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Abstract. A question about comparing norms of difference operators that was

raised in [1] and presented at the Fourth ISAAC Congress is answered in the af-
firmative.

Let 1 ≤ p < ∞ and suppose f : [0,∞) → R. For h > 0, set

F (h) ≡ ‖∆hf‖Lp(0,h) =

(∫ h

0

|f(x + h)− f(x)|p dx

)1/p

and

G(h) ≡ ‖∆hf‖Lp(h,3h) =

(∫ 3h

h

|f(x + h)− f(x)|p dx

)1/p

.

We wish to compare F and G as functions of h. It is easy to see that pointwise
comparisons of F and G are impossible for arbitrary f as F depends on values of
f on the interval [0, 2h] but G depends on values of f on the interval [h, 4h]. It is
possible to compare the functions F and G in norm, however. A special case of [1,
Corollary 2] shows that there is a constant A such that

(∫ δ

0

F (h)θh−lθ dh

h

)1/θ

≤ A

(∫ δ

0

G(h)θh−lθ dh

h

)1/θ

holds for all measurable f . Here l > 0, 0 < δ ≤ ∞, and 1 ≤ θ < ∞.
It does not follow from the results of [1] that this inequality still holds if the

constant 3 in the definition of G is replaced by a smaller number. That is the
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2 GORD SINNAMON

substance of the question raised in [1, Remark 3]. Corollary 4, below, shows that
the above inequality holds when 3 is replaced by any β > 1.

The key is the following lemma comparing terms of the form ‖∆thf‖Lp(bh,ch)

where as usual

‖f‖Lp(b,c) =

{ (∫ c

b
|f(x)|p dx

)1/p
, 0 < p < ∞;

ess supb≤x≤c |f(x)|, p = ∞.

Lemma 1. Suppose 1 ≤ p ≤ ∞. If b, c, t, B, C, and T are positive real numbers
with b < c and B < C then there exists a finite sequence s1, s2, . . . , sN of positive
real numbers such that

‖∆tf‖Lp(b,c) ≤
N∑

n=1

‖∆snT f‖Lp(snB,snC)

for all measurable f : [0,∞) → R. The sn can be chosen so that

(1) sn <
c + t

B + T

for n = 1, 2, . . . , N .

Proof. We begin by supposing that we have a solution to the following problem:
Find positive integers M and K and real numbers tm, bk, and rm,k for m = 1, . . . ,M
and k = 1, . . . ,K such that

0 = t0 < t1 < · · · < tm = t,(2)

b = b0 < · · · < bK−1 < c ≤ bK ,(3)
bk + rm,k

C
=

tm−1 − rm,k

T
<

tm − rm,k

T
=

bk−1 + rm,k

B
.(4)

An application of Minkowski’s inequality gives

‖∆tf‖Lp(b,c) ≤ ‖∆tf‖Lp(b0,bK) ≤
K∑

k=1

‖∆tf‖Lp(bk−1,bk)

and, since

∆tf(x) =
M∑

m=1

f(x + tm)− f(x + tm−1) =
M∑

m=1

∆tm−tm−1f(x + tm−1),

another application yields

‖∆tf‖Lp(bk−1,bk) ≤
M∑

m=1

‖∆tm−tm−1f‖Lp(bk−1+tm−1,bk+tm−1)
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for each k. To reach the conclusion of the lemma it is enough to show that for each
m and k,

(5) ‖∆tm−tm−1f‖Lp(bk−1+tm−1,bk+tm−1)

can be dominated by a sum of terms of the form

(6) ‖∆sT f‖Lp(sB,sC), for s > 0.

Fix m and k and write r = rm,k. Rearranging terms in (4) gives

bk−1 + r = (tm + bk−1)/(1 + T/B) > 0

and we see that x + r > 0 for all x ∈ (bk−1, bk). Thus we may write

∆tm−tm−1f(x + tm−1) = f(x + tm)− f(x + tm−1)

= f(x + tm)− f(x + r) + f(x + r)− f(x + tm−1)

= ∆tm−rf(x + r)−∆tm−1−rf(x + r)

for such x. A third application of Minkowski’s inequality shows that (5) is no
greater than

‖∆tm−rf‖Lp(bk−1+r,bk+r) + ‖∆tm−1−rf‖Lp(bk−1+r,bk+r).

Using (4), with s′ = (tm − r)/T and s = (tm−1 − r)/T , we can dominate the last
expression by

‖∆s′T f‖Lp(s′B,s′C) + ‖∆sT f‖Lp(sB,sC),

which is a sum of terms of the form (6) as required.
To complete the proof we provide a solution to the problem (2)–(4) and verify

that s and s′ satisfy the upper bound (1). Since 0 < B < C, both

µ ≡ C(B + T )
B(C + T )

and ν ≡ C + T

B + T

are greater than 1. Choose a positive integer M so that t < b(µM − 1) and set
ε = t/(µM − 1). For each m and k define

tm = ε(µm − 1) and bk = νk(b− ε) + ε.

Evidently, (2) is satisfied. The choice of M ensures that 0 < ε < b so the bk’s are
increasing and unbounded. Therefore we can choose K to satisfy (3).

The inequality in (4) is automatically satisfied and the two equations in (4)
reduce to

rm,k =
Ctm−1 − Tbk

C + T
and rm,k =

Btm − Tbk−1

B + T
.



4 GORD SINNAMON

A routine calculation shows that these two expressions coincide so that either may
be used to define rm,k so that (4) is satisfied. Finally, we estimate s and s′ (for
fixed m and k) by

s < s′ =
tm − r

T
=

bk−1 + tm
B + T

<
c + t

B + T
.

This completes the proof.

Lemma 1 remains valid with the Lp-norm replaced by any Banach function space
norm since only the triangle inequality is needed. Moreover, it is easily extended to
quasinormed function spaces at the expense of an additional constant. In particular,
if 0 < p < 1 one obtains

‖∆tf‖p
Lp(b,c) ≤

N∑
n=1

‖∆snT f‖p
Lp(snB,snC).

and hence

‖∆tf‖Lp(b,c) ≤ N1/p−1
N∑

n=1

‖∆snT f‖Lp(snB,snC).

Our main result shows that the norms of F and G and other similar expressions
are all comparable in great generality. For convenience we introduce notation for
the following weighted Lebesgue norms of functions of the variable h.

‖g(h)‖Lθ
l (0,δ) =


(∫ δ

0
|g(h)|θh−lθ dh/h

)1/θ

, 1 ≤ θ < ∞;

ess sup0<h<δ h−l|g(h)|, θ = ∞.

Here g(h) is understood to be formula involving the variable h rather than a function
name. In addition to homogeneity, the triangle inequality, and the Fatou property
of these norms we will need the following dilation property, easily proved by a
change of variable. For any s > 0,

(7) ‖g(h)‖Lθ
l (0,δ) = sl‖g(h/s)‖Lθ

l (0,sδ).

Note also that ‖g(h)‖Lθ
l (0,δ1) ≤ ‖g(h)‖Lθ

l (0,δ2) whenever δ1 ≤ δ2.

Theorem 2. Suppose 1 ≤ p ≤ ∞, 1 ≤ θ ≤ ∞, l > 0, a ∈ R, and 0 < δ ≤ ∞. If
t > 0, 0 ≤ b < c, T > 0, and 0 ≤ B < C then, for all measurable f : [a,∞) → R,

(8)
∥∥‖∆thf‖Lp(a+bh,a+ch)

∥∥
Lθ

l (0,δ)
≤ A

∥∥‖∆Thf‖Lp(a+Bh,a+Ch)

∥∥
Lθ

l (0, c+t
B+T δ)

.

The constant A above depends only on t, b, c, T , B, C and l.

Proof. By translating the function f the theorem is easily reduced to the case a = 0
so we assume a = 0 henceforth.
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We first prove the theorem in the case that b and B are positive. Lemma 1 yields
s1, s2, . . . , sN such that sn < (c + t)/(B + T ) for all n and

(9) ‖∆tf‖Lp(b,c) ≤
N∑

n=1

‖∆snT f‖Lp(snB,snC)

for all f . For each h, define the dilation fh by fh(x) = f(hx) and observe that
∆tfh(x) = ∆thf(hx). Changes of variable show that

‖∆tfh‖Lp(b,c) = h−1/p‖∆thf‖Lp(bh,ch)

and
‖∆snT fh‖Lp(snB,snC) = h−1/p‖∆snThf‖Lp(snBh,snCh)

so inequality (9), applied to fh, implies

‖∆thf‖Lp(bh,ch) ≤
N∑

n=1

‖∆snThf‖Lp(snBh,snCh).

It is important to point out that N and s1, s2, . . . , sN do not depend on h. We use
the triangle inequality and property (7) to get

∥∥‖∆thf‖Lp(bh,ch)

∥∥
Lθ

l (0,δ)
≤

N∑
n=1

∥∥‖∆snThf‖Lp(snBh,snCh)

∥∥
Lθ

l (0,δ)

=
N∑

n=1

sl
n

∥∥‖∆Thf‖Lp(Bh,Ch)

∥∥
Lθ

l (0,snδ)

≤

(
N∑

n=1

sl
n

)∥∥‖∆Thf‖Lp(Bh,Ch)

∥∥
Lθ

l (0, c+t
B+T δ)

This proves the theorem in the case that b and B are positive and it is a simple
matter to show that it remains valid when B = 0 since replacing B by zero only
makes the right hand side of (8) larger.

The case b = 0 requires some additional argument. For each integer j ≥ 0, apply
(7) with s = 1/2 to get

(10) Nj ≡
∥∥‖∆thf‖Lp(2−jch,ch)

∥∥
Lθ

l (0,δ)
= 2−l

∥∥‖∆2thf‖Lp(21−jch,2ch)

∥∥
Lθ

l (0,δ/2)
.

Note that N0 = 0. To estimate Nj for j ≥ 1 we break up ∆2thf as

∆2thf(x) = ∆thf(x + th) + ∆thf(x)χ(ch,∞)(x) + ∆thf(x)χ(0,ch)(x)
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and use Minkowski’s inequality to obtain

(11) ‖∆2thf‖Lp(21−jch,2ch)

≤ ‖∆thf‖Lp(21−jch+th,2ch+th) + ‖∆thf‖Lp(ch,2ch) + ‖∆thf‖Lp(21−jch,ch).

Using the first part of the proof we get constants A1 and A2 such that∥∥‖∆thf‖Lp(21−jch+th,2ch+th)

∥∥
Lθ

l (0,δ/2)
≤
∥∥‖∆thf‖Lp(th,2ch+th)

∥∥
Lθ

l (0,δ/2)

≤ A1

∥∥‖∆Thf‖Lp(Bh,Ch)

∥∥
Lθ

l (0, c+t
B+T δ)

and ∥∥‖∆thf‖Lp(ch,2ch)

∥∥
Lθ

l (0,δ/2)
≤ A2

∥∥‖∆Thf‖Lp(Bh,Ch)

∥∥
Lθ

l (0, 2c+t
B+T

δ
2 )

≤ A2

∥∥‖∆Thf‖Lp(Bh,Ch)

∥∥
Lθ

l (0, c+t
B+T δ)

.

With K = (A1 + A2)
∥∥‖∆Thf‖Lp(Bh,Ch)

∥∥
Lθ

l (0, c+t
B+T δ)

we use the estimate (11) in

(10) to get

Nj ≤ 2−l
(
K +

∥∥‖∆thf‖Lp(21−jch,ch)

∥∥
Lθ

l (0,δ/2)

)
≤ 2−l(K + Nj−1).

A simple induction, starting with N0 = 0, shows that Nj ≤ K/(2l− 1) for all j ≥ 0
and by the Fatou property we have∥∥‖∆thf‖Lp(0,ch)

∥∥
Lθ

l (0,δ)
= lim

j→∞
Nj ≤

A1 + A2

2l − 1

∥∥‖∆Thf‖Lp(Bh,Ch)

∥∥
Lθ

l (0, c+t
B+T δ)

.

This completes the proof.

If δ = ∞ Theorem 2 becomes a general equivalence.

Corollary 3. Suppose 1 ≤ p ≤ ∞, 1 ≤ θ ≤ ∞, l > 0, and a ∈ R. If t > 0,
0 ≤ b < c, T > 0, and 0 ≤ B < C then∥∥‖∆thf‖Lp(a+bh,a+ch)

∥∥
Lθ

l (0,∞)
≈
∥∥‖∆Thf‖Lp(a+Bh,a+Ch)

∥∥
Lθ

l (0,∞)

for all measurable f : [a,∞) → R. The constants in this equivalence depend only
on t, b, c, T , B, C and l.

The answer to the question raised in [1, Remark 3] is the special case b = 0,
c = t = B = T = 1, C = β of Theorem 2.

Corollary 4. Suppose 1 ≤ p ≤ ∞, 1 ≤ θ ≤ ∞, l > 0, a ∈ R, and 0 < δ ≤ ∞. If
β > 1 then there exists a constant A depending only on l and β such that∥∥‖∆hf‖Lp(a,a+h)

∥∥
Lθ

l (0,δ)
≤ A

∥∥‖∆hf‖Lp(a+h,a+βh)

∥∥
Lθ

l (0,δ)

for all measurable f : [a,∞) → R.

The techniques used in this paper do not seem to extend to higher order differ-
ences. It is natural to ask whether or not Theorem 2 holds with ∆ replaced by ∆k

for k > 1.
The author would like to thank Professor Victor Burenkov for comments that

greatly improved the proof of Theorem 2.
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