PRODUCT OPERATORS ON MIXED NORM SPACES

WAYNE GREY AND GORD SINNAMON

ABSTRACT. Inequalities for product operators on mixed norm Lebesgue spaces
and permuted mixed norm Lebesgue spaces are established. They depend only
on inequalities for the factors and on the Lebesgue indices involved. Inequal-
ities for the bivariate Laplace transform are given to illustrate the method.
Also, an elementary proof is presented for an n-variable Young’s inequality in
mixed norm spaces.

1. INTRODUCTION

The techniques used to study embeddings of mixed norm spaces in [4] and [6]
can be extended to work with operators other than the identity. Here we begin this
work by considering a select class of operators. Mixed norm spaces are spaces of
multivariable functions in which the norm takes advantage of the product structure
in the domain. They have a long informal history but were first named and formally
studied by Benedek and Panzone in [2]. Permuted mixed norms only arise when
studying more than a single space, since they occur when the order in which the
factor norms are taken is different in different spaces. The importance of permuted
mixed norms was noted in [3] but no systematic study was undertaken until the
first author’s thesis, [4].

It will be convenient to introduce the two-variable mixed norm spaces needed
in Section 2 first, postponing the introduction of n-variable spaces until Section
3. Let A1 and Ay be o-finite measures and let Lg\lx Ao denote the collection of
(A1 X Ag)-measurable functions. Fix indices py,p2 € (0, 00).

For any f € Lng)Q,

p2/p1
s = ([ ([ 17 P anie)™ duaes

The first variable of the function f is always in the A\; measure space, and the order
of the indices and measures indicates which variable is the “inner” one. So for any

0
f € L>\1><)\27

p1/p2
IIfIIL;;;2X,TI> = /(/If(tl,tz)pz d)\g(tQ)) di(t1)

Although these are genuine norms only when p; > 1 and py > 1 we will refer to
them as mixed norms even when some indices are less than 1. Also, the results
we present will often extend to the case when one or both of the indices is infinite,

1/p2

1/p1
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indicating that the supremum norm is to be taken in that factor. This extension is
left to the reader.

The product operators that we consider will be introduced in Section 2. As
mentioned above, we restrict our attention to the two-variable case. Although the
extension from bivariate operators to multivariate operators may seem straightfor-
ward, the delicate arguments needed in the embedding case in [4] and [6] and the
advanced techniques introduced in [5] put this extension beyond the scope of the
present article.

Convolution operators have some product structure but not enough to make
them product operators in general. Convolution is considered in Section 3, where
it leads to an elementary proof of a multivariate mixed norm Young’s inequality.

We will make frequent use of Minkowski’s (integral) inequality in the following
mixed norm form: If 0 < p; < ps < 00, then,

+
HfHL(Apllfo) < “f||L(%I;2§I;11)7 f € L)\1><>\2-

For easy recognition, we will enclose the function in square brackets when applying
Minkowski’s inequality in integral estimates. It becomes,

(/(/umngdManywmd&ua>
< ( [ (futwr d>\2(t2)>pl/p2 dA1<t1>>

2. PRODUCT OPERATORS

1/p2

1/p1

Let A1, Ao, p1, and po be o-finite measures. (We will not need to specify their
various underlying spaces.) Let L;\rl «, denote the collection of non-negative (A1 x
A2)-measurable functions.

An operator K : L;X)\z — L
can be expressed in the form,

Kf(l‘l, 1‘2) = / /{21 (l‘l, tl)]{ig(mg, tg)f(tl, tg) d(/\l X Ag)(tl, tg),

+

1 xps Will be called a product operator provided it

where k; is a non-negative (p; X \;)-measurable function for j = 1,2. In this case
we define K : Lj\rj — L} by

K@) = [ Ior@ a0, i-1e
Note that, by Tonelli’s theorem,
Kf(xh.%'g) :/kl(wl,tl)/kg(l‘g,tg)f(tl,tg) d/)\g(tg)d)\l(tl)
:/kg(l‘g,tg)/]{)1<.’171,t1>f(t1,t2) d)\l(h)d)\Q(tQ).

Suppose p1, p2, r1, and ry are positive and let C; be the least constant, finite or
infinite, such that

511l = Cj||f|\L§§7 felLy.
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Theorem 2.1. Fix positive indices p1, p2, 1, and ro. Suppose K is a product
operator, with k;, K;, C; as above for j =1,2.

(a) If r1 > 1 then K satisfies the mized norm inequality,
+
I Fllprar < LGNSl f € L,

(b) If r1 > 1, ro > 1 and min(p1, 1) < max(pa,rs) then K satisfies the permuted
mized norm inequality,

+
HKfHLL’"ll;:iz) S ClC2||fHL(A1;2X~z;11>a f € L)\l X Ao "
Proof. In a slight abuse of notation we write,

K1 f(21,t2) :/kl(xlatl)f(t17t2)d)‘1(t1) and

Ky f(ty,z2) = /k’2(l‘2,f2)f(t17t2)d)\z(fz)~

To prove part (a), use the hypothesis 71 > 1 to apply Minkowski’s inequality
and then invoke the definitions of C; and C5. This yields,

</ (f ez dmm))m d,@(@)>
</ (/ </ [etontF st %(m))m dumxl))m duz(:@))%
<</ </ (f Bates tsston ] i) dwz))m dM%))W
e
e

Part (b) will be done in four cases: They arise from the observation that the
condition min(py,r;) < max(ps,r2) is satisfied if and only if one of, p; < pa, 71 < 1o,
p1 < ro, or 11 < pg holds. If p; < py then part (a), followed by Minkowski’s
inequality, yields

||KfHL(T1v7‘2) § ClcQHfHL(mvpz) S ClcQHfHL(pg-,m)a f S lex)\2~
B Xpo A1 XA Ao XAq

I/TQ

IN

If r1 < ro then we begin by using Minkowski’s inequality, and follow with part (a)
to get

+
ISl prary < NE Sl poarn < CoCLIS M oy S € LY, e,
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If p; < 7o then we apply the definition of C followed by Minkowski’s inequality
and then the definition of Cs to get

( ([ senmr anen)™" dM2($2)>
- ( [ ([ ([retmasm i) )™ duz($2)>
<c ( J ([ ostonen] v ™" du2<x2>) -

<c ( J ([ [ostes 0] aaten) ™ dwl))
X ( [ ([ e anien) ™" dwl)) Um

If r1 < py the process is somewhat lengthy, using the definitions of C7 and Cy
as well as three applications of Minkowski’s inequality. First, apply Minkowski’s
inequality with 1 > 1, followed by the definition of C5 to get

( J ([ senmr o)™ duz($2)>
- ( ([ ([ Tt s, i) o)™ duz($2)>
< ( / ( J ([ lsts tmsston ] amen) d>\2(t2))rz dﬂ2(ﬂ?2)>
( / < [aest) ([ Kttty dmien)) d)\z(t2)>r2 dm(u))m
<cy ( ([ st amen) ™ dw2>> -

Now Minkowski’s inequality with po > r1 shows that the last expression is no larger
than

1/7‘2

1/7‘2

1/p1

1/7‘2

1/ra

1/7’2

Cy </ (/ [K1f(9617t2)} " d)\Q(tz)> o dm(m)) ” :
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After expanding K f(x1, t2) in this expression we may apply Minkowski’s inequality
with po > 1 to get

Cy (/ </ </ [k:l(xl,tl)f(tl,tg)] d)\l(tl)>p2 d)\g(tg)>n/p2 dul(w1)>lm
< Cy (/ </ (/ [kl(thl)f(tht2)r2 d)‘2(’52)>1/p2 00\1(151)>T1 dm(:ﬁ)) h
<G (/ (/ k(21 11) (/f(tl,tz)m d)\g(tg))l/m d/\l(t1)>n d,ul(xl)>1/h

1/p1

yexe ( [ ([ estar d&(m))pl/m dM(n)) ,

where the last inequality uses the definition of C;. These estimates complete the
proof of the fourth and last case. O

The index conditions in Theorem 2.1(b) are somewhat stronger than needed.
It is enough to assume that one (or more) of the following four conditions holds:
p1 <719; 1 <1y <pg; 1 <ryandpy <pg;orl <ryandr; <re. The statement
of the theorem remains valid when some indices are infinite, provided the index
conditions are met, but the proofs would have to be modified to accommodate
occurrences of the supremum norm.

The inequalities of Theorem 2.1 are stated for non-negative functions only but
it is routine to extend the operator K to all functions for which the right hand side
is finite, in a way that preserves the norm inequalities.

Also, the results of Theorem 2.1 may be seen to hold for a more general class of
positive operators. Instead of supposing that the factors K7 and K-> are integral
operators with non-negative kernels, it would suffice to assume that they map
positive functions to positive functions and possess formal adjoints. See [8, Lemma
2.4] for properties of such operators and [7, Section 4] for connections with positive
integral operators. One advantage of such an extension is that the identity operator
is not an integral operator (in general) but it does have a formal adjoint.

Corollary 2.2. Suppose p1,p2 € (1,2]. The bivariate Laplace transform %, de-
fined by

o0 o0
Lof(x1,22) = / / e T TE 4y to) dty dEy, @1 >0, 29 >0,
o Jo
satisfies the permuted mixed norm inequality

||f2f||L<pg,pg> < CP1)C ) fll Lwzrn -

Here 1/py +1/py = 1/pa + 1/ph = 1, and C(p) is the norm of the single-variable
Laplace transform as a map from LP to LY.

Proof. The bivariate Laplace transform is a product operator, in the above sense,
whose factors are both the single-variable Laplace transform, .Z, given by

ZLf(x)= /000 e "t f(t)dt, x> 0.
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It is well known that . is bounded as a map from L? to L¥ | i.e. C(p) is finite,
when 1 < p < 2. Since pj > 1, p5 > 1, and min(p1, py) = p1 < 2 < py = max(pa, p)
the second statement of Theorem 2.1 gives the conclusion. O

Note that if 1 < py < p; < 2, the permuted mixed norm inequality given
above is stronger than either of the unpermuted ones given by Theorem 2.1(a). By
Minkowski’s inequality we have,

12 Sl Loy wt) < NLafll Loy < CDCEIN N Lwann < CRDC@NF w1 w2

Using Theorem 2.1 it is easy to generate additional permuted mixed norm in-
equalities, by beginning with known single-variable inequalities. See, for example,
[1, Corollary 1] for more single-variable inequalities involving the Laplace transform.

3. YOUNG’S INEQUALITY

Fix a positive integer n and let LT be the collection of non-negative Lebesgue
measurable functions on R™. For P = (p1,...,ps) € [1,00)™ define

If |l = / </ (/f(tl,...,tn)pl dt1>p2/p1 dt2>p3/p2... it

The convolution of two (real-valued) functions on R™ is defined by,

1/pn

[xg(x) = - flz —1t)g(t)dt,

whenever the integral exists.

For a fixed function g the map f + f * ¢ has a kind of product structure. But,
even in the two-variable case, it is not a product operator of the sort considered
in the previous section unless g factors as g(t1,t2) = g1(¢1)g2(t2). This will keep
us from establishing permuted mixed norm inequalities. Nevertheless, exploiting
the existing product structure provides an elementary proof of a n-variable mixed
norm Young’s inequality.

Recall the single-variable Young’s inequality: If p, ¢, r € [1, oo] satisfy 1/p+1/q =
1/r+1, f € LP and g € L%, then f g is well defined and || f * g|[rr < ||f|lLellgllLa-

Theorem 3.1. Suppose P = (p1,...,pn), @ = (q1,---,qn), and R = (r1,...75)
satisfy,

1 1 1
—+—=—4+1, j5=1,...,n.
pj 4 T

If f e LY and g € L9 then f * g is well defined, and

1f *gller < I fllellgllLe-

Proof. We begin by proving the inequality when f and g are non-negative, so that
f = g is well-defined as a function taking values in [0, oo].

As the first step in a recursive argument, let f; = f and g; = g. Define & and
t so that (x1,20,...,2,) = (z1,%) and (t1,ta,...,t,) = (t1,1). Also, let di denote
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dta, . ..dt,. Then Young’s inequality gives, for each & and ¢,

1 1/r1
</ < fl(xl — tl,j? — f)gl(tl,lg) dt1> d$1>
1/p1 1/q1
< (/ fl(yl;fi‘ - £)p1 dy1> (/ gl(thf)‘“ dtl) .

So, applying Minkowski’s inequality, we get

1/m
(/ fixgi(x, @)™ dx1>
! 1/r1
= (/ (/Rnl |: fl(xl _t17.’f7 —f)gl(tl,f) dt1:| df) da:l)
1/m1

< /]Rni1 (/ [ fl(xl — 11,2 —f)gl(tl,f) dt1:| 1 dm1> dt
1/p1 1/q1
< /an </ filyr, @ — )P dy1> </g1(t1,f)‘h dtl) di.

Now define fa, g2 : R*™1 — [0, 0] by

1/p1
fa(y2, - yn) = </f1(1117y2,-~-,yn)p1 dy1>

1/q1
gg(tg,...,tn): (/gl(tl,tg,...,tn)ql dt1> .

We have just shown that,

and

1/T1
(3.1) (/f1 * g1(x1, Ty ..o )™ dac1> < faxgo(ma, ... xn).

Applying the above argument to fy and go gives

1/T2
(32) (/fg*QQ(I‘Q,Ig,...,JSn)TZ dd?g) < fg*gg(l‘g,...,.’lin),
where

1/p2
f3(y3a" 7yn) = (/f?(y27y3a"'ayn)p2 dy2>

1/q2
g3(t35"'atn) = </92(t27t37"'7tn)q2 dt2> .

We continue in this way until reaching

and

1/rn—1
(3.3) ( [ SRS dxnl) < fou * gulen),

1/pn-1
fn(yn) == (/ fn—l(yn—layn)pn71 dyn—1>

where
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and

1/Qn71
gn(tn) = (/\gn—l(tn—lytn)qn_l dtn—l) .

Then Young’s inequality gives,
(3.4)

Recursively applying the definitions of f; and g; shows that the right hand side of
(3.4) is just

1£llzellgllze-

The convolution estimates (3.1),(3.2),...,(3.3) concatenate to give a lower bound for
the left hand side of (3.4) and we have

1f*glle <[ fllzellgllze-

Now we drop the assumption of positivity on f € L¥ and g € L%. For bounded,
integrable functions the convolution exists and is finite everywhere. And it is routine
to express f and g as pointwise limits of bounded, integrable functions f; and gy,
respectively, satisfying |fix| < |f| and |gx| < |g|- Since |f| € L¥ and |g| € L@
we have shown |f|  |g| € LT and hence |f| * |g|(z) < oo almost everywhere. So
for almost every x the dominated convergence theorem proves that f * g(z) exists.
Also,

1 * gllee < f1*lglllee < f e lllgllice = 1F L llglliLa-
This completes the proof. ([

Once again, the statement of the theorem remains valid when some indices are
infinite, but the proof would have to be modified to accommodate occurrences of
the supremum norm.

The same straightforward procedure may be applied to prove a mixed norm
Young’s inequality over any finite product of locally compact unimodular groups.
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