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1. Introduction

Simple necessary and sufficient conditions on σ-finite measures λ and µ for which
the Hardy inequality

(1.1)

(∫
R

(∫
(−∞,x]

fdλ

)q

dµ(x)

)1/q

≤ C

(∫
R

fpdλ

)1/p

holds for all f ≥ 0 have been known for some time. See [4, 7, 10, 14, 15].
For many applications it is useful to have such conditions available in several

equivalent forms. In [3, 5, 8, 16, 17], equivalent forms of these conditions have been
given in the case of the weighted Hardy inequality (λ and µ absolutely continuous)
and the Hardy inequality for sequences (λ and µ purely atomic). See also [1, 2]
for related work on sequences. For general measures we provided, in [9], scales of
equivalent conditions in the case 1 < p ≤ q < ∞. Here, in this paper, we continue
this work in the case 1 < q < p < ∞, p > 1.
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Muckenhoupt [7] in 1972 proved that, in the case 1 ≤ p = q < ∞, the inequality

(1.2)

 ∞∫
0

∣∣∣∣∣∣
x∫

0

f(t)dt

∣∣∣∣∣∣
q

dµ(x)


1
q

≤ C

 ∞∫
0

|f(x)|p dν(x)

 1
p

,

where µ and ν are Borel measures, holds if and only if

(1.3) M = sup
r>0

(µ[r,∞))
1
p

 r∫
0

(
dν̃

dx

)1−p′

dx

 1
p′

< ∞,

where ν̃ denotes the absolutely continuous part of ν. Moreover, if C is the least
constant for which (1.2) holds, then M ≤ C ≤ p1/p(p′)1/p′

M for 1 < p < ∞ and
C = M for p = 1. Here p′ = p/(p − 1) is the conjugate exponent of p. Moreover,
Kokilashvili [4] (see also [6]) in 1979 announced the general result (without a proof
there) that for 1 ≤ p ≤ q < ∞ the inequality (1.2) holds if and only if

(1.4) MK = MK(p, q) := sup
r>0

(µ[r,∞))
1
q

 r∫
0

(
dν̃

dx

)1−p′

dx

 1
p′

< ∞.

In the sequel we will assume that f ≥ 0 so that in particular, the absolute value
signs in (1.2) can be removed.

From the Muckenhoupt-Kokilashvili condition (1.4) the following more general
result was obtained in [9]:

Theorem 1.1. Let 1 < p ≤ q < ∞. Then the inequality

(1.5)

 ∞∫
0

 x∫
0

f(t)dt

q

dµ(x)


1
q

≤ C

 ∞∫
0

f(x)pdν(x)

 1
p

holds for all ν-measurable functions f ≥ 0 if and only if, for some s > 0,

(1.6) MK2(s) = sup
x>0

(∫
(0,x]

dλ

)s
∫

[x,∞)

(∫
(0,x]

dλ

)q
(

1
p′−s

)
dµ


1
q

< ∞

or

(1.7) MK3(s) = sup
x>0

(∫
[x,∞)

dµ

)s
∫

(0,x]

(∫
[x,∞)

dµ

)p′( 1
q−s)

dλ


1
p′

< ∞

or

(1.8) MK4(s) = sup
x>0

(∫
(0,x]

dλ

)−s
∫

(0,x]

(∫
(0,x]

dλ

)q
(

1
p′ +s

)
dµ


1
q

< ∞

or

(1.9) MK5(s) = sup
x>0

(∫
[x,∞)

dµ

)−s
∫

[x,∞)

(∫
[x,∞)

dµ

)p′( 1
q +s)

dλ


1
p′

< ∞.
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Here dλ =
(

dν̃
dx

)1−p′

dx.

Moreover, for the best constant C in (1.5), we have C ≈ MKi(s), i = 2, 3, 4, 5,
and each s > 0.

By applying Theorem 1.1 with measures µ and λ taken to be purely atomic
measures supported on the positive integers, the result for sequences was also stated
in [9] (see also [8]).

For a special case, if we let the measures µ and λ be defined by

dµ (t) = χ(a,b) (t) f(t)dt and dλ (t) = χ(a,b) (t) g(t)dt,

respectively, where −∞ ≤ a < b ≤ ∞, and f, g are measurable functions positive
a.e. in (a, b) , then for α, β and s positive numbers Theorem 1.1 reduces to the
recent result concerning equivalences between some integral conditions related to
Hardy’s inequality by A. Gogatishvili, A. Kufner, L.-E. Persson and A. Wedestig
in [3, Theorem 1].

Recently some scales of equivalent weight characterizations of the Hardy inequal-
ity

(1.10)

 ∞∫
0

 x∫
0

f(t)dt

q

u (x) dx


1
q

≤ C

 ∞∫
0

f(x)pv (x) dx

 1
p

for the case 0 < q < p < ∞, p > 1 and q 6= 1 were proved by L.-E. Persson, V. D.
Stepanov and P. Wall in [11]. They proved that the non-negative weights u (x) and
v (x) for which (1.10) holds for all f (x) ≥ 0 can be characterized by the Mazya-
Rozin type conditions

(
B(1)

MR (s) < ∞
)

or by the Persson-Stepanov type conditions(
B(1)

PS (s) < ∞
)

, where, for some s > 0,

(1.11) B(1)
MR (s) :=

(∫ ∞

0

[∫ ∞

t

uV q(1/p′−s)
]r/p

V (t)q(1/p′−s)+rsu (t) dt

)1/r

and

(1.12) B(1)
PS (s) :=

(∫ ∞

0

[∫ t

0

uV q(1/p′+s)
]r/p

V (t)q(1/p′+s)−rs
u (t) dt

)1/r

respectively. Here 1
r = 1

q −
1
p and V (x) =

∫ x

0
v(t)1−p′

dt. To be precise their result
reads:

Theorem 1.2. Let 0 < q < p < ∞, 1 < p < ∞, q 6= 1, and suppose that

0 <

∫ ∞

x

u(t) dt < ∞ and 0 < V (x) < ∞ for all x > 0.

Then the Hardy inequality (1.10) holds for some finite constant C ≥ 0 if and only
if any of the constants B(1)

MR (s) or B(1)
PS (s) is finite for some s > 0. Moreover, for

the best constant C in (1.10) we have

C ≈ B(1)
MR (s) ≈ B(1)

PS (s) .
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Under the conditions of the theorem it is known (Remark on page 93 in [15], see
also [11]), that for s > 0 the Mazya-Rozin constant has equivalent form

(1.13) B(1)
MR (s) :=

(∫ ∞

0

[∫ ∞

t

uV (t)q(1/p′−s)
]r/q

V rs−1dV (t)

)1/r

and, similarly an equivalent form to the Persson-Stepanov constant is

(1.14) B(1)
PS (s) :=

(∫ ∞

0

[∫ t

0

uV (t)q(1/p′+s)
]r/q

V −rs−1dV (t)

)1/r

.

Our main result will generalize Theorem 1.2 to the case with general measures.
However, our proofs are substantially different. It is important to point out that
the inequality (1.1) includes both the weighted integral inequalities of Hardy type
and also the corresponding results for sequences.

The paper is organized as follows: In Section 2 the main results and some lemmas
are stated, while their proofs can be found in Section 3.

Arithmetic on [0,∞]: By convention 0(∞) = 00 = 0/0 = 0. Consequently, the
power rule xa+b = xaxb can fail for some values of a and b if x = 0 or x = ∞.
Special attention must be paid to ensure that difficulties do not arise.

Throughout this paper A . B, (B & A), means that A ≤ cB, where c > 0 is a
constant or depends only on inessential parameters. If B . A . B, then we write
A ≈ B.

2. main results and some lemmas

First we state the following three technical lemmas:

Lemma 2.1. Let p ∈ (1,∞) . If ap + b = cp + d and b + 1 > 0, then there exists a
finite constant C such that the inequality

(2.1)
∫
R

(∫
[x,∞)

Λadµ

)p

Λ (x)b
dλ (x) ≤ C

∫
R

(∫
[x,∞)

Λcdµ

)p

Λ (x)d
dλ (x)

holds for all σ-finite Borel measures µ and λ such that Λ (x) = λ (−∞, x] < ∞ for
all x ∈ R.

Lemma 2.1 may be compared with Theorems 8, 9, 10, and 12 in [1].

Lemma 2.2. Let p ∈ (1,∞) , suppose that a > 0 and b+1 < 0, and set c = a+b/p.
Then there exists a finite constant C such that the inequality∫

R

(∫
(−∞,x]

Λadµ

)p

Λ (x)b
dλ (x) ≤ C

∫
R

(∫
[x,∞)

Λcdµ

)p

dλ (x)

holds for all σ-finite Borel measures µ and λ such that Λ (x) = λ (−∞, x] < ∞ for
all x ∈ R.

Definition 2.1. Let 1 < p < ∞. We say λ ∈ Ip(∞) provided

Λ(x)1−p − Λ(∞)1−p ≤ C

∫
[x,∞)

Λ−pdλ

for some finite constant C.
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Note that if 1 < p < q, then Iq(∞) ⊂ Ip(∞). See the remark following Corollary
4.3 of [13].

Also note that all absolutely continuous measures and a great many others are
in Ip(∞) for all p > 1. Example 4.4 of [13] shows that not all measures are.

Lemma 2.3. Let p ∈ (1,∞) , suppose that a > 0 and b+1 < 0, and set c = a+b/p.
Then there exists a finite constant C such that the inequality∫

R

(∫
[x,∞)

Λcdµ

)p

dλ (x) ≤ C

∫
R

(∫
(−∞,x]

Λadµ

)p

Λ (x)b
dλ (x)

holds for all σ-finite Borel measures µ and λ such that Λ (x) = λ (−∞, x] < ∞ for
all x ∈ R, λ ∈ I1+a−c (∞) , and Λ (∞) = ∞.

Let 1 < p < ∞, 0 < q < p, and 1/r = 1/q − 1/p. Suppose that σ, ν and µ
are σ-finite measures on the Borel subsets of R. Consider the three-measure Hardy
inequality

(2.2)

(∫
R

∣∣∣∣∣
∫

(−∞,x]

fdσ

∣∣∣∣∣
q

dµ(x)

)1/q

≤ C

(∫
R

|f |p dν

)1/p

,

for all measurable functions f.
Before we formulate the main results we state and motivate a result (Theorem

2.1) showing that this problem can be reduced to the Hardy inequality for two
measures studied in [13, Section 3].

In [9] we considered (2.2) in the case that σ is the Lebesgue measure on the
interval (0,∞), in accordance with Muckenhoupt’s 1972 paper. His argument there
reduces the study of (2.2) to the case that v is absolutely continuous with respect
to the Lebesgue measure. The same basic measure theory argument will serve to
reduce (2.2) to the case that v is absolutely continuous with respect to σ. See also
[12]. We present a variant of this argument that reduces (2.2) to (1.1), ensures that
the resulting λ is σ-finite, and makes it clear which absolute continuity of measures
is necessary for the validity of (2.2).

Theorem 2.1. Let 1 < p < ∞ and 0 < q < ∞. Let E = {x ∈ R :µ[x,∞) > 0} and
define the measure σE by σE(F ) = σ(E ∩ F ). A necessary condition for (2.2) is
that the measure σE is absolutely continuous with repect to ν (i.e. σE � ν). Under
this condition, (2.2) holds if and only if (1.1) holds for all non-negative, measurable
functions f. Here the measure λ is defined by

(2.3) dλ =
(

dσE

dν

)p′−1

dσE .

Remark 2.1. As a consequence of this reduction theorem it will be sufficient to
restrict our attention to the inequality (1.1) henceforth. We leave it to the reader
to adapt our main results, given in Theorems 2.2 and 2.3 below, to give scales of
equivalent necessary and sufficient conditions for the inequality (2.2) to hold. We
also remark that Theorem 2.1 may be used to adapt the results of [9], giving a large
number equivalent conditions for (2.2) in the case 1 < p ≤ q < ∞.

The main results read:
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Theorem 2.2. Let 0 < q < p, 1 < p < ∞ and 1/r = 1/q − 1/p. Suppose Λ (x) =
λ (−∞, x] < ∞ for all x ∈ R. If b + 1 > 0, then the inequality (1.1) holds if and
only if

(2.4) A (b) :=

∫
R

(∫
[x,∞)

Λq−1−bq/rdµ

)r/q

Λ (x)b
dλ (x)

1/r

< ∞.

Theorem 2.3. Let 0 < q < p, 1 < p < ∞ and 1/r = 1/q − 1/p. Suppose Λ (x) =
λ (−∞, x] < ∞ for all x ∈ R, λ ∈ I1+q/r (∞) and Λ (∞) = ∞. If b + 1 < 0, then
the inequality (1.1) holds if and only if

(2.5) A∗ (b) :=

∫
R

(∫
(−∞,x]

Λq−1−bq/rdµ

)r/q

Λ (x)b
dλ (x)

1/r

< ∞.

Remark 2.2. The expression (1.13) is a special case of expression (2.4) with b =
rs − 1, dµ(x) = u (x) dx and dλ(x) = v (x) dx. Likewise, the expression (1.14) is
a special case of expression (2.5) with b = −rs − 1, dµ(x) = u (x) dx and dλ(x) =
v (x) dx. Due to the equivalent relationship between (1.11) and (1.13) and similarly,
between (1.12) and (1.14), Theorems 2.2 and 2.3 give a generalization of Theorem
1.2.

Finally we state the following useful proposition, which is of independent interest
but also used for our proofs.

Proposition 2.1. Let x ∈ R. Then for p > 0

(2.6) min (1, 1/p) Λ(x)p ≤
∫

(−∞,x]

Λp−1dλ ≤ max (1, 1/p) Λ(x)p,

(2.7) min (1, 1/p) M(x)p ≤
∫

[x,∞)

Mp−1dµ ≤ max (1, 1/p) M(x)p

and for p < 0

(2.8)
∫

(x,∞)

Λp−1dλ ≤ |1/p| (Λ(x)p − Λ(∞)p) ,

(2.9)
∫

[x,∞)

Λp−1dλ ≤ Λ(x)p + |1/p| (Λ(x)p − Λ(∞)p) ,

(2.10)
∫

(−∞,x)

Mp−1dµ ≤ |1/p| (M(x)p −M(−∞)p) ,

and

(2.11)
∫

(−∞,x]

Mp−1dµ ≤ M(x)p + |1/p| (M(x)p −M(∞)p) .

Proof : The detailed proofs of (2.6), (2.7), and (2.8)-(2.11) can be found in
Lemma 1, Corollary 1 and Lemma 3 of [9], respectively.
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3. Proofs

Proof of Lemma 2.1:
The λ-measure of {x ∈ R : Λ (x) = 0} is zero, 0 < Λ (x) < ∞ for λ-almost every

x. Therefore, for λ-almost every x and all t ∈ [x,∞) , Λ (t)a = Λ (t)c Λ (t)a−c
. Since

Λ is non-decreasing, in the case a ≤ c we have∫
R

(∫
[x,∞)

Λadµ

)p

Λ (x)b
dλ (x) =

∫
R

(∫
[x,∞)

ΛcΛa−cdµ

)p

Λ (x)b
dλ (x)

≤
∫
R

(∫
[x,∞)

Λcdµ

)p

Λ (x)p(a−c) Λ (x)b
dλ (x)

=
∫
R

(∫
[x,∞)

Λcdµ

)p

Λ (x)d
dλ (x) .

Now suppose that a > c. Set

(3.1) G(x) =
∫

[x,∞)

Λcdµ,

apply (2.6) of Proposition 2.1 and interchange the order of integration to get∫
[x,∞)

Λadµ ≈
∫

[x,∞)

∫
(−∞,t]

Λa−c−1dλΛ (t)c
dµ (t)

≤
∫

[x,∞)

(∫
(−∞,x]

Λa−c−1dλ +
∫

[x,t]

Λa−c−1dλ

)
Λ (t)c

dµ (t)

≈ G(x)Λ(x)a−c +
∫

[x,∞)

∫
[x,t]

Λa−c−1dλΛ (t)c
dµ (t)

= G(x)Λ(x)a−c +
∫

[x,∞)

∫
[y,∞)

ΛcdµΛ (y)a−c−1
dλ (y)

= G(x)Λ(x)a−c +
∫

[x,∞)

GΛa−c−1dλ.

Thus, by Minkowski’s inequality, we have(∫
R

(∫
[x,∞)

Λadµ

)p

Λ (x)b
dλ (x)

)1/p

.

(∫
R

(
G(x)Λ(x)a−c +

∫
[x,∞)

GΛa−c−1dλ

)p

Λ (x)b
dλ (x)

)1/p

≤
(∫

R

(
G(x)Λ(x)a−c

)p Λ(x)bdλ(x)
)1/p

+(∫
R

(∫
[x,∞)

GΛa−c−1dλ

)p

Λ (x)b
dλ (x)

)1/p

.

To prove (2.1), it is enough to prove

(3.2)
∫
R

(
G(x)Λ(x)a−c

)p Λ(x)bdλ(x) .
∫
R

GpΛddλ
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and

(3.3)
∫
R

(∫
[x,∞)

GΛa−c−1dλ

)p

Λ (x)b
dλ (x) .

∫
R

GpΛddλ.

The first inequality, (3.2), is trivially valid so we focus on the second one, (3.3). Set
α = (b + p) / (1− p) and observe that α + 1 < 0. Thus∫

[x,∞)

Λαdλ . Λ(x)α+1.

Applying the One Hardy Inequality from [13] we get

∫
R

(∫
[x,∞)

GΛa−c−1dλ

)p

Λ (x)b
dλ (x)

.
∫
R

(∫
[x,∞)

(
GΛa−c−1−α

)
Λαdλ∫

[x,∞)
Λαdλ

)p

Λ (x)α
dλ (x)

.
∫
R

(
GΛa−c−1−α

)p
Λαdλ

=
∫
R

GpΛddλ,

i.e. also (3.3) holds and the proof is complete.

Proof of Lemma 2.2:
First observe that a− c = −b/p > 0 since b < −1. Because a > 0 and Λ is never

infinite, this yields∫
(−∞,x]

Λadµ =
∫

(−∞,x]

Λa−cΛcdµ ≈
∫

(−∞,x]

∫
(−∞,t]

Λa−c−1dλΛ (t)c
dµ (t) .

Interchanging the order of integration and, with G defined by (3.1), we get∫
(−∞,x]

∫
(−∞,t]

Λa−c−1dλΛ (t)c
dµ (t) =

∫
(−∞,x]

∫
[y,x]

ΛcdµΛ (y)a−c−1
dλ (y)

≤
∫

(−∞,x]

∫
[y,∞)

ΛcdµΛ (y)a−c−1
dλ (y)

=
∫

(−∞,x]

GΛa−c−1dλ.

Let β = (b + p) / (1− p) and observe that β > −1. It follows that∫
(−∞,x]

Λβdλ ≈ Λβ+1.
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Therefore, ∫
R

(∫
(−∞,x]

Λadµ

)p

Λ (x)b
dλ (x)

.
∫
R

(∫
(−∞,x]

GΛa−c−1dλ

)p

Λ (x)b
dλ (x)

.
∫
R

(∫
(−∞,x]

(
GΛa−c−1−β

)
Λβdλ∫

(−∞,x]
Λβdλ

)p

Λ (x)β
dλ (x) .

Finally, the One Hardy Inequality in [13] bounds the last integral from above by a
multiple of ∫

R

(
GΛa−c−1−β

)p
Λβdλ =

∫
R

Gpdλ

and the proof follows.
Proof of Lemma 2.3:
First observe that c − a = b/p < 0. For λ-almost every x, Λ (x) > 0 and thus

0 < Λ (t) < ∞ for all t > x. Therefore, the hypotheses λ ∈ I1+a−c (∞) and
Λ (∞) = ∞ yield∫

[x,∞)

Λcdµ =
∫

[x,∞)

Λc−aΛadµ .
∫

[x,∞)

∫
[t,∞)

Λc−a−1dλΛ (t)a
dµ (t) .

Interchanging the order of integration shows that∫
[x,∞)

∫
[t,∞)

Λc−a−1dλΛ (t)a
dµ (t) =

∫
[x,∞)

∫
[x,y]

ΛadµΛ (y)c−a−1
dλ (y)

≤
∫

[x,∞)

∫
(−∞,y]

ΛadµΛ (y)c−a−1
dλ (y)

=
∫

[x,∞)

HΛc−a−1dλ,

where H(y) =
∫
(−∞,y]

Λadµ.

Since p′ > 1 and Λ(∞) = ∞, (2.9) yields∫
[x,∞)

Λ−p′
dλ . Λ(x)1−p′

.

Therefore, ∫
R

(∫
[x,∞)

Λcdµ

)p

dλ (x)

.
∫
R

(∫
[x,∞)

HΛc−a−1dλ

)p

dλ (x)

.
∫
R

∫[x,∞)

(
HΛc−a−1+p′

)
Λ−p′

dλ∫
[x,∞)

Λ−p′dλ

p

Λ (x)−p′
dλ (x) .
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The One Hardy inequality from [13] bounds the last integral from above by a
multiple of ∫

R

(
HΛa−c−1+p′

)p

Λ−p′
dλ =

∫
R

HpΛbdλ

and the proof is complete.

Proof of Theorem 2.1:
Suppose that (2.2) holds for some constant C and let F be a measurable subset

of R such that ν(F ) = 0. With f = χF , the right hand side of (2.2) is zero and
therefore so is the left hand side. It follows that

σ ((−∞, x] ∩ F ) = 0

for µ-almost every x ∈ R. Let y = sup E ⊆ (−∞,∞] . (We ignore the trivial case
y = −∞, which occurs only if µ is the zero measure.) If y is an atom for µ, then
E = (−∞, y] so

σ (E ∩ F ) = σ ((−∞, y] ∩ F ) = 0.

If y is not an atom for µ then E = (−∞, y). In this case, let yn be a strictly increasing
sequence of real numbers that converge to y. For each integer n, the interval [yn, y)
has positive µ-measure and must contain a point x such that σ ((−∞, x] ∩ F ) = 0.
Thus σ ((−∞, yn] ∩ F ) = 0, and so

σ (E ∩ F ) = σ
(⋃∞

n=1
(−∞, yn] ∩ F

)
= 0.

This shows that σE � ν.
Now suppose that σE � ν and let h = dσE/dν be the Radon-Nikodym derivative

of σE with respect to ν. If f is a non-negative measurable function, then, by (2.3),∫
(−∞,x]

fdλ =
∫

(−∞,x]

fhp′−1dσE ≤
∫

(−∞,x]

fhp′−1dσ

and ∫
R

(
fhp′−1

)p

dν =
∫
R

fphp′−1hdν =
∫
R

fphp′−1dσE =
∫
R

fpdλ.

Therefore, if (2.2) holds, then we may apply it with f replaced by fhp′−1 to deduce
(1.1).

On the other hand, suppose that (1.1) holds and fix a measurable function f. By
the Lebesgue decomposition theorem we can write ν = ν0 + ν̃ so that ν0 is singular
with respect to σE and ν̃ is absolutely continuous with respect to σE . Setting
g = dν̃/dσE , the Radon-Nykodym derivative of ν̃ with respect to σE , we have

dσE = hdν = hdν0 + hdν̃ = hdν0 + hgdσE .

Therefore, h = 0 ν0-almost everywhere and hg = 1 σE-almost everywhere. In
particular, 0 < h < ∞ σE-almost everywhere.

If x ∈ E, then (−∞, x] ⊂ E and, thus,∣∣∣∣∣
∫

(−∞,x]

fdσ

∣∣∣∣∣ ≤
∫

(−∞,x]

|f | dσE =
∫

(−∞,x]

|f |h1−p′
dλ.

Moreover, ∫
R

(
|f |h1−p′

)p

dλ =
∫
R

|f |p gdσE =
∫
R

|f |p dν̃ ≤
∫
R

|f |p dν.
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Since the complement of E has zero µ-measure, these estimates combined with (1.1)
show that (2.2) holds. This completes the proof.

Proof of Theorem 2.2:
By Corollary 3.5 of [13], inequality (2.2) holds if and only if

A (0) :=

∫
R

(∫
[x,∞)

Λq−1dµ

)r/q

dλ (x)

1/r

< ∞.

Therefore it is enough to show that A (b1) . A (b2) for any b1 and b2 greater than
−1. This follows from Lemma 2.1 with p replaced by r/q and the proof is complete.

Proof of Theorem 2.3:
It is enough to show that for any b < −1, A∗ (b) . A(0) and A(0) . A∗ (b) . Since

q − 1 − bq/r > q − 1 + q/r = q/p′ > 0 the first estimate follows from Lemma 2.2
with p replaced by r/q. To see that the second follows from Lemma 2.3 we observe
that λ ∈ I1+q/r (∞) and 1− bq/r > 1 + q/r implies λ ∈ I1−bq/r (∞) . The proof is
complete.

Remark 3.1. Comparing the proof of [11, Theorem 1.2] and that of Theorems 2.2
and 2.3, we observe that the more general situation in fact leads to simpler proofs.
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