∥uf∥X .

If u were zero on a set of positive measure, the choice of F would make the right-
hand side zero and force v to be almost-everywhere zero, contrary to hypothesis.
Therefore u > 0 almost everywhere. The strict positivity of α ensures that v∗α > 0
almost everywhere.

Since C∥uf∥X finite and independent of z, v∗qδ is bounded above. It is a simple
matter to cover Q1 by finitely many translates of Qδ to get

q1 ≤
N∑
j=1

τzjqδ,

for some finite sequence z1, . . . , zN , and hence

v ∗ q1 ≤
N∑
j=1

v ∗ (τzjqδ) =
N∑
j=1

τzj (v ∗ qδ)

which is bounded above. It follows that

(v ∗ α) ∗ q1 = (v ∗ q1) ∗ α
is bounded above, which implies that v ∗ α is finite almost everywhere. □

Combining duality with smoothing of the codomain weight permits smoothing
of both weights.

Corollary 2.3. Under the hypotheses of Theorem 2.2,

(i) If g is integrable and g/(v ∗ α) ∈ Y ′, then ĝ/u ∈ X ′ and

∥ĝ/u∥X′ ≤ C∥g/(v ∗ α)∥Y ′ .

(ii) (1/u) ∗ q1 is bounded above, 0 < (1/u) ∗ α < ∞ almost everywhere and, if
g is integrable and g/(v ∗ α) ∈ Y ′, then ((1/u) ∗ α)ĝ ∈ X ′ and

∥((1/u) ∗ α)ĝ∥X′ ≤ C∥g/(v ∗ α)∥Y ′ .

(iii) If f is integrable and f/((1/u) ∗ α) ∈ X, then (v ∗ α)f̂ ∈ Y and

∥(v ∗ α)f̂∥Y ≤ C∥f/((1/u) ∗ α)∥X .

Proof. For (i), apply Lemma 2.1 to the result of Theorem 2.2. For (ii), apply
Theorem 2.2 to (i). For (iii), apply Lemma 2.1 to (ii). □

Next we select a sequence of elements of A that can be used as an approximate
identity on the original weights.

Lemma 2.4. There exist α1, α2, . . . in A such that if w ≥ 0 and w ∗ q1 is bounded
above, then w ∗ αk is continuous for each k and as k → ∞, w ∗ αk → w almost
everywhere on Rn.
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Proof. Fix α0 ∈ A. For each positive integer k, set

αk =
1

k
q1 ∗ α0 +

k − 1

k
knq1/k.

We readily verify that αk ∈ A for each k.
Since w ∗ q1 is bounded above, w ∗ q1 ∗ α0 is bounded above and w is locally

integrable. Lebesgue’s differentiation theorem shows that for almost every z ∈ Rn,
knw ∗ q1/k(z) → w(z) as k → ∞. It follows that, as k → ∞, w ∗ αk → w pointwise
almost everywhere.

Now fix k and z ∈ Rn. Let B be an upper bound for w ∗ q1. Then for h ∈ Rn,

|w ∗ q1 ∗ α0(z + h)− w ∗ q1 ∗ α0(z)| ≤ B

∫
Rn

|α0(z + h− y)− α0(z − y)| dy → 0

as h → 0 because translation is continuous in L1. So w ∗ q1 ∗α0 is continuous at z.
If h ∈ Q1 and y /∈ Q2, then y + h /∈ Q1 and we have q1/k(y + h) = q1/k(y) = 0.

So for sufficiently small h,

|w ∗ q1/k(z + h)− w ∗ q1/k(z)| ≤
∫
Q2

w(z − y)|q1/k(y + h)− q1/k(y)| dy.

Since w is locally integrable and |q1/k(y + h)− q1/k(y)| → 0 almost everywhere as
h → 0, the dominated convergence theorem shows w ∗ q1/k is continuous at z.

These combine to show that w ∗ αk is continuous on Rn. □

Now we are ready to prove our main result: The Fourier transform is bounded on
a non-trivial weighted rearrangement invariant space only if the weight is equivalent
to a constant function.

Theorem 2.5. Let X be a rearrangement invariant space of complex valued func-
tions on Rn and let w be a non-negative measurable function on Rn that is not
almost everywhere zero. Suppose there exists a C > 0 such that, if f is integrable

and wf ∈ X, then wf̂ ∈ X and

∥wf̂∥X ≤ C∥wf∥X .

Then there exist positive real numbers m and M such that m ≤ w(x) ≤ M for
almost every x ∈ Rn. Moreover, X = L2 with equivalent norms.

Proof. By Theorem 2.2 and Corollary 2.3 we get: w > 0 almost everywhere; for
each α ∈ A, 0 < w ∗ α < ∞ and 0 < (1/w) ∗ α < ∞ almost everywhere; w ∗ q1

and (1/w) ∗ q1 are bounded above; if g is integrable and g/(w ∗ α) ∈ X ′, then
((1/w) ∗ α)ĝ ∈ X ′ and

∥((1/w) ∗ α)ĝ∥X′ ≤ C∥g/(w ∗ α)∥X′ ;

and if f is integrable and f/((1/w) ∗ α) ∈ X, then (w ∗ α)f̂ ∈ X and

∥(w ∗ α)f̂∥X ≤ C∥f/((1/w) ∗ α)∥X .

Since s+ 1/s ≥ 2 for s > 0, we see that, for all x ∈ Rn,∫
Rn

∫
Rn

(w(x− z)

w(x− y)
+

w(x− y)

w(x− z)

)
α(y)α(z) dy dz ≥

∫
Rn

∫
Rn

2α(y)α(z) dy dz = 2,

which implies 1 ≤ w ∗ α(x)(1/w) ∗ α(x). Therefore,
1

(2r)n
≤

∫
Q1/(2r)

w ∗α(x)(1/w) ∗α(x) dx ≤ ∥(w ∗α)q1/(2r)∥X∥((1/w) ∗α)q1/(2r)∥X′ .
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But for any y, z ∈ Rn, inequality (1.2) implies

∥(w ∗ α)q1/(2r)∥X ≤ 2n

rn
∥(w ∗ α)(τzqr )̂ ∥X ≤ 2nC

rn
∥τzqr/((1/w) ∗ α)∥X

and

∥((1/w) ∗ α)q1/(2r)∥X′ ≤ 2n

rn
∥((1/w) ∗ α)(τyqr )̂ ∥X′ ≤ 2nC

rn
∥τyqr/(w ∗ α)∥X′ .

These, together with properties (h) and (g) above, yield

1 ≤ 23nC2 ∥τzqr/((1/w) ∗ α)∥X
∥τzqr∥X

∥τyqr/(w ∗ α)∥X′

∥τyqr∥X′
.

This inequality holds for all α ∈ A so it holds with α replaced by each αk from the
sequence given in Lemma 2.4. The lemma applies to both w and 1/w. Using the
continuity of (1/w) ∗ αk and w ∗ αk, and letting r → 0, we get

1 ≤ 23nC2 1

(1/w) ∗ αk(z)

1

w ∗ αk(y)
.

Now we let k → ∞ to see that for almost every z and almost every y we have

1 ≤ 23nC2w(z)

w(y)
.

Choose y0 such that the inequality holds for almost every z and choose z0 such
that the inequality holds for almost every y. Then set m = 2−3nC−2w(y0) and
M = 23nC2w(z0) to get m ≤ w ≤ M almost everywhere.

With this inequality in hand, the hypothesis of the theorem implies that if f

is integrable and f ∈ X, then f̂ ∈ X and ∥f̂∥X ≤ (MC/m)∥f∥X . Since X is
rearrangement invariant, the Fourier transform extends to be bounded on all of X
and Theorem 1(ii) of [2] implies that X = L2, with equivalent norms. □

Now we turn our attention to weighted Lebesgue spaces and the Hausdorff-
Young inequality. Note that if 1 ≤ p ≤ ∞, Lp is rearrangement invariant space and
(Lp)′ = Lp′

where 1/p+ 1/p′ = 1.

Theorem 2.6. Suppose p, q ∈ [1,∞], w is a positive, measurable function on Rn

and there exists a C such that ∥wf̂∥Lq ≤ C∥wf∥Lp whenever f is integrable and
fw ∈ Lp. Then 1 ≤ p ≤ 2, q = p′ and there exist positive real numbers m and M
such that m ≤ w(x) ≤ M for almost every x ∈ Rn.

Proof. By Theorem 2.2 and Corollary 2.3 we get: 0 < w almost everywhere; for
each α ∈ A, 0 < w ∗ α < ∞ and 0 < (1/w) ∗ α < ∞ almost everywhere; w ∗ q1

and (1/w) ∗ q1 are bounded above; if g is integrable and g/(w ∗ α) ∈ Lq′ , then

((1/w) ∗ α)ĝ ∈ Lp′
and

∥((1/w) ∗ α)ĝ∥Lp′ ≤ C∥g/(w ∗ α)∥Lq′ ;

and if f is integrable and f/((1/w) ∗ α) ∈ Lp, then (w ∗ α)f̂ ∈ Lq and

∥(w ∗ α)f̂∥Lq ≤ C∥f/((1/w) ∗ α)∥Lp .

As in the proof of Theorem 2.5, we see that 1 ≤ w ∗ α(x)(1/w) ∗ α(x) for all
x ∈ Rn. If both p′ and q are finite, this implies(

1

(2r)n

) 1
p′ + 1

q

≤
(∫

Q1/(2r)

(
w ∗ α(x)q

)p′/(p′+q)(
(1/w) ∗ α(x)p

′)q/(p′+q)
dx

) 1
p′ + 1

q

.
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Applying Hölder’s inequality with indices (p′ + q)/p′ and (p′ + q)/q we get

(2r)
− n

p′ −
n
q ≤ ∥(w ∗ α)q1/(2r)∥Lq∥((1/w) ∗ α)q1/(2r)∥Lp′ .

It is easy to verify that this inequality remains valid when one or both of p′ and q
is infinite.

But for any y, z ∈ Rn, inequality (1.2) implies

∥(w ∗ α)q1/(2r)∥Lq ≤ 2n

rn
∥(w ∗ α)(τzqr )̂ ∥Lq ≤ 2nC

rn
∥τzqr/((1/w) ∗ α)∥Lp

and

∥((1/w) ∗ α)q1/(2r)∥Lp′ ≤
2n

rn
∥((1/w) ∗ α)(τyqr )̂ ∥Lp′ ≤

2nC

rn
∥τyqr/(w ∗ α)∥Lq′ .

Since ∥τzqr∥Lp = rn/p and ∥τyqr∥Lq′ = rn/q
′
, the above inequalities combine to

show that

1 ≤ 2
n(2+ 1

p′ + 1
q )
C2 ∥τzqr/((1/w) ∗ α)∥Lp

∥τzqr∥Lp

∥τyqr/(w ∗ α)∥Lq′

∥τyqr∥Lq′
.

As in the proof of Theorem 2.5, we replace α by αk, let r → 0 to get

1 ≤ 2
n(2+ 1

p′ + 1
q )
C2 1

(1/w) ∗ αk(z)

1

w ∗ αk(y)
,

and let k → ∞ to get

1 ≤ 2
n(2+ 1

p′ + 1
q )
C2w(z)

w(y)
.

It follows as above that there exist positive real numbers m and M such that
m ≤ w(x) ≤ M for almost every x ∈ Rn. The hypothesis of the theorem now

implies that if f is integrable and f ∈ Lp, then f̂ ∈ Lq and

∥f̂∥Lq ≤ (MC/m)∥f̂∥Lp .

This can only happen when 1 ≤ p = q′ ≤ 2.
To see this well known fact we may use (1.2) with z = 0, taking f = qr to see

that q = p′ is a necessary condition for (1.1). Also, Theorem 1(i) of [2] shows that
L1 + L2 is the largest rearrangement invariant space which the Fourier Transform
maps into a space of locally integrable functions. If p > 2 then Lp is not a subset
of L1 + L2, making p ≤ 2 also a necessary condition for (1.1). □

3. The Schrödinger Multiplier

The Fourier transform separates variables in the Schrödinger equation

(3.1) ∂tu(t, x) = i∆xu(t, x).

The resulting multiplier is exp(−4π2it|y|2). That is, if u(0, x) = h(x), with h
integrable, the solution to (3.1) is u(t, x) = Sth(x), where the operator St is defined
by

Ŝth(y) = exp(−4π2it|y|2)ĥ(y).
The operator St can be extended (along with the Fourier transform) to spaces other
than L1 in order to solve the Schrödinger equation for non-integrable initial data.
Concrete extensions of St to other spaces of functions follow from boundedness of
the operator on the integrable functions in the space. So it is natural to investigate
the spaces on which St is bounded. Lemma 8 of [2] showed that St is not bounded
on any rearrangement invariant space of functions unless the space is L2. Here
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we modify rearrangement invariant spaces with a weight function and show that a
similar negative result holds on this larger class.

Corollary 3.1. Let X be a rearrangement invariant space of complex valued func-
tions on Rn and let t > 0. Fix a non-negative measurable function w and set
wt(x) = w(x/(4πt)) for x ∈ Rn. Suppose there exists a C > 0 such that if h is
integrable and wh ∈ X, then wtSth ∈ X and

∥wtSth∥X ≤ C∥wh∥X .

Then w is bounded above and below, and X = L2 with equivalent norms.

Proof. Since X is rearrangement invariant, the dilation map f(x) → f(x/(4πt))
is bounded on X. (It is trivially bounded on L∞ and a simple change of variable
shows that it is bounded on L1.) Let M be a bound for this map.

A Fourier transform calculation shows that the operator St can be written as
the convolution

Sth(y) = (4πit)−n/2

∫
Rn

exp

(
i
|y − x|2

4t

)
h(x) dx

and the simplification in Lemma 8 of [2], taking σ(x) = exp(i|x|2/(4t)), gives

Sth(y) = (4πit)−n/2σ(y)σ̂h(y/(4πt)).

Suppose f is integrable and wf ∈ X. Set h = f/σ. Since |σ(x)| = 1 for all x,
h is integrable and wh ∈ X. Thus ∥wtSth∥X ≤ C∥wh∥X . The calculation above
shows that

w(y/(4πt))|f̂(y/(4πt))| = (4πt)n/2wt(y)|Sth(y)|.

Since wtSth ∈ X and X is closed under dilations, wf̂ ∈ X. Moreover,

∥wf̂∥X ≤ M(4πt)n/2∥wtSth∥X ≤ M(4πt)n/2C∥wh∥X = M(4πt)n/2C∥wf∥X .

Now we apply Theorem 2.5 to see that w is bounded above and below, and X = L2

with equivalent norms. □

We state the next corollary without proof, as it follows from Theorem 2.6 in the
same way as Corollary 3.1 follows from Theorem 2.5.

Corollary 3.2. Let p, q ∈ [1,∞] and let t > 0. Fix a non-negative weight function
w and set wt(x) = w(x/(4πt)) for all x ∈ Rn. Suppose there exists a C such that
if h is integrable and wh ∈ Lp, then wtSth ∈ Lq and

∥wtSth∥Lq ≤ C∥wh∥Lp .

Then w is bounded above and below, 1 ≤ p ≤ 2 and q = p′.
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