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Abstract. Two inequalities resembling the multilinear Hölder inequality for

mixed-norm Lebesgue spaces are proved. When specialized to single-function

inequalities they include a pair of inequalities due to Blei and a recent extension
of Blei’s inequality. The first of these inequalities is applied to give explicit

indices in a known result for coordinatewise multiple summing operators. The

second is used to prove a complementary result to the known one, again with
explicit indices. As an application of the complementary result, a sufficient

condition is given for a composition of operators to be multiple summing.

1. Introduction

A mixed-norm Lebesgue space is a space of complex-valued µ × ν-measurable
functions defined on the product of two measure spaces (X,µ) and (Y, ν) and sat-
isfying (∫ (∫

|f(x, y)|p dµ(x)

)q/p
dν(y)

)1/q

<∞,

for given indices p ≥ 1 and q ≥ 1. These spaces and the closely related amalgam
spaces have a prominent place in harmonic analysis. For example, the Littlewood
4/3 theorem is proved in [1] using two mixed-norm inequalities for matrices. (To
get mixed norms on matrices simply take µ and ν above to be counting measures
on finite sets.) The multilinear Hölder inequality for mixed-norm spaces follows
easily by iterating the usual one, so∫

f1f2, . . . fn d(µ× ν) ≤
n∏
j=1

(∫ (∫
|fj |pj dµ

)qj/pj
dν

)1/qj

provided 1/p1 + · · · + 1/pn = 1/q1 + · · · + 1/qn = 1. It is important to note that
the order of integration is the same in each factor. In [1], Lemma 2 on Page 430,
two mixed-norm inequalities appear in which the order of integration differs in the
factors. They are expressed as matrix inequalities:

(1.1)

(∑
i,j

|bi j |4/3
)3/4

≤
(∑

i

(∑
j

|bi j |2
)1/2)1/2(∑

j

(∑
i

|bi j |2
)1/2)1/2
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and

(1.2)

(∑
i,j,k

|ai j k|6/5
)5/6

≤
(∑

i,j

(∑
k

|ai j k|2
)1/2)1/3

×
(∑

i,k

(∑
j

|ai j k|2
)1/2)1/3(∑

j,k

(∑
i

|ai j k|2
)1/2)1/3

.

In Theorem 2.1 we present a pair of multilinear Hölder-type inequalities in which
the order of integration differs in the mixed-norm factors. When specialized to
single function inequalities, they include the two inequalities above, and a recent
generalization from [8]. It appears that investigation of such inequalities in the
past has been mostly restricted to the single-function case, see [2], [3], [11] and [14].
In [11], the author introduces permuted mixed norms and proves a Minkowski-
type inequality for them. Although still a single-function result, this inequality
is applicable to our situation and may be used to give alternative proofs of our
Theorem 2.1. We prefer to present the concrete, elementary proof given in the next
section.

The motivation for extending Blei’s inequalities from [1] comes from the theory
of multiple summing operators, which began with the comparison between uncon-
ditional and absolute convergence in Banach spaces and developed into an essential
tool of functional analysis. Bohnenblust and Hille, in Theorem I of their ingenious
1931 paper [4], proved that for each natural number m there exists a constant BHm

such that for every N and every m-linear mapping U : `N∞ × · · · × `N∞ → C( N∑
i1=1

· · ·
N∑

im=1

|U(ei1 , . . . , eim)|
2m
m+1

)m+1
2m

≤ BHm‖U‖,

and, moreover, proved that the exponent 2m
m+1 is optimal. Here e1, . . . , eN denote

the standard basis vectors in `N∞. The case m = 2 is Littlewood’s famous 4/3-
inequality from [12] and is closely connected with (1.1). In modern terminology,
see [15, Corollary 3.20], the Bohnenblust-Hille theorem may be stated as follows:
For each natural number m there exists a constant BHm such that if X1, . . . , Xm

are Banach spaces and ϕ : X1 × · · · ×Xm → C is bounded and multilinear, then ϕ
is multiple ( 2m

m+1 , 1)-summing, and

πmult
2m
m+1 ,1

(ϕ) ≤ BHm‖ϕ‖.

For definitions and basic results, including the definition of πmult
r,1 , see Section 3.

In [8], coordinatewise multiple summing operators were introduced and studied,
then applied to give a multilinear extension of Kwapień’s theorem, a multivariate
polynomial version of the same result, and a theorem on products of vector-valued
Dirichlet series. Their main result on coordinatewise multiple summing operators,
Theorem 5.1 of [8], shows that if an operator is coordinatewise multiple summing
in each subset of some partition of the coordinate set, then the operator is mul-
tiple summing. Unfortunately, the indices in this result are recursively defined,
making them difficult to handle except in special cases. In Theorem 3.2, below,
we prove a version of Theorem 5.1 from [8], giving explicit values for the indices,
and simplifying its proof by applying Theorem 2.1. The simplification comes at the
expense of the careful control of the constants established in [8]. Theorem 3.2 also
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includes a companion result, which involves operators that are coordinatewise mul-
tiple summing in the complement of each subset of the partition. As an application
of the companion result, it is combined with the Bohnenblust-Hille theorem to give
a sufficient condition for a composition of operators to be multiple summing, see
Theorem 3.5.

2. Multilinear Blei’s inequalities

Let (Mj , µj) be σ-finite measure spaces for j = 1, 2, . . . , n, and introduce the
product measure spaces (Mn, µn) and (Mn

j , µ
n
j ) by

Mn =

n∏
k=1

Mk, µn =

n∏
k=1

µk, Mn
j =

n∏
k=1
k 6=j

Mk, µnj =

n∏
k=1
k 6=j

µk.

Note that Mn
n = Mn−1.

The following two theorems give complementary inequalities for functions defined
on the product space Mn. Observe that, except for the names of the indices, each
reduces to the same inequality in the case n = 2. This case is proved separately
below. Note that for p > 1, p′ is defined by 1/p+ 1/p′ = 1.

Theorem 2.1. If n ≥ 2 and positive indices q1, . . . , qn satisfy
∑n
j=1

1
qj
≤ 1 then

for any non-negative µn-measurable functions f1, f2, . . . , fn,∫
Mn

f1f2 . . . fn dµ
n ≤

n∏
j=1

(∫
Mj

(∫
Mn
j

f
qj
j dµnj

)pj/qj
dµj

)1/pj

and(2.1)

∫
Mn

f1f2 . . . fn dµ
n ≤

n∏
j=1

(∫
Mn
j

(∫
Mj

f
qj
j dµj

)sj/qj
dµnj

)1/sj

.(2.2)

Here 1
pj

= 1
qj

+ 1−
∑n
k=1

1
qk

and 1
sj

= 1
qj

+ 1
n−1

(
1−

∑n
k=1

1
qk

)
.

Proof. If n = 2 then M2
1 = M2, M2

2 = M1, p1 = s1 = q′2 and p2 = s2 = q′1. Two
applications of Hölder’s inequality give∫

M2

f1f2 dµ
2 =

∫
M1

∫
M2

f1f2 dµ2 dµ1

≤
∫
M1

(∫
M2

fq11 dµ2

)1/q1(∫
M2

f
q′1
2 dµ2

)1/q′1

dµ1

≤
(∫

M1

(∫
M2

fq11 dµ2

)q′2/q1
dµ1

)1/q′2
(∫

M1

(∫
M2

f
q′1
2 dµ2

)q2/q′1
dµ1

)1/q2

.

Since q2/q
′
1 ≥ 1, Minkowski’s integral inequality shows that the second factor in

the last expression is no greater than(∫
M2

(∫
M1

fq22 dµ1

)q′1/q2
dµ2

)1/q′1

and establishes the case n = 2 of both (2.1) and (2.2).
Next we prove the remaining cases of (2.1) by induction on n. First observe

that 1 < pj ≤ qj < ∞ for each j. For the induction step we suppose n ≥ 3 and
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deduce the result from the case n − 1. Fix q1, . . . , qn such that
∑n
j=1

1
qj
≤ 1 and

set Qj = qj/q
′
n for j = 1, 2, . . . , n− 1. Observe that

n−1∑
j=1

1

Qj
= q′n

n−1∑
j=1

1

qj
≤ q′n

(
1− 1

qn

)
= 1.

Thus, by the inductive hypothesis,∫
Mn−1

F1F2 . . . Fn−1 dµ
n−1 ≤

n−1∏
j=1

(∫
Mj

(∫
Mn−1
j

F
Qj
j dµn−1j

)Pj/Qj
dµj

)1/Pj

,

for non-negative µn−1-measurable functions F1, . . . , Fn−1, where Pj = pj/q
′
n be-

cause,

1− 1

Pj
=

n−1∑
k=1
k 6=j

1

Qk
= q′n

n−1∑
k=1
k 6=j

1

qk
= q′n

(
1− 1

pj
− 1

qn

)
= 1− q′n

pj
.

We apply this inequality to the functions Fj = f
q′n
j , with the nth variable of

f1, . . . , fn−1 fixed, to get,(∫
Mn−1

(f1f2 . . . fn−1)q
′
n dµn−1

)1/q′n

≤
n−1∏
j=1

(∫
Mj

(∫
Mn−1
j

f
qj
j dµn−1j

)pj/qj
dµj

)1/pj

.

For convenience, set

C =

(∫
Mn

(∫
Mn−1

fqnn dµnn

)pn/qn
dµn

)1/pn

.

Then Hölder’s inequality, used twice, and the inequality above yield,∫
Mn

f1f2 . . . fn dµ
n =

∫
Mn

∫
Mn−1

f1f2 . . . fn dµ
n−1 dµn

≤
∫
Mn

(∫
Mn−1

fqnn dµn−1
)1/qn(∫

Mn−1

(f1f2 . . . fn−1)q
′
n dµn−1

)1/q′n

dµn

≤ C
(∫

Mn

(∫
Mn−1

(f1f2 . . . fn−1)q
′
n dµn−1

)p′n/q′n
dµn

)1/p′n

≤ C
(∫

Mn

n−1∏
j=1

(∫
Mj

(∫
Mn−1
j

f
qj
j dµn−1j

)pj/qj
dµj

)p′n/pj
dµn

)1/p′n

.

Since
∑n−1
j=1

p′n
qj

= 1, Hölder’s inequality with indices q1/p
′
n, . . . , qn−1/p

′
n implies,∫

Mn

f1f2 . . . fn dµ
n

≤ C
n−1∏
j=1

(∫
Mn

(∫
Mj

(∫
Mn−1
j

f
qj
j dµn−1j

)pj/qj
dµj

)qj/pj
dµn

)1/qj

,
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and since qj/pj ≥ 1, Minkowski’s integral inequality gives,

∫
Mn

f1f2 . . . fn dµ
n ≤ C

n−1∏
j=1

(∫
Mj

(∫
Mn

∫
Mn−1
j

f
qj
j dµn−1j dµn

)pj/qj
dµj

)1/pj

=

n∏
j=1

(∫
Mj

(∫
Mn
j

f
qj
j dµnj

)pj/qj
dµj

)1/pj

(Note that Mn−1 = Mn
n .) This completes the proof of (2.1).

The induction step to prove (2.2) is similar but there are some notable differences
so we give the details. Note that 1 < sj ≤ qj < ∞ for each j. Fix q1, . . . , qn such

that
∑n
j=1

1
qj
≤ 1 and set Q̃j = qj/s

′
n for j = 1, 2, . . . , n− 1. Observe that,

1

sn
+

n−1∑
j=1

1

qj
=

n∑
j=1

1

qj
+

1

n− 1

(
1−

n∑
j=1

1

qj

)
=

1

n− 1
+
n− 2

n− 1

n∑
j=1

1

qj
≤ 1,

so

n−1∑
j=1

1

Q̃j
= s′n

n−1∑
j=1

1

qj
≤ s′n

(
1− 1

sn

)
= 1.

Thus, by the inductive hypothesis,

∫
Mn−1

F1F2 . . . Fn−1 dµ
n−1 ≤

n−1∏
j=1

(∫
Mn−1
j

(∫
Mj

F
Q̃j
j dµj

)Sj/Q̃j
dµn−1j

)1/Sj

,

for non-negative µn−1-measurable functions F1, . . . , Fn−1, where Sj = sj/s
′
n be-

cause,

1

Sj
=

1

Q̃j
+

1

n− 2

(
1−

n−1∑
k=1

1

Q̃k

)

= s′n

(
1

qj
+

1

n− 2

(
1

s′n
−
n−1∑
k=1

1

qk

))

= s′n

(
1

qj
+

1

n− 2

(
1− 1

qn
− 1

n− 1

(
1−

n∑
k=1

1

qk

)
−
n−1∑
k=1

1

qk

))

= s′n

(
1

qj
+

1

n− 2

(
1− 1

n− 1

)(
1−

n∑
k=1

1

qk

))

= s′n

(
1

qj
+

1

n− 1

(
1−

n∑
k=1

1

qk

))
=
s′n
sj
.

We apply this inequality with Fj =
( ∫

Mn
f
sj
j dµn

)s′n/sj
for j = 1, 2, . . . , n − 1.

Note that the integration with respect to the nth variable produces non-negative
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µn−1-measurable functions F1, F2, . . . , Fn−1. We get,

(∫
Mn−1

n−1∏
j=1

(∫
Mn

f
sj
j dµn

)s′n/sj
dµn−1

)1/s′n

≤
n−1∏
j=1

(∫
Mn−1
j

(∫
Mj

(∫
Mn

f
sj
j dµn

)qj/sj
dµj

)sj/qj
dµn−1j

)1/sj

.

For convenience, set

C̃ =

(∫
Mn−1

(∫
Mn

fqnn dµn

)sn/qn
dµn−1

)1/sn

.

Then Hölder’s inequality, used three times, and the inequality above yield,∫
Mn

f1f2 . . . fn dµ
n =

∫
Mn−1

∫
Mn

f1f2 . . . fn dµn dµ
n−1

≤
∫
Mn−1

(∫
Mn

fqnn dµn

)1/qn(∫
Mn

(f1f2 . . . fn−1)q
′
n dµn

)1/q′n

dµn−1

≤ C̃
(∫

Mn−1

(∫
Mn

(f1f2 . . . fn−1)q
′
n dµn

)s′n/q′n
dµn−1

)1/s′n

≤ C̃
(∫

Mn−1

n−1∏
j=1

(∫
Mn

f
sj
j dµn

)s′n/sj
dµn−1j

)1/s′n

≤ C̃
n−1∏
j=1

(∫
Mn−1
j

(∫
Mj

(∫
Mn

f
sj
j dµn

)qj/sj
dµj

)sj/qj
dµn−1j

)1/sj

.

Note that the third application of Hölder’s inequality above uses the indices sj/q
′
n

for j = 1, . . . , n− 1. This valid because

n−1∑
j=1

q′n
sj

= q′n

( n−1∑
j=1

1

qj
+ 1−

n∑
j=1

1

qj

)
= 1.

Since qj/sj ≥ 1, Minkowski’s integral inequality gives,

∫
Mn

f1f2 . . . fn dµ
n ≤ C

n−1∏
j=1

(∫
Mn−1
j

∫
Mn

(∫
Mj

f
qj
j dµj

)sj/qj
dµn dµ

n−1
j

)1/sj

=

n∏
j=1

(∫
Mn
j

(∫
Mj

f
qj
j dµj

)sj/qj
dµnj

)1/sj

.

This completes the proof. �
The above theorem gives a useful corollary in the special case when the functions

f1, f2, . . . , fn are taken to be a powers of a single function.
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Corollary 2.2. Suppose q > 0, n ≥ 2 and r1, . . . , rn ∈ (0, q). If h ≥ 0 is µn-
measurable, then(∫

Mn

hQ dµn
)1/Q

≤
n∏
j=1

(∫
Mj

(∫
Mn
j

hq dµnj

)rj/q
dµj

)1/(R(q−rj))

and(2.3)

(∫
Mn

hS dµn
)1/S

≤
n∏
j=1

(∫
Mn
j

(∫
Mj

hq dµj

)rj/q
dµnj

)1/(R(q−rj))

.(2.4)

Here R =
∑n
j=1

rj
q−rj , Q = qR/(1 +R) and S = qR/(n− 1 +R).

Proof. For the first inequality, let qj = (1 + R)(q − rj)/rj and fj = hq/qj for
j = 1, 2, . . . , n. Then

n∑
j=1

1

qj
=

R

1 +R
≤ 1

and

1− 1

pj
=

n∑
k=1
k 6=j

1

qk
=

R

1 +R
− 1

qj
= 1− q

(1 +R)(q − rj)

so pj = (1+R)(q−rj)/q for j = 1, 2, . . . , n. With these substitutions, the inequality
(2.1), raised to the power (1 +R)/(qR), gives (2.3).

For the second inequality, let qj = (n − 1 + R)(q − rj)/rj and fj = hq/qj for
j = 1, 2, . . . , n. Then

n∑
j=1

1

qj
=

R

n− 1 +R
≤ 1

and

1

sj
=

1

qj
+

1

n− 1

(
1− R

n− 1 +R

)
=

rj
q − rj

1

n− 1 +R
+

1

n− 1 +R
=

q

q − rj
1

n− 1 +R

so sj = (n − 1 + R)(q − rj)/q for j = 1, 2, . . . , n. With these substitutions, the
inequality (2.2), raised to the power (n− 1 +R)/(qR), gives (2.4). �

Inequality (2.3), with n = 2, µ1 and µ2 taken to be counting measure on the
positive integers, q = 2, and r1 = r2 = 1 becomes (1.1).

Also with n = 2 and counting measures, but with general q, r1 and r2, (2.3) gives
Lemma 3.1 from [8], providing explicit values for the recursively defined exponents
in that result.

In the case q = 2, r1 = · · · = rn = 1, n ≥ 2, inequality (2.3) gives a variant of
Blei’s inequality which is used in [9] (Lemma 1) as an ingredient in the proof that
the Bohnenblust-Hille inequality for polynomials is hypercontractive.

With counting measure, and r1 = · · · = rn, (2.3) reduces to Lemma 5.1 of [7].
With counting measure, but with general q, r1, . . . , rn, (2.3) gives Lemma 2.3

from [17], providing explicit values for the recursively defined exponents.
Inequality (2.4) with n = 3, µ1, µ2, and µ3 taken to be counting measure on the

positive integers, q = 2, and r1 = r2 = r3 = 1 becomes (1.2).
The inequalities (2.1) and (2.2) of Theorem 2.1 can be used to prove the bound-

edness of a certain multilinear functional. In the next theorem we establish the
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norm of this functional. For 1 ≤ p < ∞, the space Lpµ is the collection of all
complex-valued µ-measurable functions f for which

‖f‖Lpµ ≡
(∫
|f |p dµ

)1/p

<∞.

Theorem 2.3. Suppose n ≥ 2 and positive real numbers q1, q2, . . . , qn satisfy∑
k 6=j

1
qk

< 1 for j = 1, 2, . . . , n. Fix complex-valued functions ϕj ∈ L
qj
µj and

set

T (f1, f2, . . . , fn) =

∫
Mn

f1ϕ1f2ϕ2 . . . fnϕn dµ
n.

Then T is a well-defined, bounded multilinear functional on
∏n
j=1 L

sj
µnj

and its norm

is ‖ϕ1‖Lq1µ1‖ϕ2‖Lq2µ2 . . . ‖ϕn‖Lqnµn . Here sj is defined by,

(2.5)
1

sj
=

1

qj
+

1

n− 1

(
1−

n∑
k=1

1

qk

)
.

Proof. For each j, 1 < qj <∞. But 1
qj
<
∑n
k=1

1
qk
< 1 + 1

qj
, so

0 ≤ n− 2

n− 1

1

qj
<

1

sj
<

1

n− 1
+
n− 2

n− 1

1

qj
≤ 1.

Therefore, 1 < sj <∞ for each j. Also, we may sum (2.5) to get

(2.6)

n∑
k=1

1

sk
=

n

n− 1
− 1

n− 1

n∑
k=1

1

qk

and conclude that

(2.7)
1

qj
=

1

sj
+

(
1−

(
n

n− 1
− 1

n− 1

n∑
k=1

1

qk

))
=

1

sj
+

(
1−

n∑
k=1

1

sk

)
.

Now suppose fj ∈ L
sj
µnj

for j = 1, . . . , n. If
∑n
k=1

1
qk
≤ 1 then (2.2) implies,∫

Mn

|f1ϕ1f2ϕ2 . . . fnϕn| dµn ≤
n∏
j=1

(∫
Mn
j

(∫
Mj

|fj |qj |ϕj |qj dµj
)sj/qj

dµnj

)1/sj

.

If
∑n
k=1

1
qk
≥ 1 then (2.6) implies

∑n
k=1

1
sk
≤ 1 and (2.7) shows that (2.1) holds

with qj replaced by sj and pj replaced by qj . That is,∫
Mn

|f1ϕ1f2ϕ2 . . . fnϕn| dµn ≤
n∏
j=1

(∫
Mj

(∫
Mn
j

|fj |sj |ϕj |sj dµnj
)qj/sj

dµj

)1/qj

.

But ϕj is constant on Mn
j and fj is constant on Mj so the inequality given in the

case
∑n
k=1

1
qk
≤ 1 and the inequality given in the case

∑n
k=1

1
qk
≥ 1 both reduce to∫

Mn

|f1ϕ1f2ϕ2 . . . fnϕn| dµn ≤
( n∏
j=1

‖ϕj‖Lqjµj

)( n∏
j=1

‖fj‖Lsj
µn
j

)
.

Since the right-hand side above is finite, the integral defining T converges absolutely
so T is well defined. It is clear that T is multilinear. Moreover, if ‖fj‖Lsj (Mn

j ) ≤ 1
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for each j, the above calculation shows that

|T (f1, f2, . . . , fn)| ≤
∫
Mn

|f1ϕ1f2ϕ2 . . . fnϕn| dµn ≤
n∏
j=1

‖ϕj‖Lqjµj .

Thus T is bounded and the norm is at most ‖ϕ1‖Lq1µ1‖ϕ2‖Lq2µ2 . . . ‖ϕn‖Lqnµn . To show

that the norm is attained, first observe that if ϕj = 0 µj-a.e. for some j then T = 0.
Otherwise, set

fj = εj

n∏
k=1
k 6=j

(
|ϕk|
‖ϕk‖Lqkµk

)qk/sj

for j = 1, 2, . . . , n, where εj = sgn(ϕj+1) for j = 1, 2, . . . , n − 1 and εn = sgn(ϕ1).
Then ‖fj‖Lsj

µn
j

≤ 1 for each j, and a calculation shows that

f1f2 . . . fn = ε1ε2 . . . εn

n∏
k=1

(
|ϕk|
‖ϕk‖Lqkµk

)qk−1
.

But εjϕj+1 = |ϕj+1| for j = 1, . . . , n− 1 and εnϕ1 = |ϕ1| so,

f1ϕ1f2ϕ2 . . . fnϕn =

n∏
k=1

|ϕk|qk

‖ϕk‖qk−1L
qk
µk

and we have

T (f1, f2, . . . , fn) = ‖ϕ1‖Lq1µ1‖ϕ2‖Lq2µ2 . . . ‖ϕn‖Lqnµn .
�

3. Coordinatewise multiple summing operators

To begin, we recall some known definitions and results for easy reference. For
details see [6], [10] and [16]. If 1 ≤ r < ∞, Z and Y are Banach spaces and
T : Z → Y is linear, we say T is r-summing provided there exists a constant C ≥ 0
such that for any finite sequence z1, . . . , zN in Z,( N∑

i=1

‖T (zi)‖rY
)1/r

≤ C sup
‖z∗‖Z∗≤1

( N∑
i=1

|z∗(zi)|r
)1/r

.

The least constant C is denoted πr(T ).
Let N be a positive integer. The weak `1-norm of x ∈ XN is

w1(x) = sup
‖x∗‖X∗≤1

N∑
i=1

|x∗(xi)| = sup

{∥∥∥ N∑
i=1

aixi

∥∥∥
X

: |ai| ≤ 1, i = 1, . . . , N

}
.

Let X1, X2, . . . , Xm and Y be Banach spaces and U : X1 × · · · × Xm → Y be
multilinear. For 1 ≤ r < ∞ we say U is multiple (r, 1)-summing provided there
exists a constant C ≥ 0 such that for every choice of positive integers N1, . . . , Nm
and xk = (xk(1), . . . , xk(Nk)) ∈ XNk

k for k = 1, . . . ,m,( N1∑
i1=1

· · ·
Nm∑
im=1

‖U(x1(i1), . . . , xm(im))‖rY
)1/r

≤ Cw1(x1) . . . w1(xm).
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The least constant C for which the inequality holds is denoted πmult
r,1 (U). It is easy

to verify that πmult
r,1 gives a norm on the space Πmult

r,1 (X1 × · · · × Xm;Y ), of all
multiple (r, 1)-summing operators from X1 × · · · ×Xm to Y .

The concept of multiple summing operators was introduced independently in [5]
and [13], although as we have mentioned it has its beginning in the classical paper
of Bohnenblust and Hille from 1931. (When we wish to emphasize that U is linear
rather than multilinear, we drop the “multiple” before (r, 1)-summing, and write
πr,1(U) for the best constant.)

Let 2 ≤ q <∞. A Banach space Y has cotype q provided there exists a constant
C ≥ 0 such that for each positive integer N and each y ∈ Y N ,( N∑

i=1

‖yi‖qY
)1/q

≤ C
(∫ 1

0

∥∥∥ N∑
i=1

ri(t)yi

∥∥∥2
Y
dt

)1/2

.

The least constant C for which the inequality holds is denoted Cq(Y ), see [6] and
[10]. Here r1, r2, . . . denote the Rademacher functions on [0, 1].

We will need the following special case of Kahane’s inequality, see [10]: For each
positive r there is a positive constant Kr,2 such that for any Banach space X, any
positive integer N , and all x ∈ XN ,(∫ 1

0

∥∥∥ N∑
i=1

ri(t)xi

∥∥∥2
X
dt

)1/2

≤ Kr,2

(∫ 1

0

∥∥∥ N∑
i=1

ri(t)xi

∥∥∥r
X
dt

)1/r

.

Coordinatewise multiple summing operators were first defined in [8]. Our defini-
tion agrees, but with some minor changes in notation to simplify our presentation.
For Banach spaces X1, X2, . . . , Xm, m ≥ 2, and a proper subset C of {1, . . . ,m},
that is C 6= ∅ and C 6= {1, . . . ,m}, we write XC =

∏
k∈C Xk and identify, in the

obvious way, the space X1 × · · · ×Xm with XC ×XC , where C denotes the com-

plement of C in {1, . . . ,m}. With this identification if x ∈ XC and z ∈ XC , then
(x, z) ∈ X1 × · · · ×Xm. We take the norm on finite products of Banach spaces to
be the maximum of the component norms so the identification is isometric.

If U : X1×· · ·×Xm → Y is multilinear, then UC is defined by UC(z)(x) = U(x, z)

for all x ∈ XC and z ∈ XC . Clearly, if z ∈ XC is fixed, UC(z) : XC → Y is a

multilinear map. Let 1 ≤ r < ∞. If UC(z) ∈ Πmult
r,1 (XC ;Y ) for each z ∈ XC we

say that U is multiple (r, 1)-summing in the coordinates of C. In this case we view

UC as a map from XC to Πmult
r,1 (XC ;Y ) and denote its (coordinatewise) norm by,

‖UC‖CW (r,1) ≡ ‖UC : XC → Πmult
r,1 (XC ;Y )‖ = sup{πmult

r,1 (UC(z)) : ‖z‖XC ≤ 1}.

To introduce multi-indices for summation, fix positive integers N1, . . . , Nm and
write NC =

∏
k∈C{1, . . . , Nk}. For xk = (xk(1), . . . , xk(Nk)) ∈ XNk

k , k = 1, . . . ,m,

and i ∈ NC we set x(i) = (xk(ik))k∈C and obtain x(i) ∈ XC . The identification

made above gives (x(i), x(j)) ∈ X1 × · · · ×Xm whenever i ∈ NC and j ∈ NC .
The first statement of Theorem 3.2 below is based on Theorem 5.1 of [8] but

is considerably simpler because explicit formulas for the indices are provided. The
proof is based on Corollary 2.2. The key lemma, Lemma 3.1 below, is essentially
given in the proof of Theorem 4.1 from [8] but is isolated here for easy reference.
This lemma is used again in proof of the second statement of Theorem 3.2, which
is complementary to the first.
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Lemma 3.1. Let Y be a Banach space of cotype q ≥ 2 and 1 ≤ r < q. If m ≥ 2, C
is a proper subset of {1, . . . ,m}, U : X1×· · ·×Xm → Y is multiple (r, 1)-summing
in the coordinates of C, and xk = (xk(1), . . . , xk(Nk)) ∈ XN

k satisfy w1(xk) ≤ 1 for
k = 1, . . . ,m, then( ∑

i∈NC

( ∑
j∈NC

‖U(x(i), x(j))‖qY
)r/q)1/r

≤ (Cq(Y )Kr,2)|C|‖UC‖CW (r,1).

Proof. Fix xk = (xk(1), . . . , xk(Nk)) ∈ XNk
k satisfying w1(xk) ≤ 1 for k =

1, . . . ,m. Fix i ∈ NC . By Lemma 2.2 of [8] and the multilinearity of U ,( ∑
j∈NC

‖U(x(i), x(j))‖qY
)1/q

≤ (Cq(Y )Kr,2)|C|
(∫

[0,1]C

∥∥∥ ∑
j∈NC

∏
k∈C

rjk(tk)U(x(i), x(j))
∥∥∥r
Y
dt

)1/r

= (Cq(Y )Kr,2)|C|
(∫

[0,1]C
‖U(x(i), RC(t))‖rY dt

)1/r

,

where

RC(t) =

( Nk∑
jk=1

rjk(tk)xk(jk)

)
k∈C

.

Since each |rjk(tk)| ≤ 1,

∥∥∥ Nk∑
jk=1

rjk(tk)xk(jk)
∥∥∥
Xk
≤ w1(xk) ≤ 1

for each k ∈ C and hence ‖RC(t)‖XC ≤ 1. But U is multiple (r, 1)-summing in the

coordinates of C so, summing over all i ∈ NC , we have( ∑
i∈NC

( ∑
j∈NC

‖U(x(i), x(j))‖qY
)r/q)1/r

≤ (Cq(Y )Kr,2)|C|
(∫

[0,1]C

∑
i∈NC

‖U(x(i), RC(t)‖rY dt
)1/r

≤ (Cq(Y )Kr,2)|C|‖UC‖CW (r,1).

�

Theorem 3.2. Let m ≥ 2, let {1, . . . ,m} be the disjoint union of n ≥ 2 non-
empty subsets C1, . . . , Cn, let Y be a Banach space with cotype q ≥ 2, and let
r1, . . . , rn ∈ [1, q). Set

R =

n∑
j=1

rj/(q − rj), Q = qR/(1 +R) and S = qR/(n− 1 +R).
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If U : X1 × · · · ×Xm → Y is multiple (rk, 1)-summing in the coordinates of Ck for
each k = 1, . . . , n, then U is multiple (Q, 1)-summing, and

πmult
Q,1 (U) ≤

n∏
k=1

(
(Cq(Y )Krk,2)|Ck|‖UCk‖CW (rk,1)

)rk/(R(q−rk))
.

If V : X1 × · · · ×Xm → Y is multiple (rk, 1)-summing in the coordinates of Ck for
each k = 1, . . . , n, then V is multiple (S, 1)-summing, and

πmult
S,1 (V ) ≤

n∏
k=1

(
(Cq(Y )Krk,2)|Ck|‖V Ck‖CW (rk,1)

)rk/(R(q−rk))
.

Proof. Suppose xk = (xk(1), . . . , xk(Nk)) ∈ XNk
k satisfy w1(xk) ≤ 1 for k =

1, . . .m. Inequality 2.3 and Lemma 3.1 give,( ∑
i∈NC1×···×NCn

‖U(x(i))‖QY
)1/Q

≤
n∏
k=1

( ∑
i∈NCk

( ∑
j∈NCk

‖U(x(i), x(j))‖qY
)rk/q)1/(R(q−rk))

≤
n∏
k=1

(
(Cq(Y )Krk,2)|Ck|‖UCk‖CW (rk,1)

)rk/(R(q−rk)
.

Inequality (2.4) and Lemma 3.1 give,( ∑
i∈NC1×···×NCn

‖V (x(i))‖SY
)1/S

≤
n∏
k=1

( ∑
i∈NCk

( ∑
j∈NCk

‖V (x(i), x(j))‖qY
)rk/q)1/(R(q−rk))

≤
n∏
k=1

(
(Cq(Y )Krk,2)|Ck|‖V Ck‖CW (rk,1)

)rk/(R(q−rk)
.

The conclusion follows. �
These results are of particular interest in the special case when Ck = {k} for

each k = 1, . . . ,m.

Corollary 3.3. Let m ≥ 2, let Y be a Banach space with cotype q > 2, and let
r1, . . . , rm ∈ [1, q). Define R, Q, and S as in Theorem 3.2. If U : X1×· · ·×Xm → Y
is (rk, 1)-summing in the k coordinate for k = 1, . . . ,m, then U is multiple (Q, 1)-
summing, and
(3.1)

πmult
Q,1 (U) ≤

(
Cq(Y )

m∏
k=1

K
rk/(R(q−rk))
rk,2

)m−1 m∏
k=1

(
‖U{k}‖CW (rk,1)

)rk/(R(q−rk))
.

If V : X1 × · · · ×Xm → Y is multiple (rk, 1)-summing in all coordinates except k,
for k = 1, . . . ,m, then V is multiple (S, 1)-summing, and

(3.2) πmult
S,1 (V ) ≤

(
Cq(Y )

m∏
k=1

K
rk/(R(q−rk))
rk,2

) m∏
k=1

(
‖V {k}‖CW (rk,1)

)rk/(R(q−rk))

.
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If m > 2, the two parts of Corollary 3.3 can be used one after the other to
give an estimate of πmult

Q,1 (U) with a somewhat different constant. The idea is to

apply inequality (3.1) with U replaced by U{j}(xj) to show that the hypotheses of
inequality (3.2) are satisfied. We state and prove it in a form that is easily compared
with the first statement of Corollary 3.3. Observe that only the factors arising from
Kahane’s inequality differ. It can be shown that the constant is improved by this
process. We leave it to the interested reader to compare the constants arising in
Corollaries 3.3, 3.4 and, in the case r1 = · · · = rn, Corollary 5.2 of [8].

Corollary 3.4. Let m > 2, let Y be a Banach space with cotype q ≥ 2, and let
r1, . . . , rm ∈ [1, q). If U : X1×· · ·×Xm → Y is (rk, 1)-summing in the k coordinate
for k = 1, . . . ,m, then U is multiple (Q, 1)-summing, where Q = qR/(1 + R) with
R =

∑m
j=1 rj/(q − rj). Moreover,

πmult
Q,1 (U) ≤ A

(
Cq(Y )

m∏
k=1

K
rk/(R(q−rk))
rk,2

)m−1 m∏
k=1

(
‖U{k}‖CW (rk,1)

)rk/(R(q−rk))

.

where

A =

( m∏
k=1

K
rk/(R(q−rk))
rk,2

)−1( m∏
k=1

K
1−(rk/(R(q−rk)))
Qk,2

)1/(m−1)

and Qk = q
(
R− rk

q−rk

)(
1 +R− rk

q−rk

)−1
.

Proof. For j = 1, . . . ,m and ‖xj‖Xj ≤ 1, let Uj = U{j}(xj). Since U is (rk, 1)-
summing in the k coordinate for each k it is easily verified that Uj is (rk, 1)-summing
in the k coordinate for each k 6= j. Moreover,

‖Uj{k}‖CW (rk,1) = sup
{
πrk,1(U

{k}
j (z)) : ‖z‖

X{j,k}
≤ 1
}

≤ sup
{
πrk,1(U{k}(z)) : ‖z‖

X{k}
≤ 1
}

= ‖U{k}‖CW (rk,1).

We apply inequality (3.1) to see that each Uj is multiple (Qj , 1)-summing, where

Rj =
∑
k 6=j

rk
q − rk

= R− rj
q − rj

and Qj =
qRj

1 +Rj
.

It also shows that

πmult
Qj ,1(Uj) ≤

(
Cq(Y )

n∏
k=1
k 6=j

K
rk/(Rj(q−rk))
rk,2

)m−2 n∏
k=1
k 6=j

(
‖Uj{k}‖CW (rk,1)

)rk/(Rj(q−rk))

≤
(
Cq(Y )

n∏
k=1
k 6=j

K
rk/(Rj(q−rk))
rk,2

)m−2 n∏
k=1
k 6=j

(
‖U{k}‖CW (rk,1)

)rk/(Rj(q−rk))
.

But Uj = U{j}(xj) so, taking the supremum over all xj ∈ Xj such that ‖xj‖Xj ≤ 1,
we have

‖U{j}‖CW (Qj ,1)

≤
(
Cq(Y )

n∏
k=1
k 6=j

K
rk/(Rj(q−rk))
rk,2

)m−2 n∏
k=1
k 6=j

(
‖U{k}‖CW (rk,1)

)rk/(Rj(q−rk))
.
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Since Uj is multiple (Qj , 1)-summing for each xj with ‖xj‖Xj ≤ 1 it follows

that U is multiple (Qj , 1)-summing in the coordinates of {j}. Thus we may apply
inequality (3.2) (with V replaced by U) to conclude that U is multiple (S, 1)-
summing, where

R =

m∑
j=1

Qj
q −Qj

=

m∑
j=1

qRj
1+Rj

q − qRj
1+Rj

=

m∑
j=1

Rj = (m− 1)R

and

S =
qR

m− 1 +R
=

qR

1 +R
= Q.

Thus U is multiple (Q, 1)-summing as stated. Moreover,

πmult
S,1 (U) ≤

(
Cq(Y )

m∏
j=1

K
Qj/(R(q−Qj))
Qj ,2

) m∏
j=1

(
‖U{j}‖CW (Qj ,1)

)Qj/(R(q−Qj))

=

(
Cq(Y )

m∏
j=1

K
Rj/((m−1)R)
Qj ,2

) m∏
j=1

(
‖U{j}‖CW (Qj ,1)

)Rj/((m−1)R)

.

But S = Q and we have already established estimates for ‖U{j}‖CW (Qj ,1) so,

πmult
Q,1 (U) ≤ Cq(Y )m−1

( m∏
k=1

K
rk/(R(q−rk))
rk,2

)m−2
×
( m∏
k=1

K
Rk/((m−1)R)
Qk,2

) m∏
k=1

(
‖U{k}‖CW (rk,1)

)rk/(R(q−rk))

.

This may be rearranged to yield the estimate given. �
Combining inequality (3.2) with the Bohnenblust-Hille theorem, we show that

the composition of a bounded m-linear operator and a 2(m−1)
m -summing operator

with a cotype q codomain is multiple summing.

Theorem 3.5. Let X1, . . . , Xm, Y, Z be Banach spaces, m ≥ 2, and suppose Y
has cotype q ≥ 2. If U : X1 × · · · × Xm → Z is a bounded multilinear map and

T : Z → Y is 2(m−1)
m -summing, then T ◦ U is multiple ( 2mq

2+mq , 1)-summing and

πmult
2mq

2+mq ,1
(T ◦ U) ≤ Cq(Y )K 2(m−1)

m ,2
π 2(m−1)

m
(T )BHm−1‖U‖.

Proof. Let r = 2(m−1)
m and note that 1 ≤ r < 2 ≤ q. Our first step is to show

that T ◦U is multiple (r, 1)-summing in the coordinates of {k} for each k = 1, . . . ,m.

Fix a k and an xk ∈ Xk, and suppose that xj = (xj(1), . . . , xj(Nj)) ∈ X
Nj
j satisfy

w1(xj) ≤ 1 for j 6= k. Since T is r-summing,( ∑
i∈N{k}

‖T ◦ U(x(i), xk)‖rY
)1/r

≤ πr(T ) sup
‖z∗‖Z∗≤1

( ∑
i∈N{k}

|z∗(U(x(i), xk))|rY
)1/r

.

The Bohnenblust-Hille theorem can be applied to the multilinear functional ϕ :

x 7→ z∗(U(x, xk)) for x ∈ X{k} to see that ϕ is multiple (r, 1)-summing, and

πmult
r,1 (ϕ) ≤ BHm−1‖ϕ‖ ≤ BHm−1‖z∗‖Z∗‖U‖‖xk‖Xk .
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Thus,( ∑
i∈N{k}

‖T ◦ U(x(i), xk)‖rY
)1/r

≤ πr(T ) sup
‖z∗‖Z∗≤1

BHm−1‖z∗‖Z∗‖U‖‖xk‖Xk .

It follows that T ◦ U is multiple (r, 1)-summing in all coordinates except k, for
k = 1, . . . ,m, and

‖(T ◦ U)
{k}‖CW (r,1) ≤ πr(T )BHm−1‖U‖.

Take r1 = · · · = rm = r in inequality (3.2) and verify that S = 2mq
2+mq . We conclude

that T ◦ U is multiple ( 2mq
2+mq , 1)-summing and

πmult
2mq

2+mq ,1
(T ◦ U) ≤ Cq(Y )Kr,2πr(T )BHm−1‖U‖.

�
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