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Abstract: It is proved that, besides the usual Muckenhoupt condition, there
exist four different scales of conditions for characterizing the Hardy type inequality
with general measures for the case 1 < p ≤ q < ∞. In fact, an even more general
equivalence theorem of independent interest is proved and discussed.

1. Introduction

Let us start by considering the following recent result concerning equivalences
between some integral conditions related to Hardy’s inequality by A. Gogatishvili,
A. Kufner, L.-E. Persson and A. Wedestig in [[3], Theorem 1]:

Theorem 1. For −∞ ≤ a < b ≤ ∞, α, β and s positive numbers and f, g
measurable functions positive a.e in (a, b) , let

F (x) :=

b∫
x

f(t)dt, G(x) :=

x∫
a

g(t)dt

and
B1(x;α, β) := F (x)αG(x)β ,

B2(x;α, β, s) :=

 b∫
x

f(t)G(t)
β−s

α dt

α

G(x)s,

B3(x;α, β, s) :=

 x∫
a

g(t)F (t)
α−s

β dt

β

F (x)s,

B4(x;α, β, s) :=

 x∫
a

f(t)G(t)
β+s

α dt

α

G(x)−s,

B5(x;α, β, s) :=

 b∫
x

g(t)F (t)
α+s

β dt

β

F (x)−s.

The numbers

B1 := sup
a<x<b

B1(x;α, β) and Bi := sup
a<x<b

Bi(x;α, β, s), i = 2, 3, 4, 5,
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are mutually equivalent. The constants in the equivalence relations can depend on
α, β and s.

Remark 1. The equivalence constants can be explicitly given in each case. For
example the following estimates hold:

(min(1, s/β))α sup
a<x<b

B2(x;α, β, s) ≤
(1.1)

sup
a<x<b

B1(x;α, β) ≤ (max(1, s/β))α sup
a<x<b

B2(x;α, β, s),

and

(min(1, s/α))β sup
a<x<b

B3(x;α, β, s) ≤
(1.2)

sup
a<x<b

B1(x;α, β) ≤ (max(1, s/α))β sup
a<x<b

B3(x;α, β, s).

Remark 2. With a = 0, α = 1
q and β = 1

p′ , where 1
p + 1

p′ = 1, p > 1 and f(t) and
g(t) replaced by u(t) and v(t)1−p′ , respectively, we have

B1 := sup
a<x<b

 b∫
x

u(t)dt


1
q
 x∫

0

v(t)1−p′dt

 1
p′

,

and the condition B1 < ∞ is just the usual Muckenhoupt condition that is usually
used to characterize all weights u and v so that the Hardy inequality

(1.3)

 b∫
0

 x∫
0

f(t)dt

q

u(x)dx


1
q

≤ C

 b∫
0

fp(x)v(x)dx


1
p

holds for all measurable functions f ≥ 0 and for the parameters p, q satisfying 1 <
p ≤ q < ∞. Here, by using Theorem 1 we see that we can replace the Muckenhoupt
condition by infinite many conditions namely by the corresponding four scales of
conditions. For some special cases see also [10], [14], [15] and c.f. also [9].

In this paper we will generalize Theorem 1 to the case with general measures (see
Theorem 2). According to this Theorem and a well-known result of Muckenhoupt
[6] we obtain some new scales for characterizing Hardy type inequalities with general
measures for the case 1 < p ≤ q < ∞ (see Theorem 3). As corollaries we obtain a
discrete version of Theorem 1 (see Corollary 2) and some new scales of conditions
characterizing the weighted discrete Hardy type inequality

(1.4)

( ∞∑
n=1

(
n∑

k=1

ak

)q

un

) 1
q

≤ C

( ∞∑
n=1

ap
nvn

) 1
p

,

to hold for fixed weight sequences {un}∞n=1 and {vn}∞n=1 and all positive sequences
{ak}∞k=1 (see Corollary 3).

The paper is organized as follows: In order not to disturb our discussions later
on we present some preliminaries in Section 2. The main results are presented and
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discussed in Section 3. The proof of Theorem 2 can be found in Section 4. Finally,
Section 5 is reserved for some concluding remarks and results.

2. preliminaries

Throughout this paper we assume that µ and λ are measures on R satisfying

(2.1) M(x) :=
∫

[x,∞)

dµ < ∞ and Λ(x) :=
∫

(−∞,x]

dλ < ∞

for each x ∈ R. In particular, observe that both µ and λ are σ-finite.
First we state and prove the following two technical lemmas involving the mea-

sures µ and λ:

Lemma 1. If t ≥ 0 and x ∈ R, then

λ ({y : Λ (y) ≤ t}) ≤ min (Λ (∞) , t) ,

λ ({y ≤ x : Λ (y) > t}) ≥ Λ (x)− t,

µ ({y : M (y) ≤ t}) ≤ min (M (∞) , t) , and

µ ({y ≥ x : M (y) > t}) ≥ M (∞)− t.

Proof. Fix t ≥ 0 and set E = {y : Λ (y) ≤ t} . It is clear that λ (E) ≤ λ (R) =
Λ (∞) . Since λ(ø) = 0 ≤ t we may suppose that E 6=ø. Set z = supE. If z ∈ E
then E ⊂ (−∞, z] and hence λ (E) ≤ Λ (z) ≤ t. If z /∈ E then choose zn ∈ E such
that zn ↑ z and observe that E ⊂ ∪n(−∞, zn]. Now λ(E) ≤ limn→∞ Λ (zn) ≤ t.
This shows that λ (E) ≤ t and this fact completes the proof of the first inequality.

The second inequality follows from the first one since

λ ({y ≤ x : Λ (y) > t}) = Λ(x)− λ ({y ≤ x : Λ (y) ≤ t})
≥ Λ (x)− λ ({y : Λ (y) ≤ t})
≥ Λ (x)− t.

The inequalities for µ may be proved similarly or else be deduced from those for λ
by just making the transformation y 7→ −y. �

Lemma 2. Let x ∈ R and p > 0. Then

(2.2) min (1, 1/p) Λ(x)p ≤
∫

(−∞,x]

Λp−1dλ ≤ max (1, 1/p) Λ(x)p.

Proof. If p > 1, then (2.2) reduces to

(1/p) Λ(x)p ≤
∫

(−∞,x]

Λp−1dλ ≤ Λ(x)p.

Since Λ is non-decreasing it yields that∫
(−∞,x]

Λp−1dλ ≤ Λ(x)p−1

∫
(−∞,x]

dλ = Λ(x)p,

giving the right-hand side inequality.
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For the left-hand side inequality we use the Fubini theorem and Lemma 1 as
follows: ∫

(−∞,x]

Λp−1dλ =
∫

(−∞,x]

∫ Λ(y)

0

dtp−1dλ(y)

=
∫ Λ(x)

0

∫
{y≤x:Λ(y)>t}

dλ(y)dtp−1

≥
∫ Λ(x)

0

(Λ (x)− t) dtp−1

= Λ (x)
∫ Λ(x)

0

dtp−1 −
∫ Λ(x)

0

tdtp−1

= Λ (x)p − (p− 1)
∫ Λ(x)

0

tp−1dt

= Λ (x)p −
(

1− 1
p

)
Λ (x)p

= (1/p) Λ (x)p
.

Now we consider (2.2) when 0 < p < 1. It reduces to

Λ(x)p ≤
∫

(−∞,x]

Λp−1dλ ≤ (1/p) Λ(x)p.

Since Λ is non-decreasing,∫
(−∞,x]

Λp−1dλ ≥ Λ(x)p−1

∫
(−∞,x]

dλ = Λ(x)p,

and the left-hand side inequality is proved.
For the right-hand side inequality we use the Fubini theorem and Lemma 2 again

to get∫
(−∞,x]

Λp−1dλ =
∫

(−∞,x]

∫ ∞

Λ(y)

d
(
−tp−1

)
dλ(y)

=
∫ ∞

0

∫
{y≤x:Λ(y)≤t}

dλ(y)d
(
−tp−1

)
=
∫ Λ(x)

0

∫
{y:Λ(y)≤t}

dλ(y)d
(
−tp−1

)
+
∫ ∞

Λ(x)

∫
{y≤x}

dλ(y)d
(
−tp−1

)
≤
∫ Λ(x)

0

td
(
−tp−1

)
+ Λ(x)

∫ ∞

Λ(x)

d
(
−tp−1

)
= − (p− 1)

∫ Λ(x)

0

tp−1dt + Λ(x)
∫ ∞

Λ(x)

d
(
−tp−1

)
= −

(
1− 1

p

)
Λ(x)p + Λ(x)p

= (1/p) Λ(x)p.

�

Next we record an inequality for µ that corresponds to the inequality in Lemma
2 and since it in fact follows from this lemma we state this as:
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Corollary 1. Let x ∈ R and p > 0. Then

min (1, 1/p) M(x)p ≤
∫

[x,∞)

Mp−1dµ ≤ max (1, 1/p) M(x)p.

Proof. Put µ(t) = λ(−t). Then M(x) = Λ(−x) and the proof follows from Lemma
2. �

Finally, we state the following result corresponding to Lemma 2 and Corollary
1 for the case p < 0 :

Lemma 3. Let x ∈ R and p < 0. Then

(2.3)
∫

(x,∞)

Λp−1dλ ≤ |1/p| (Λ(x)p − Λ(∞)p) ,

(2.4)
∫

[x,∞)

Λp−1dλ ≤ Λ(x)p + |1/p| (Λ(x)p − Λ(∞)p) ,

(2.5)
∫

(−∞,x)

Mp−1dµ ≤ |1/p| (M(x)p −M(−∞)p) ,

and

(2.6)
∫

(−∞,x]

Mp−1dµ ≤ M(x)p + |1/p| (M(x)p −M(∞)p) .

Proof. For the inequality (2.3) we apply the Fubini theorem and Lemma 1 as follows:∫
(x,∞)

Λp−1dλ =
∫

(x,∞)

∫ ∞

Λ(y)

d(−tp−1)dλ(y)

=
∫ ∞

Λ(x)

∫
{y>x:Λ(y)≤t}

dλ(y)d(−tp−1)

=
∫ ∞

Λ(x)

(∫
{y:Λ(y)≤t}

dλ(y)−
∫
{y≤x}

dλ(y)

)
d(−tp−1)

≤
∫ ∞

Λ(x)

(min(t,Λ(∞))− Λ(x)) d(−tp−1).

To evaluate the last expression we break it at Λ(∞). We have∫ Λ(∞)

Λ(x)

(t− Λ(x)) d(−tp−1)

=
∫ Λ(∞)

Λ(x)

td(−tp−1)− Λ(x)
∫ Λ(∞)

Λ(x)

d(−tp−1)

= (1− 1/p) (Λ(x)p − Λ(∞)p)− Λ(x)
(
Λ(x)p−1 − Λ(∞)p−1

)
,(2.7)

and, if Λ(∞) < ∞, then

(2.8)
∫ ∞

Λ(∞)

(Λ(∞)− Λ(x)) d(−tp−1) = (Λ(∞)− Λ(x)) Λ(∞)p−1.
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Adding (2.7) and (2.8) we have the following estimate as required:∫
(−∞,x)

Λp−1dλ

≤ (1− 1/p) (Λ(x)p − Λ(∞)p)− Λ(x)
(
Λ(x)p−1 − Λ(∞)p−1

)
+ (Λ(∞)− Λ(x)) Λ(∞)p−1

= |1/p| (Λ(x)p − Λ(∞)p) .

We also note that for the case λ(∞) = ∞ the integral in (2.8) cancels and the
estimate above follows directly from (2.7).

The inequality (2.4) follows from (2.3), because∫
{x}

Λp−1dλ = Λ(x)p−1λ ({x}) ≤ Λ(x)p.

Finally, by using the same argument as in the proof of Corollary 1 we find that
(2.3) and (2.4) imply (2.5) and (2.6), respectively. The proof is complete. �

3. the main results

Our first main result reads:

Theorem 2. Let M and Λ be defined in (2.1). For fixed positive numbers α, β, s
define

(3.1) A1(x) := A1(x;α, β) = M(x)αΛ(x)β ,

(3.2) A2(x) := A2(x;α, β, s) =

(∫
[x,∞)

Λ(β−s)/αdµ

)α

Λ(x)s,

(3.3) A3(x) := A3(x;α, β, s) =

(∫
(−∞,x]

M (α−s)/βdλ

)β

M(x)s,

(3.4) A4(x) := A4(x;α, β, s) =

(∫
(−∞,x]

Λ(β+s)/αdµ

)α

Λ(x)−s,

(3.5) A5(x) := A5(x;α, β, s) =

(∫
[x,∞)

M (α+s)/βdλ

)β

M(x)−s.

The numbers

sup
x∈R

A1(x;α, β) and sup
x∈R

Ai(x;α, β, s), (i = 2, 3, 4, 5)

are mutually equivalent. The constants in the equivalence relations can depend on
α, β and s.

Remark 3. The proof of Theorem 2 is carried out in Section 4 by deriving concrete
positive constants ci and di so that

ci sup
x∈R

Ai(x;α, β, s) ≤ sup
x∈R

A1(x;α, β) ≤ di sup
x∈R

Ai(x;α, β, s), (i = 2, 3, 4, 5).
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Next we consider the Hardy inequality with general measures and integrable
functions f,

(3.6)

 ∞∫
0

∣∣∣∣∣∣
x∫

0

f(t)dt

∣∣∣∣∣∣
q

dµ(x)


1
q

≤ C

 ∞∫
0

|f(x)|p dν(x)

 1
p

,

where µ and ν are Borel measures and 1 ≤ p ≤ q < ∞.
Already Muckenhoupt [6] in 1972 proved that for 1 ≤ p < ∞ the inequality (3.6)

(for p = q) holds if and only if

(3.7) M = sup
r>0

(µ[r,∞))
1
p

 r∫
0

(
dν̃

dx

)1−p′

dx

 1
p′

< ∞,

where ν̃ denotes the absolutely continuous part of ν. Moreover, if C is the least
constant for which (3.6) holds, then M ≤ C ≤ p1/p(p′)1/p′M for 1 < p < ∞ and
C = M for p = 1. Here p′ = p/(p − 1) is the conjugate exponent of p. Moreover,
Kokilashvili [4] (see also [5]) in 1979 announced the general result (without a proof
there but maybe the proofs of Kokilashvili was published somewhere else) that for
1 ≤ p ≤ q < ∞ the inequality (3.6) holds if and only if

(3.8) MK = MK(p, q) := sup
r>0

(µ[r,∞))
1
q

 r∫
0

(
dν̃

dx

)1−p′

dx

 1
p′

< ∞.

In the sequel we will assume that f ≥ 0 so that in particular, the absolute value
signs in (3.6) can be removed.

Hence, by applying Theorem 2 with x = r, dµ = dν = 0 for x ≤ 0, dλ =(
dν̃
dx

)1−p′

dx for x > 0, α = 1/q, β = 1/p′ in (3.1) and note that

(3.9) MK(p, q) = sup
r>0

A1(r; 1/q, 1/p′)

we obtain the following more general result:

Theorem 3. Let 1 < p ≤ q < ∞. Then the inequality

(3.10)

 ∞∫
0

 x∫
0

f(t)dt

q

dµ(x)


1
q

≤ C

 ∞∫
0

f(x)pdν(x)

 1
p

holds for all ν-measurable functions f ≥ 0 if and only if, for some s > 0,

(3.11) MK2(s) = sup
x>0

(∫
(0,x]

dλ

)s
∫

[x,∞)

(∫
(0,x]

dλ

)q
(

1
p′−s

)
dµ


1
q

< ∞

or

(3.12) MK3(s) = sup
x>0

(∫
[x,∞)

dµ

)s
∫

(0,x]

(∫
[x,∞)

dµ

)p′( 1
q−s)

dλ


1
p′

< ∞
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or

(3.13) MK4(s) = sup
x>0

(∫
(0,x]

dλ

)−s
∫

(0,x]

(∫
(0,x]

dλ

)q
(

1
p′ +s

)
dµ


1
q

< ∞

or

(3.14) MK5(s) = sup
x>0

(∫
[x,∞)

dµ

)−s
∫

[x,∞)

(∫
[x,∞)

dµ

)p′( 1
q +s)

dλ


1
p′

< ∞.

Here dλ =
(

dν̃
dx

)1−p′

dx.

Moreover, for the best constant C in (3.10), we have C ≈ MKi(s), i = 2, 3, 4, 5,
and each s > 0.

Remark 4. We see that MK2( 1
p′ ) = MK (when dλ =

(
dν̃
dx

)1−p′

dx) so that (3.11)
may be regarded as a generalization of the usual Muckenhoupt-Kokilashvili condition
(3.8). Similarly, we have that MK4( 1

p ) coincides with an alternative condition,
which for the continuous case recently was pointed out by L.-E. Persson and V. D.
Stepanov (see [10]).

Remark 5. The equivalence constants in the relations C ≈ MKi(s), i = 2, ..., 5 are
known in each case so this can help us to give a better estimate of the best constant
C in (3.10).

Next we note that by applying Theorem 2 with measures µ and λ taken to be
purely atomic measures supported on the positive integers we obtain the following
equivalence result for sequences:

Corollary 2. Let α, β and s be positive numbers and {ak}∞k=1 , {bk}∞k=1 denote
positive sequences. Moreover, let us denote

An =
∞∑

k=n

ak and Bn =
n∑

k=1

bk

and
D1(n;α, β) := Aα

nBβ
n ,

D2(n;α, β, s) :=

( ∞∑
k=n

akB
β−s

α

k

)α

Bs
n,

D3(n;α, β, s) :=

(
n∑

k=1

bkA
α−s

β

k

)β

As
n,

D4(n;α, β, s) :=

(
n∑

k=1

akB
β+s

α

k

)α

B−s
n ,

D5(n;α, β, s) :=

( ∞∑
k=n

bkA
α+s

β

k

)β

A−s
n .

The numbers

D1 := sup
1<n<∞

D1(n;α, β) and Di := sup
1<n<∞

Di(n;α, β, s), i = 2, 3, 4, 5
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are mutually equivalent. The constants in the equivalence relations can depend on
α, β, and s.

Remark 6. A direct proof of Corollary 2 was recently presented by C. Okpoti [8]
(see also Remark 9).

G. Bennett [1] characterized the inequality (1.4) to hold (for all positive sequences
{ak}∞k=1) by the condition

(3.15) BS := sup
n≥1

( ∞∑
k=n

uk

) 1
q
(

n∑
k=1

v1−p′

k

) 1
p′

< ∞

and also some equivalent conditions (see also [2]). Independently, the characteriza-
tion (3.15) was found by G. Sinnamon [13]. We note also that

D1 := sup
1<n<∞

D1(n; 1/q, 1/p′) = BS ,

where D1(n; 1/q, 1/p′) is one of the equivalent expressions in Corollary 2. Thus, we
obtain the following scales for characterizing the discrete Hardy inequality (1.4):

Corollary 3. Let 1 < p ≤ q < ∞. Then the inequality (1.4) holds for all arbitrary
non-negative sequences {ak}∞k=1 if and only if, for some s > 0,

D2(s) := sup
n≥1

(
n∑

k=1

v1−p′

k

)s
 ∞∑

k=n

uk

(
k∑

m=1

v1−p′

m

)q
(

1
p′−s

)
1
q

< ∞

or

D3(s) := sup
n≥1

( ∞∑
k=n

uk

)s
 n∑

k=1

v1−p′

k

( ∞∑
m=k

um

)p′( 1
q−s)

1
p′

< ∞

or

D4(s) := sup
n≥1

(
n∑

k=1

v1−p′

k

)−s
 n∑

k=1

uk

(
k∑

m=1

v1−p′

m

)q
(

1
p′ +s

)
1
q

< ∞

or

D5(s) := sup
n≥1

( ∞∑
k=n

uk

)−s
 b∑

k=n

v1−p′

k

( ∞∑
m=k

um

)p′( 1
q +s)

1
p′

< ∞.

Moreover, for the best constant C in (1.4) it yields that C ≈ Di(s), i = 2, ..., 5
and each s > 0.

Remark 7. Another proof of Corollary 3 can be found in the Licentiate thesis of C.
Okpoti [7]. This result is a generalization of a previous result of C. Okpoti, L.-E.
Persson and A. Wedestig ([9], Theorem 1). At the endpoints of these scales we
rediscover some previous results of G. Bennett [2].
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4. Proofs

Proof of Theorem 2:
In the calculations below by writing sup we always mean supx∈R (i.e. supremum

over all x ∈ R).
The proof consists of considering a number of cases, which, in particular, give

us explicit expressions of the equivalence constants in all cases.
1. (i). If s ≤ β, then A2(x) ≥ A1(x) and hence supA2 ≥ supA1 : Since Λ(β−s)/α

is non-decreasing we get that

A2(x) =

(∫
[x,∞)

Λ(β−s)/αdµ

)α

Λ(x)s(4.1)

≥

(∫
[x,∞)

dµ

)α

Λ(x)(β−s)Λ(x)s = A1(x).

(ii). If s > β, then supA2 ≥ (β/s)α supA1 : For any x we may use Corollary 1
with p = s/β to get

A2(x) =

(∫
[x,∞)

(
MαΛβ

)(β−s)/αβ
M (s−β)/βdµ

)α

Λ(x)s

≥ (supA1)
(β−s)/β

(∫
[x,∞)

M (s−β)/βdµ

)α

Λ(x)s

≥ (supA1)
(β−s)/β (β/s)α

M(x)αs/βΛ(x)s

= (β/s)α (supA1)
(β−s)/β

A1(x)s/β .

Taking the supremum we have

(4.2) supA2 ≥ (β/s)α (supA1)
(β−s)/β (supA1)

s/β = (β/s)α supA1.

According to (4.1) and (4.2), for s > 0, α, β > 0 we have

(4.3) supA1(x;α, β) ≤ (max(1, s/β))α supA2(x;α, β, s).

(iii). If s ≥ β, then A2(x) ≤ A1(x) and hence supA2 ≤ supA1 : Since Λ(β−s)/α

is non-increasing,

A2(x) =

(∫
[x,∞)

Λ(β−s)/αdµ

)α

Λ(x)s(4.4)

≤

(∫
[x,∞)

dµ

)α

Λ(x)(β−s)Λ(x)s

= M(x)αΛ(x)β = A1(x).
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(iv). If s < β, then supA2 ≤ (β/s)α supA1 : For any x we may use Corollary 1
with p = s/β to get

A2(x) =

(∫
[x,∞)

(
MαΛβ

)(β−s)/αβ
M (s−β)/βdµ

)α

Λ(x)s

≤ (supA1)
(β−s)/α

(∫
[x,∞)

M (s−β)/βdµ

)α

Λ(x)s

≤ (supA1)
(β−s)/α (β/s)α

M(x)αs/βΛ(x)s

= (sup A1)
(β−s)/α (β/s)α

A1 (x)s/β
.

Taking supremum we have

(4.5) sup A2 ≤ (β/s)α supA1.

In view of (4.4) and (4.5), for s > 0, α, β > 0 we have

(4.6) supA2(x;α, β, s) ≤ (max (1, β/s))α supA1(x;α, β).

Combining (4.3) and (4.6) gives us

supA1(x;α, β) ≈ supA2(x;α, β, s).

2. By making completely similar calculations as above we get that

(4.7) supA1(x;α, β) ≤ (max(1, s/α))β supA3(x;α, β, s)

and

(4.8) supA3(x;α, β, s) ≤ (max (1, α/s))β supA1(x;α, β).

In view of (4.7) and (4.8) we have

supA1(x;α, β) ≈ supA3(x;α, β, s)

and the claimed equivalence holds in this case too.

3. (i). We have supA4 ≤ max (1, (β + s) /α)α max (1, α/s)α supA1 : Fix x and
begin by applying Lemma 2 with p = (β + s) /α and, after that, interchange the
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order of integration and apply Lemma 2 again, this time with p = s/α.

A4(x) =

(∫
(−∞,x]

Λ(β+s)/αdµ

)α

Λ(x)−s

≤

(∫
(−∞,x]

max (1, (β + s) /α)
∫

(−∞,y]

Λ(β+s−α)/αdλdµ(y)

)α

Λ(x)−s

= max (1, (β + s) /α)α

(∫
(−∞,x]

∫
[z,x]

dµΛ(z)(β+s−α)/αdλ(z)

)α

Λ(x)−s

≤ max (1, (β + s) /α)α

(∫
(−∞,x]

(
MαΛβ

)1/α
Λ(s−α)/αdλ

)α

Λ(x)−s

≤ max (1, (β + s) /α)α supA1

(∫
(−∞,x]

Λ(s−α)/αdλ

)α

Λ(x)−s

≤ max (1, (β + s) /α)α supA1 max (1, α/s)α Λ(x)sΛ(x)−s

= max (1, (β + s) /α)α max (1, α/s)α supA1.

Taking supremum over all x, we have

(4.9) supA4 ≤ max (1, (β + s) /α)α max (1, α/s)α supA1.

(ii). We have sup A1 ≤ [max (s/α, α/s) + (α/β) max (1, s/α)]α supA4 : We use
the fact that if a function H is non-increasing on R, then there exists a sequence
of non-negative functions hn such that

∫
[x,∞)

hndµ increases to H(x) for µ-almost
every x ∈ R. See Lemma 1.2 of [12].

Take H = Λ−(β+s)/α and choose such a sequence {hn}∞n=1 . Then, for any x ∈ R,
by using Lemma 2, Lemma 3, interchanging the order of integration and making
some obvious estimates we obtain that∫

[x,∞)

Λ(y)(β+s)/α

∫
[x,∞)

hndµdµ(y) =
∫

[x,∞)

∫
[x,z]

Λ(β+s)/αdµhn(z)dµ(z)

≤
∫

[x,∞)

((∫
(−∞,z]

Λ(β+s)/αdµ

)α

Λ(z)−s

)1/α

Λ(z)s/αhn(z)dµ(z)

≤ (supA4)
1/α
∫

[x,∞)

Λ(z)s/αhn(z)dµ(z)

≤ max(1, s/α)(supA4)1/α

∫
[x,∞)

∫
(−∞,z]

Λ(s−α)/αdλhn(z)dµ(z)

= max(1, s/α)(supA4)1/α

∫
[x,∞)

∫
(−∞,x]

Λ(s−α)/αdλhn(z)dµ(z)

+ max(1, s/α)(supA4)1/α

∫
[x,∞)

∫
(x,z]

Λ(s−α)/αdλhn(z)dµ(z)

≤ max(1, s/α) max(1, α/s)(supA4)1/αΛ(x)s/α

∫
[x,∞)

hn(z)dµ(z)
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+ max(1, s/α)(supA4)1/α

∫
(x,∞)

∫
[y,∞)

hndµΛ(y)(s−α)/αdλ(y)

≤ max(s/α, α/s)(supA4)1/αΛ(x)s/αΛ(x)−(β+s)/α

+ max(1, s/α)(supA4)1/α

∫
(x,∞)

Λ(y)−(β+s)/αΛ(y)(s−α)/αdλ(y)

≤ max(s/α, α/s)(supA4)1/αΛ(x)−β/α + (α/β) max(1, s/α) (sup A4)
1/α Λ(x)−β/α

= [max(s/α, α/s) + (α/β) max(1, s/α)] (supA4)1/αΛ(x)−β/α.

Now, letting n →∞ and using the Monotone Convergence Theorem, we have

A1(x) =

(
lim

n→∞

∫
[x,∞)

Λ(y)(β+s)/α

∫
[y,∞)

hndµdµ(y)

)α

Λ(x)β

≤ [max(s/α, α/s) + (α/β) max(1, s/α)]α (supA4)Λ(x)−βΛ(x)β

= [max(s/α, α/s) + (α/β) max(1, s/α)]α supA4.

Taking supremum over all x, we have

(4.10) supA1 ≤ [max(s/α, α/s) + (α/β) max(1, s/α)]α supA4.

Combining (4.9) and (4.10) we have

supA1(x;α, β) ≈ supA4(x;α, β, s).

4. By making completely similar calculations as above we get

(4.11) supA1 ≤ (max(s/β, β/s) + (β/α) max (1, s/β))β supA5

and

(4.12) supA5 ≤ max (1, (α + s) /β)β max (1, β/s)β supA1.

In view of (4.11) and (4.12) we have

supA1(x;α, β) ≈ supA5(x;α, β, s)

and the claimed equivalence holds in this case too.
The proof is complete.�

Proof of Theorem 3:
It is a known fact that for the case 1 < p ≤ q < ∞ the condition (3.8) char-

acterizes the inequality (3.10) to hold for measurable functions f ≥ 0. As noted
already in Section 3 (see (3.9)) that the condition (3.8) in fact is equivalent to the
condition

sup
r>0

A1(r; 1/q, 1/p′) < ∞,

where A1 is defined by (3.1). Hence, by just using Theorem 2 for this case we find
that (3.10) is also equivalent to

MKi = sup
x>0

Ai (x; 1/q, 1/p′, s) < ∞, i = 2, ..., 5.

The claim concerning the best constant C in (3.10) follows accordingly. The proof
is complete.�
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5. concluding remarks and results

Remark 8. According to our proof of Theorem 2 the equivalence constants in this
Theorem can be given explicitly in each case. For example we have:

(min(1, s/β))α supA2(x;α, β, s) ≤(5.1)

supA1(x;α, β) ≤ (max(1, s/β))α supA2(x;α, β, s),

and

(min(1, s/α))β supA3(x;α, β, s) ≤(5.2)

supA1(x;α, β) ≤ (max(1, s/α))β supA3(x;α, β, s).

Hence, we get the same equivalence constants in our case with general measures as
for the previously proved continuous case (see [3]).

Remark 9. The discrete result corresponding to Theorem 1 was recently proved
by C. Okpoti [8] (c.f. our Corollary 2). Also in this case he obtained equivalence
constants in the relations corresponding to (1.1) and (1.2) (or (5.1) and (5.2))
and are the same. However, in the other cases there are differences. More precise
information about this and also some related results can be found in [8].

Definition 1. In view of the above equivalences we say that a pair of measures
(µ, λ) is in class WP (α, β) provided

sup
x∈R

A1(x;α, β) < ∞

or, equivalently,

sup
x∈R

Aj(x;α, β, s) < ∞

for some s > 0 and some j among 2, 3, 4, 5.

Proposition 1. Suppose 1 < p ≤ q < ∞. Then the Hardy inequality

(5.3)

(∫
R

∣∣∣∣∣
∫

(−∞,x]

fdλ

∣∣∣∣∣
q

dµ(x)

)1/q

≤ C

(∫
R
|f |p dλ

)1/p

holds for all λ-measurable f if and only if (µ, λ) ∈ WP (1/q, 1/p′).

Proof. By Corollary 3.4 of [11], the inequality (5.3) holds if and only if

sup
x∈R

A4(x; 1/q, 1/p′, 1/p) < ∞,

one of the equivalent conditions for WP (1/q, 1/p′). �

Proposition 2. Suppose 1 < p ≤ q < ∞. Then (µ, λ) ∈ WP (1/q, 1/p′) if and only
if the cone of non-increasing functions in Lp(dλ) is contained in Lq(Λqdµ).

Proof. The proof follows from Theorem 3.2 of [11] and Proposition 1. �
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