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Abstract. The method of using rearrangements to give sufficient conditions

for Fourier inequalities between weighted Lebesgue spaces is revisited. New
results in the case q < p are established and a comparison between two known

sufficient conditions is completed. In addition, examples are given to show that

a simple weight condition that is sufficient for the weighted Fourier inequality
in the cases 2 < q < p and 1 < q < p < 2 is no longer sufficient in the case

1 < q < 2 < p, contrary to statements in Theorems 1 and 4 of,“Weighted

Fourier inequalities: new proofs and generalizations”, J. Fourier Anal. Appl.
9 (2003), 1–37. Several alternatives are given for strengthening the simple

weight condition to ensure sufficiency in that case.

1. Introduction

Fix a positive integer n. For which indices p, q and which weights U and W does
there exist a constant C <∞ such that the Fourier inequality

(1.1)

(∫
Rn
|f̂(y)|qU(y) dy

)1/q

≤ C
(∫

Rn
|f(x)|pW (x) dx

)1/p

holds for all f ∈ L1(Rn)? If there is such a constant then the Fourier transform
is a bounded operator from a dense subspace of LpW (Rn) into LqU (Rn). Here the
Fourier transform of a function in L1(Rn) is defined as an integral operator by

f̂(x) =

∫
Rn
e−2πix·yf(y) dy.

Using the inequality above, if C is finite, a standard argument will extend the
integral operator to a linear operator on the whole space LpW (Rn). So for our
purposes it will suffice to restrict attention to functions in L1(Rn).

In the case 1 < p ≤ q <∞, the question was addressed by three nearly simulta-
neous but different approaches appearing in 1983-84, all involving rearrangements
of the weights. See [2, 9, 12, 13, 15, 16]. The case 1 < p < ∞, 0 < q < p has been
considered as well, in [4, 10] and later in [3], but clarification and improvement of
this case is still possible. This is the object of the present paper.

The non-increasing rearrangement of f∗ of a µ-measurable function f is defined
for t > 0 by,

f∗(t) = inf{α > 0 : µf (α) ≤ t}, where µf (α) = µ{x : |f(x)| > α}.
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We refer to [5] for standard properties of the non-increasing rearrangement, just
mentioning two: Hardy’s Lemma states that if f1 and f2 are non-negative measur-
able functions on (0,∞) then ∫ ∞

0

f1g ≤
∫ ∞

0

f2g

holds for all non-negative non-decreasing g if and only if it holds with g = χ(t,∞) for
each t > 0. The Hardy-Littlewood-Polya Inequality shows that for any non-negative
measurable f, g defined on Rn, ∫

Rn
fg ≤

∫ ∞
0

f∗g∗.

Given non-negative, Lebesgue measurable functions U and W on Rn, define u
and w by u = U∗ and 1/w = (1/W )∗. The functions u and w are defined on
(0,∞), they take values in [0,∞], u is non-increasing and w is non-decreasing. The
rearranged Fourier inequality below, expressed in terms of the weights u and w,
gives a sufficient condition for (1.1). For a proof see, for example, the proof of
[3, Theorem 1].

Proposition 1.1. If p, q ∈ (0,∞) and

(1.2)

(∫ ∞
0

(f̂)∗(t)qu(t) dt

)1/q

≤ C
(∫ ∞

0

f∗(s)pw(s) ds

)1/p

, f ∈ L1(Rn),

then (1.1) holds with the same constant C.

Working with (1.2) instead of (1.1) is the essence of the “rearrangement” ap-
proach to Fourier inequalities in weighted Lebesgue spaces. It has proven to be a
powerful method but it is not the only approach. See, for example, [23, 25].

The strategy we adopt for proving inequality (1.1) via inequality (1.2) with
monotone u and w begins by using the mapping properties of the Fourier transform
to find weighted Hardy-type inequalities that imply (1.2). This is done in Section 2.
Then, known weight characterizations for the Hardy-type inequalities are employed
to find sufficient conditions on the weights and indices for (1.2) and hence for (1.1)
to hold. This is carried out in Section 3.

The mapping properties we use here are universally known: The Fourier trans-
form maps L1 to L∞ and maps L2 to L2. In [11], Jodiet and Torchinsky showed
that for any operator with these mapping properties there exists a constant D such
that

(1.3)

∫ x

0

(f̂)∗(t)2 dt ≤ D
∫ x

0

(∫ 1/t

0

f∗
)2

dt

for all f ∈ L1 + L2.
The main Hardy inequality we use is the same one employed, either explicitly or

implicitly, in the various 1983-4 papers [2, 9, 12,13,15,16]:

(1.4)

(∫ ∞
0

(∫ 1/t

0

f

)q
u(t) dt

)1/q

≤ C1

(∫ ∞
0

fpw

)1/p

, f ≥ 0.

A characterization of weights for this inequality is easily derived from known results;
details are in Proposition 3.1 below. The case p ≤ q illustrates the simple sufficient
conditions that this method gives for the rearranged Fourier transform inequality
(1.2). The following result was (essentially) given in each of [2, 3, 9, 13,16].
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Proposition 1.2. Let u = U∗ and 1/w = (1/W )∗, and suppose 1 < p ≤ q <∞. If

(1.5) sup
x>0

(∫ 1/x

0

u

)1/q(∫ x

0

w1−p′
)1/p′

<∞

then (1.2) holds, and hence (1.1) holds.

Throughout, conjugate indices are denoted with a prime, so 1/p+ 1/p′ = 1. See
[3] for estimates of the best constant C in (1.1), depending only on the indices p,
q, the constant D from (1.3), and the value of the above supremum.

In Section 4 we complete a comparison begun in [3] of two theorems proved there.
Both give sufficient conditions for (1.1), but the form of the conditions differ. We
show that one of the two includes the results of the other.

When we are using (1.2) only to get to (1.1) we may assume that u is non-
increasing and w is non-decreasing. Indeed, the monotonicity of the weights will
figure prominently in our analysis. But the inequality (1.2) is of interest in its own
right, without the monotonicity restrictions on u and w. It expresses the bound-
edness of the Fourier transform between weighted Lorentz Λ-spaces and has been
studied in [3]. Work on the corresponding inequality for Lorentz Γ-spaces in [21,22]
resulted in necessary and sufficient conditions and was extended to the Fourier co-
efficient map in [19, 20]. We introduce the Lorentz Λ- and Γ-spaces, and improve
(weaken) the known sufficient conditions for (1.2), using Γ-space techniques, in
Section 5.

Section 6 looks at extending the results of the previous sections to Fourier trans-
forms of functions on groups other than Rn.

An example is given in Section 7 to show that the expected sufficient condition
for (1.1), known to be valid when 2 < q < p and 1 < q < p < 2, fails to be sufficient
when 1 < q < 2 < p.

Although, in (1.1), we consider all positive values of the index q, we restrict our
attention to p > 1. In fact, the case p = 1 of (1.1) is rarely discussed, because of the
following simple argument. With C = (1/ ess inf W )(

∫
Rn U)q, the trivial estimate

|f̂ | ≤
∫
Rn |f | yields (1.1). On the other hand, for L1 functions f approaching a point

mass at x (in a suitable weak sense) |f̂ | approaches a constant function. Applying
(1.1) to such f yields (

∫
Rn U)q ≤ Cw(x). Taking the essential infimum over x now

shows that C = (1/ ess inf W )(
∫
Rn U)q is best possible in (1.1).

A variation of this argument shows that if 0 < p < 1 then (1.1) holds only if
either U is almost everywhere zero or W is almost everywhere infinite.

2. Reduction to Hardy-type inequalities

The success of the rearrangement approach to (1.1) in the case 1 < p ≤ q <∞ is
well known. But methods and expectations change when q < p, because arguments
based on the Fourier transform being of type (p, q) = (1,∞) and (p, q) = (2, 2) lend
themselves most naturally to the case p ≤ q. Most authors were content to consider
only that case. However, in [4, 10] a general estimate due to Calderón, based
on weak-type mapping properties instead of the strong-type mapping properties
mentioned above, was successfully used to give sufficient conditions for the Fourier
inequality (1.1) when 1 < q < p.

Later, in [3], the strong-type conditions, combined with a duality argument,
provided improved sufficient conditions using a reduction to the Hardy inequality
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(1.4). However, the argument that provided these improved conditions is only
applicable under the restriction max(p′, q) ≥ 2. This restriction is used implicitly
in the proofs but, unfortunately, was not included in the statements of [3, Theorems
1 and 4]. In Section 7 we demonstrate that the restriction is essential by giving an
example to show that the statements of [3, Theorems 1 and 4] may fail in the case
max(p′, q) < 2.

In our first main result, we give simple a priori conditions on indices and weights
that enable the reduction to (1.4) go through even when the restriction max(p′, q) ≥
2 does not hold. Note that parts (a) and (b) are contained in the proof of [3,
Theorem 1]. Parts (e) and (h) were suggested by [12, Corollary 3]. For parts
(d) and (g) we need to define the weight condition Bp for p > 0: A non-negative
function f is in Bp provided there exists a constant β <∞

yp
∫ ∞
y

f(x)
dx

xp
≤ β

∫ y

0

f(x) dx, y > 0.

Theorem 2.1. Let u = U∗ and 1/w = (1/W )∗. Suppose 1 < p <∞ and 0 < q < p,
and suppose that the inequality (1.4) holds for some constant C1. If any one of the
following conditions holds, then so does the Fourier inequality (1.1).

(a) q ≥ 2;
(b) q > 1 and p ≤ 2;
(c) there exists a constant β such that for all y > 0;

yq/2
∫ ∞
y

u(x)
dx

xq/2
≤ β

(∫ y

0

u(x) dx+ ymax(1,q)

∫ ∞
y

u(x)
dx

xmax(1,q)

)
;

(d) u ∈ Bq/2;

(e) q > 1 and t2−qu(t) is a decreasing function of t;
(f) q > 1 and there exists a constant β such that for all y > 0,

yp
′/2

∫ ∞
y

w(x)1−p′ dx

xp′/2
≤ β

(∫ y

0

w(x)1−p′ dx+ yp
′
∫ ∞
y

w(x)1−p′ dx

xp′

)
;

(g) q > 1 and w1−p′ ∈ Bp′/2;

(h) q > 1 and t2−p
′
w(t)1−p′ is a decreasing function of t.

Explicit estimates of the constant C in (1.1) may be given in terms of the indices
p and q, and the constants D, β, and C1. We omit the details.

If none of these a priori conditions holds, then some additional conditions are
needed to ensure the validity of (1.1). We approach the problem by adding another
Hardy-type inequality to (1.4) so that together the two imply (1.2). This has already
been done, in [4,10], but it was based on weaker mapping properties of the Fourier
transform than we use here and, predictably, gives a more restrictive sufficient
condition than we obtain using the strong mapping properties. It is included, as
(2.1), because it leads to a more tractable weight condition.

Theorem 2.2. Let u = U∗ and 1/w = (1/W )∗. Suppose 1 < p <∞ and 0 < q < p,
and suppose that the inequality (1.4) holds. If either of the following inequalities
also holds, for all f ∈ L1(Rn), then so does the rearranged Fourier inequality (1.2)
and hence also the Fourier inequality (1.1):

(2.1)

(∫ ∞
0

(
x−1/2

∫ ∞
1/x

t−1/2f∗(t) dt

)q
u(x) dx

)1/q

≤ C2

(∫ ∞
0

(f∗)pw

)1/p

.
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(2.2)

(∫ ∞
0

(
1

x

∫ ∞
1/x

(f∗)2

)q/2
u(x) dx

)1/q

≤ C3

(∫ ∞
0

(f∗)pw

)1/p

.

Once again, we omit the details of the available estimates for the constant C in
(1.1) in terms of the indices p and q and the constants D, C1, and C2 or C3.

Before proceeding to the proofs of these two theorems a discussion of duality is
needed. We show that, when both p > 1 and q > 1, each of the inequalities (1.1)
and (1.4) holds if and only if its counterpart, obtained by the replacements p 7→ q′,

q 7→ p′, U 7→ W 1−p′ and W 7→ U1−q′ , also holds. Observe that positive exponents
commute with the rearrangement, so

u = U∗ 7→ (W 1−p′)∗ = ((1/W )∗)p
′−1 = (1/w)p

′−1 = w1−p′

and

1/w = (1/W )∗ 7→ (1/U1−q′)∗ = (U∗)q
′−1 = 1/u1−q′ .

Thus, the replacements above imply u 7→ w1−p′ and w 7→ u1−q′ .

Lemma 2.3. If 1 < q < ∞ and 1 < p < ∞ then for any weights U and W , and
any constant C, (1.1) holds for all f ∈ L1(Rn) if and only if

(2.3)

(∫
Rn
|ĝ|p

′
W 1−p′

)1/p′

≤ C
(∫

Rn
|g|q

′
U1−q′

)1/q′

for all g ∈ L1(Rn).

Proof. Suppose (1.1) holds with constant C and fix g ∈ L1(Rn). For any f ∈
L1(Rn) with

∫
Rn |f |

pW ≤ 1, we have (
∫
Rn |f̂ |

qU)1/q ≤ C so Hölder’s inequality
yields, ∣∣∣∣ ∫

Rn
fĝ

∣∣∣∣ =

∣∣∣∣ ∫
Rn
f̂g

∣∣∣∣ ≤ C(∫
Rn
|g|q

′
U1−q′

)1/q′

.

Taking the supremum over all such f , and using the density of L1(Rn) in LpW (Rn),
gives (2.3). The reverse implication is proved similarly. �

Lemma 2.4. If 1 < q <∞ and 1 < p <∞ then for any weights u and w, and any
constant C1, (1.4) holds for all non-negative measurable f on (0,∞) if and only if

(2.4)

(∫ ∞
0

(∫ 1/x

0

g

)p′
w(x)1−p′ dx

)1/p′

≤ C1

(∫ ∞
0

gq
′
u1−q′

)1/q′

for all non-negative measurable g on (0,∞).

Proof. Suppose (1.4) holds with constant C1 and fix a measurable g ≥ 0 on (0,∞).

For any f ≥ 0 with
∫∞

0
fpw ≤ 1, we have (

∫∞
0

(
∫ 1/t

0
f)qu(t) dt)1/q ≤ C1 so Hölder’s

inequality yields,∫ ∞
0

f(x)

∫ 1/x

0

g(t) dt dx =

∫ ∞
0

∫ 1/t

0

f(x) dxg(t) dt ≤ C1

(∫ ∞
0

gq
′
u1−q′

)1/q′

.

Taking the supremum over all such f gives (2.4). The reverse implication is proved
similarly. �
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It is worth pointing out that (1.4) requires the inequality to hold for all non-
negative functions but, as we shall soon see, we will only apply it to non-increasing
functions. Nothing is lost, however, for suppose (1.4) were known to hold for non-
increasing functions. Then, for any f ,(∫ ∞

0

(∫ 1/t

0

|f |
)q
u(t) dt

)1/q

≤
(∫ ∞

0

(∫ 1/t

0

f∗
)q
u(t) dt

)1/q

≤ C
(∫ ∞

0

(f∗)pw

)1/p

≤ C
(∫ ∞

0

|f |pw
)1/p

.

The last inequality is an exercise, using the Hardy-Littlewood-Polya inequality and
the fact that w is non-decreasing. Thus (1.4) holds for all functions.

In the next lemma we isolate an estimate that will be used in the proof of both
main theorems.

Lemma 2.5. Let 0 < q <∞ and 1 < p <∞. If

(2.5)

(∫ ∞
0

(
1

x

∫ x

0

(∫ 1/t

0

f∗
)2

dt

)q/2
u(x) dx

)1/q

≤ C4

(∫ ∞
0

(f∗)pw

)1/p

for all f ∈ L1(Rn) then (1.2) holds with C = D1/2C4. Here D is the constant of
(1.3).

Proof. For each f ∈ L1(Rn), (f̂∗)2 is decreasing, so by (1.3),

(f̂)∗(x)2 ≤ 1

x

∫ x

0

(f̂∗)2 ≤ D

x

∫ x

0

(∫ 1/t

0

f∗
)2

dt.

Thus,(∫ ∞
0

(f̂∗)(x)qu(x) dx

)1/q

≤ D1/2

(∫ ∞
0

(
1

x

∫ x

0

(∫ 1/t

0

f∗
)2

dt

)q/2
u(x) dx

)1/q

.

The hypothesis completes the proof. �

We now turn to the proof of Theorem 2.1.

Proof. To see part (a), let q ≥ 2 and apply [11, Theorem 4.7] to get∫ ∞
0

(f̂∗)qu ≤ Dq/2

∫ ∞
0

(∫ 1/t

0

f∗
)q
u(t) dt,

where D is the constant from (1.3). Since (1.4) is assumed to hold, we also have
(1.2) and hence (1.1).

For Part (b), the indices p and q are greater than 1 so the assumption (1.4)
and Lemma 2.4 implies that (2.4) also holds. But since 1 < q < p ≤ 2, we have
2 ≤ p′ < q′ so part (a) may be applied to conclude that (2.3) holds. Lemma 2.3
shows that (1.1) holds, as required.

Similar arguments show that, (f), (g), and (h) follow from parts (c), (d), and
(e), respectively.
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In view of part (a) it suffices to establish (c), (d), and (e) in the case q < 2.
A trivial estimate shows that part (d) follows from part (c). To see that part (e)
follows from part (d), suppose q > 1 and t2−qu(t) is decreasing. In this case,

yq/2
∫ ∞
y

u(x)
dx

xq/2
≤ yq/2y2−qu(y)

∫ ∞
y

xq/2−2 dx =
yu(y)

1− q/2

and ∫ y

0

u(x) dx ≥ y2−qu(y)

∫ y

0

xq−2 dx =
yu(y)

q − 1
.

It follows that u ∈ Bq/2.
It remains to establish (c) when q < 2. By Lemma 2.5 it is enough to show that

the condition of part (c) implies inequality (2.5). Let α = max(1, q). Since f∗ is non-
increasing and right continuous, it is an increasing pointwise limit of continuous non-
increasing functions. (For instance, convolve f with (1/n)χ(1,e1/n) in ((0,∞), dt/t)

for n = 1, 2, . . . .) Therefore, we may assume without loss of generality that f∗

is continuous. For such an f , let F (t) = −(
∫ 1/t

0
f∗)q. We show that tα+1F ′(t) is

non-decreasing in t by considering two cases. When 0 < q ≤ 1,
∫ 1/t

0
f∗ decreases

with t so

t1+αF ′(t) = q

(∫ 1/t

0

f∗
)q−1

f∗(1/t)

is a non-decreasing function of t. When 1 < q < 2, t
∫ 1/t

0
f∗ increases with t so

t1+αF ′(t) = q

(
t

∫ 1/t

0

f∗
)q−1

f∗(1/t)

is a non-decreasing function of t. Using the hypothesis of part(c), we get∫ ∞
y

tq/2
∫ ∞
t

u(x)
dx

xq/2
dt

t1+α
=

∫ ∞
y

∫ x

y

tq/2
dt

t1+α
u(x)

dx

xq/2

≤ yq/2−α

α− q/2

∫ ∞
y

u(x)
dx

xq/2

≤ βy−α

α− q/2

(∫ y

0

u(x) dx+ yα
∫ ∞
y

u(x)
dx

xα

)
=

βα

α− q/2

∫ ∞
y

∫ t

0

u(x) dx
dt

t1+α
.

Since this holds for all y, and t1+αF ′(t) is non-decreasing, Hardy’s lemma implies
that∫ ∞

0

t1+αF ′(t)tq/2
∫ ∞
t

u(x)
dx

xq/2
dt

t1+α
≤ βα

α− q/2

∫ ∞
0

t1+αF ′(t)

∫ t

0

u(x) dx
dt

t1+α
.

This simplifies to,∫ ∞
0

∫ x

0

tq/2F ′(t) dtu(x)
dx

xq/2
≤ βα

α− q/2

∫ ∞
0

∫ ∞
x

F ′(t) dt u(x) dx.
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Now we apply Minkowski’s integral inequality with index 2/q to get,∫ ∞
0

(
1

x

∫ x

0

(∫ 1/s

0

f∗
)2

ds

)q/2
u(x) dx

=

∫ ∞
0

(
1

x

∫ x

0

(∫ ∞
s

F ′(t) dt

)2/q

ds

)q/2
u(x) dx

≤
∫ ∞

0

∫ ∞
0

(
1

x

∫ min(x,t)

0

ds

)q/2
F ′(t) dtu(x) dx

=

∫ ∞
0

∫ x

0

tq/2F ′(t) dtu(x)
dx

xq/2
+

∫ ∞
0

∫ ∞
x

F ′(t) dtu(x) dx

≤
(

1 +
βα

α− q/2

)∫ ∞
0

∫ ∞
x

F ′(t) dtu(x) dx

=

(
1 +

βα

α− q/2

)∫ ∞
0

(∫ 1/x

0

f∗
)q
u(x) dx.

This reduces the proof of (2.5) to our assumption that (1.4) holds. �

Proof of Theorem 2.2.

Proof. The first part of the theorem is contained in the proof of [4, Theorem 1.1(ii)],
but it may also be deduced from the second part as follows. By Minkowski’s integral
inequality,(

1

x

∫ ∞
1/x

f∗(s)2 ds

)1/2

≤
(

1

x

∫ ∞
1/x

(
1

s

∫ s

0

f∗(t) dt

)2

ds

)1/2

≤
∫ ∞

0

(
1

x

∫ ∞
max(1/x,t)

ds

s2

)1/2

f∗(t) dt

=

∫ 1/x

0

f∗(t) dt+ x−1/2

∫ ∞
1/x

t−1/2f∗(t) dt.

This estimate and the extended Minkowski inequality show that (1.4) and (2.1)
together imply (2.2).

To prove the second part we will apply Lemma 2.5. To begin, break the inner
integral at t = 1/x and use the triangle inequality in the L2 norm to get,(

1

x

∫ x

0

(∫ 1/t

0

f∗
)2

dt

)1/2

≤
(

1

x

∫ x

0

(∫ 1/x

0

f∗
)2

dt

)1/2

+

(
1

x

∫ x

0

(∫ 1/t

1/x

f∗
)2

dt

)1/2

=

∫ 1/x

0

f∗ +

(
1

x

∫ ∞
1/x

(
1

t

∫ t

1/x

f∗
)2

dt

)1/2

≤
∫ 1/x

0

f∗ +

(
1

x

∫ ∞
1/x

(
1

t− 1/x

∫ t

1/x

f∗
)2

dt

)1/2

≤
∫ 1/x

0

f∗ + 2

(
1

x

∫ ∞
1/x

f∗(t)2 dt

)1/2

.
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The last inequality above is the Hardy inequality on the interval (1/x,∞). Taking
c = max(21/q−1, 1), and using the (extended) Minkowski inequality gives(∫ ∞

0

(
1

x

∫ x

0

(∫ 1/t

0

f∗
)2

dt

)q/2
u(x) dx

)1/q

≤ c
(∫ ∞

0

(∫ 1/x

0

f∗
)q
u(x) dx

)1/q

+ c

(∫ ∞
0

(
1

x

∫ ∞
1/x

(f∗)2

)q/2
u(x) dx

)1/q

.

These estimates show that (2.5) holds whenever both (1.4) and (2.2) do. Now
Lemma 2.5 completes the proof. �

In the above proof we showed that inequalities (1.4) and (2.2) imply (2.5). To
see that nothing is lost by this decomposition, we observe that the other implication

also holds. Since the square of
∫ 1/x

0
f∗(t) dt is a decreasing function of x,∫ 1/x

0

f∗(t) dt ≤
(

1

x

∫ x

0

(∫ 1/t

0

f∗
)2

dt

)1/2

.

Thus, if (2.5) holds then (1.4) holds for decreasing functions. It follows from the
remark after Lemma 2.4, that (1.4) holds for all non-negative functions. Inequality
(2.2) also follows from (2.5): Since f∗ is decreasing,

1

x

∫ ∞
1/x

f∗(t)2 dt ≤ 1

x

∫ ∞
1/x

(
1

t

∫ t

0

f∗
)2

dt =
1

x

∫ x

0

(∫ 1/t

0

f∗
)2

dt.

3. Explicit weight conditions

In the previous section, our approach was to find Hardy-type inequalities, de-
pending on the weights u and w that imply the Fourier inequality (1.1) for the
weights U and W . This puts us in a position to use known weight characterizations
for Hardy-type operators to give conditions that ensure the validity of (1.1). In this
section we do exactly that, beginning with the inequality (1.4).

Proposition 3.1. Suppose 0 < q < ∞, 1 < p < ∞ and 1/r = 1/q − 1/p. The
inequality (1.4), that is,(∫ ∞

0

(∫ 1/x

0

f

)q
u(x) dx

)1/q

≤ C1

(∫ ∞
0

fpw

)1/p

, f ≥ 0,

holds (for some finite constant C1) if and only if:

(a) 1 < p ≤ q and

sup
x>0

(∫ 1/x

0

u

)1/q(∫ x

0

w1−p′
)1/p′

<∞; or

(b) 0 < q < p, 1 < p, and

(3.1)

(∫ ∞
0

(∫ x

0

u

)r/p(∫ 1/x

0

w1−p′
)r/p′

u(x) dx

)1/r

<∞.

Proof. The change of variable x 7→ 1/x converts (1.4) to the standard form of the
Hardy inequality found in [6, Theorem 1] and [24, Theorem 2.4]. The same change
of variable is used to convert the weight conditions given in those results to the
ones above. �
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It is pointed out in [24, page 93] that if q > 1 or if w1−p′ is locally integrable,
then the condition in Case (b) may be replaced by,

(3.2)

(∫ ∞
0

(∫ 1/x

0

u

)r/q(∫ x

0

w1−p′
)r/q′

w(x)1−p′ dx

)1/r

<∞.

The equivalence of these two forms (essentially using integration by parts) may be
needed to reconcile previous results with those given here.

The next result applies to inequality (2.1) because (2.1) is obtained from (3.3) by
taking f = f∗. Since (2.1) only requires that (3.3) hold for non-increasing functions,
the weight condition (3.4) is sufficient for (2.1) but may be stronger than necessary.
The condition (3.4) may be compared, via integration by parts, to [4, Condition
(1.9)] when q > 1.

Proposition 3.2. Suppose 0 < q < p, 1 < p < ∞ and 1/r = 1/q − 1/p. The
inequality
(3.3)(∫ ∞

0

(
x−1/2

∫ ∞
1/x

t−1/2f(t) dt

)q
u(x) dx

)1/q

≤ C5

(∫ ∞
0

fpw

)1/p

, f ≥ 0,

holds (for some finite constant C5) if and only if
(3.4)(∫ ∞

0

(∫ ∞
x

t−q/2u(t) dt

)r/p(∫ ∞
1/x

t−p
′/2w(t)1−p′ dt

)r/p′
x−q/2u(x) dx

)1/r

<∞.

Proof. This time we make the substitution t 7→ 1/t on both sides of the inequality
and replace f(1/t) by t3/2g(t). This puts it in the standard form of [24, Theo-
rem 2.4], but with weights x−q/2u(x) and t(3p−4)/2w(1/t). As before, the same
substitution is used to re-write the weight condition in the above form. �

Necessary and sufficient conditions on weights for which (2.2) holds are known,
but are substantially more complicated than for the other two inequalities.

Proposition 3.3. Suppose 0 < q < p, 1 < p < ∞ and 1/r = 1/q − 1/p. The
inequality (2.2), that is,(∫ ∞

0

(
1

x

∫ ∞
1/x

(f∗)2

)q/2
u(x) dx

)1/q

≤ C3

(∫ ∞
0

(f∗)pw

)1/p

, f ∈ L1(Rn),

holds (for some finite constant C3) whenever:

(a) 0 < q < p ≤ 2 and

(3.5) sup
xk

(∑
k∈Z

(∫ 1/xk

1/xk+1

(xk+1t− 1)q/2u(t)
dt

tq

)r/q(∫ xk+1

0

w

)−r/p)1/r

<∞

where the supremum is taken over all increasing sequences xk, k ∈ Z; or
(b) 0 < q < 2 < p, (3.5), and

(3.6)

(∫ ∞
0

(∫ ∞
1/x

(
1

t− 1/x

∫ t

0

w

)−p/(p−2)

w(t) dt

)(r/2)(p−2)/p

×
(∫ ∞

x

t−q/2u(t) dt

)r/p
x−q/2u(x) dx

)1/r

<∞.
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Proof. Every non-negative, decreasing function on (0,∞) can be represented as a
limit of functions (f∗)2 for f ∈ L1(Rn). So, letting x 7→ 1/x puts (2.2) in the form
of [7, Theorem 5.1], with indices p/2 and q/2. Cases (ii) and (vi) of that theorem
yield the results above, after letting x 7→ 1/x again. �

We conclude this section with a summary of sufficient conditions for the Fourier
inequality (1.1) in the case q < p.

Theorem 3.4. Suppose 0 < q < p and 1 < p <∞. Let U and W be non-negative,
measurable function on Rn and set u = U∗ and 1/w = (1/W )∗. Inequality (1.1),
that is,

(3.7)

(∫
Rn
|f̂(y)|qU(y) dy

)1/q

≤ C
(∫

Rn
|f(x)|pW (x) dx

)1/p

, f ∈ L1(Rn),

holds (for some finite constant C) provided (3.1) holds and (i), (ii) or (iii) is satis-
fied:

(i) 2 ≤ q < p or 1 < q < p ≤ 2.
(ii) 1 < q < 2 < p and

(a) one or more of (c)–(h) from Theorem 2.1,
(b) (3.4), or
(c) (3.5) and (3.6).

(iii) 0 < q < 1 < p and
(a) (c) or (d) from Theorem 2.1,
(b) (3.4),
(c) p ≤ 2 and (3.5), or
(d) p > 2 and (3.5) and (3.6).

Necessary and sufficient conditions for weighted Hardy inequalities may be ex-
pressed in a wide variety of different, but equivalent, forms. See, for example,
[17, 18, 26]. The form of the weight conditions in Propositions 3.1, 3.2, and 3.3
represent one choice but Theorems 2.1 and 2.2 may be combined with any of the
various forms to give sufficient conditions for the Fourier inequality (1.1).

4. Comparison of Theorems 1 and 4 in [3]

In [3, Theorem 4], under the a priori assumption that w ∈ Bp or u1−q′ ∈ Bq′ , suf-
ficient conditions for (1.1) are given that appear different than those of [3, Theorem
1]. The latter appear here in Proposition 1.2, see condition (1.5), and part (i) of
Theorem 3.4, see the equivalent conditions (3.1) and (3.2). The weight conditions
from the two theorems are compared in [3, Remark 5] but neither theorem is shown
to directly imply the other. The next lemma completes the comparison, showing
that the two theorems give equivalent weight conditions whenever [3, Theorem 4]
applies. We conclude that [3, Theorem 1] is the stronger result because it does not
require any a priori assumption.

Lemma 4.1. If 1 < p <∞, w ∈ Bp and w is increasing, then there is a constant
C6 such that

(4.1) x

(∫ x

0

w

)−1/p

≤
(∫ x

0

w1−p′
)1/p′

≤ C6x

(∫ x

0

w

)−1/p

for all x > 0.
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Proof. By Hölder’s inequality,

x =

∫ x

0

w1/pw−1/p ≤
(∫ x

0

w

)1/p(∫ x

0

w1−p′
)1/p′

.

This proves the first inequality of (4.1). For the second, recall [1, Theorem 1],
which shows that since w ∈ Bp there exists a constant C6 < ∞ such that the
Hardy inequality(∫ ∞

0

(
1

t

∫ t

0

f

)p
w(t) dt

)1/p

≤ C6

(∫ ∞
0

fpw

)1/p

holds for all non-increasing functions f ≥ 0. Fix x > 0 and, for k > 1/x, let

fk = max(w(1/k), w)1−p′χ(0,x). Since fk is non-increasing, so is its moving average.
Therefore,(∫ x

0

w

)1/p
1

x

∫ x

0

fk ≤
(∫ ∞

0

(
1

t

∫ t

0

fk

)p
w(t) dt

)1/p

≤ C6

(∫ x

0

fpkw

)1/p

.

Since fpkw ≤ fk, and fk is bounded above, we have(∫ x

0

fk

)1/p′

≤ C6x

(∫ x

0

w

)−1/p

.

Letting k →∞ gives the second inequality of (4.1). �

Using this lemma we show, in four cases, that if the appropriate a priori condition
holds, then the Fourier inequalities that follow from [3, Theorem 4], are the same
as those that follow from [3, Theorem 1].

Case 1. Suppose 1 < p ≤ q, q ≥ 2, and w ∈ Bp. Then the weight pair (u,w)
satisfies the weight condition of [3, Theorem 4(i)] if and only if it satisfies the weight
condition of [3, Theorem 1(i)]. That is,

sup
x>0

x

(∫ 1/x

0

u

)1/q(∫ x

0

w

)−1/p

<∞

if and only if (1.5) holds. This follows directly from Lemma 4.1.
Case 2. Suppose 2 ≤ q < p, 1/r = 1/q− 1/p, and w ∈ Bp. Then the weight pair

(u,w) satisfies the weight condition of [3, Theorem 4(ii)] if and only if it satisfies
the weight condition of [3, Theorem 1(ii)]. That is,

(4.2)

(∫ ∞
0

(∫ x

0

u

)r/p(∫ 1/x

0

w

)−r/p
x−ru(x) dx

)1/r

<∞

if and only if (3.2) holds. Lemma 4.1 gives the equivalence of (4.2) and (3.1); the
remark following Proposition 3.1 completes the argument.

Case 3. Suppose 1 < p ≤ q < 2, and u1−q′ ∈ Bq′ . Then the weight pair (u,w)
satisfies the weight condition of [3, Theorem 4(iii)] if and only if it satisfies the
weight condition of [3, Theorem 1(i)]. That is,

sup
x>0

1

x

(∫ 1/x

0

u1−q′
)−1/q′(∫ x

0

w1−p′
)1/p′

<∞

if and only if (1.5) holds. This follows from Lemma 4.1, with p and w replaced by

q′ and u1−q′ .
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The last case does not include the index range 1 < q < 2 < p, which should have
been excluded in the statements of [3, Theorems 1 and 4]. We also fix a typographic
error in the weight condition of [3, Theorem 4(iv)].

Case 4. Suppose 1 < q < p ≤ 2, 1/r = 1/q − 1/p, and u1−q′ ∈ Bq′ . Then the
weight pair (u,w) satisfies the weight condition of [3, Theorem 4(iv)] if and only if
it satisfies the weight condition of [3, Theorem 1(ii)]. That is,(∫ ∞

0

(∫ x

0

w1−p′
)r/q′(∫ 1/x

0

u1−q′
)−r/q′

x−rw(x)1−p′ dx

)1/r

<∞.

if and only if (3.2) holds. This follows from Lemma 4.1, with p and w replaced by

q′ and u1−q′ .
These four cases together show that [3, Theorem 1] is stronger than [3, Theorem

4] because it applies without the a priori conditions of [3, Theorem 4].

5. Lorentz space Fourier inequalities

In this section we return briefly to inequality (1.2), but without the monotonicity
restrictions on the weights u and w. Let 0 < p <∞ and w be a weight, and define
the Lorentz Λ- and Γ-“norms” of f by,

‖f‖Λp(w) =

(∫ ∞
0

(f∗)pw

)1/p

and ‖f‖Γp(w) =

(∫ ∞
0

(
1

t

∫ t

0

f∗
)p
w(t) dt

)1/p

.

Since f∗ is non-increasing, ‖f‖Λp(w) ≤ ‖f‖Γp(w) for any weight w. If w ∈ Bp, then
[1, Theorem 1] shows that the two are equivalent.

With this notation, inequality (1.2) becomes

(5.1) ‖f̂‖Λq(u) ≤ C‖f‖Λp(w).

This inequality, which expresses the boundedness of the Fourier transform between
Lorentz Λ-spaces, was considered in [3, Theorems 2 and 3]. Restricting the domain
to the smaller Γ-space leads to the inequality

(5.2) ‖f̂‖Λq(u) ≤ C‖f‖Γp(w).

These were studied in [21], where it was shown in [21, Theorem 3.4] that for 0 <
p ≤ q <∞, inequality (5.2) holds whenever

(5.3) sup
x<y

(
x

y

∫ y

0

u

)1/q(
xp
∫ 1/x

0

w(t) dt+

∫ ∞
1/x

w(t)
dt

tp

)−1/p

<∞.

Observe that this result includes [3, Theorem 2(i)]; for if w ∈ Bp, inequalities
(5.1) and (5.2) are equivalent. Also, if u is non-increasing and

sup
x>0

1

x

(∫ x

0

u

)1/q(∫ 1/x

0

w

)−1/p

<∞,

then straightforward estimates show that (5.3) also holds.
But, as we see next, results for the Γ-space inequality (5.2) may be used to further

weaken sufficient conditions for the Λ-space inequality (5.1). This result may be
viewed as a generalization of Proposition 1.2, without monotonicity conditions on
the weights. We will need the level function uo of u defined by requiring that the
function x 7→

∫ x
0
uo is the least concave majorant of x 7→

∫ x
0
u. Note that uo is

non-increasing and it coincides with u when u is non-increasing. For properties of
the level function, see [14] and the references therein.
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Theorem 5.1. Let 1 < p ≤ q < ∞ and q ≥ 2. Assume u and w are weight
functions on (0,∞). If

(5.4) sup
x>0

(∫ 1/x

0

uo
)1/q(∫ x

0

w1−p′
)1/p′

<∞,

then there exists C > 0 such that (5.1) holds for all f ∈ L1(Rn).

Proof. If
∫ 1/x

0
uo is infinite for some x > 0, concavity shows that it is infinite for all

x > 0. But then the finiteness of (5.4) implies w is infinite almost everywhere so

the inequality (5.1) holds trivially. Henceforth, we assume that
∫ 1/x

0
uo(t) dt < ∞

for x > 0.
Since the concave function t 7→

∫ t
0
uo is absolutely continuous, we may set

σ(t) = tq−2uo(1/t) = −tq d
dt

(∫ 1/t

0

uo
)

to get

(5.5)

∫ ∞
x

σ(t)

tq
dt =

∫ 1/x

0

uo.

Thus, for any x < y,

1

y

∫ y

0

u ≤ 1

y

∫ y

0

uo ≤ 1

x

∫ x

0

uo =
1

x

∫ ∞
1/x

σ(t)

tq
dt.

It follows that

sup
x<y

(
x

y

∫ y

0

u

)1/q(
xq
∫ 1/x

0

σ(t) dt+

∫ ∞
1/x

σ(t)
dt

tq

)−1/q

≤ 1 <∞.

So, as we have seen above, [21, Theorem 3.4] shows there is a constant C7 such that

‖f̂‖Λq(u) ≤ C7‖f‖Γq(σ).

Combining (5.5) with the hypothesis (5.4) shows that

sup
x>0

(∫ ∞
x

σ(t)

tq
dt

)1/q(∫ x

0

w(t)1−p′ dt

)1/p′

<∞,

which, by [6, Theorem 1], implies there exists a constant C8 such that

‖f‖Γq(σ) ≤ C8‖f‖Λp(w).

Taking C = C7C8 completes the proof. �

6. Other Fourier transforms

Suppose (X,λ) and (Y, ν) are σ-finite measure spaces and T is a linear map
defined on L1(X) +L2(X) taking values in L∞(X) +L2(Y ). Further suppose that
T : L1(X) → L∞(Y ) and T : L2(X) → L2(Y ) are bounded maps. Then T has a
uniquely defined dual map T ′ such that T ′ : L1(Y ) → L∞(X) and T ′ : L2(Y ) →
L2(X) are bounded maps.

The results of the previous section apply with the operator T in place of the
Fourier transform, as only the boundedness properties of the Fourier transform
were used in an essential way. (Lemma 2.3 used the self-duality of the Fourier
transform, but it is easy to see that the boundedness properties of T ′ will suffice.)
Here we understand that U is a weight on Y and u is the rearrangement of U with
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respect to the measure ν. Also, W is a weight on X and 1/w is the rearrangement
of 1/W with respect to the measure λ.

In particular, Propositions 1.1 and 1.2, and Theorems 2.1, 2.2, and 3.4 remain
valid for the Fourier transform taken over any locally compact abelian group.

Depending on the underlying measures λ and ν, further simplification of the
sufficient weight conditions may be possible. This is because the range of the
rearrangement may not include all decreasing functions. For example, rearranging
a function on a space of finite measure gives a decreasing function supported in a
finite subinterval of [0,∞). Another example is a sequence, viewed as a function
over a space with counting measure; its rearrangement is a decreasing function
that is constant on [k, k + 1) for k = 0, 1, 2, . . . . (Naturally, this function may be
identified with the decreasing sequence of its values.)

In the case of general measure spaces more complicated restrictions on the range
of the rearrangement are possible. But for Haar measure on locally compact abelian
groups these two examples are the only ones possible. (However, the two may
combine; in the case of the finite Fourier transform both λ and ν are counting
measure on a finite set.)

To illustrate the kinds of simplifications that may be expected, we consider the
specific case of the Fourier transform on Tn In this case the measure λ may be
identified with Lebesgue measure on [0, 1]n and the measure ν is counting measure
on Zn. The weight U is defined on Zn and therefore u = U∗ is constant on [k, k+1)
for k = 0, 1, 2, . . . . The weight W is supported on a set of measure 1 so w, defined
by 1/w = (1/W )∗, is an increasing function on [0,∞) that takes the value ∞ on
[1,∞).

With these weights, the condition (3.1) is sufficient, in the appropriate range
of Lebesgue indices, to imply the inequality corresponding to (1.1) for the Fourier
transform on Tn, namely( ∑

y∈Zn
|f̂(y)|qU(y)

)1/q

≤ C
(∫

Tn
|f(x)|pW (x) dx

)1/p

.

But w1−p′ vanishes on [1,∞) and u is a step function taking values u(0), u(1), . . . ;
essentially a sequence. It is natural to replace (3.1) by an equivalent condition in a
form that recognizes these facts. One choice is,
(6.1)(
u(0)r/q

(∫ 1

0

w1−p′
)r/p′

+

∞∑
k=1

( k−1∑
j=0

u(j)

)r/p(∫ 1/k

0

w1−p′
)r/p′

u(k)

)1/r

<∞.

To verify the equivalence, first observe that∫ 1

0

(∫ x

0

u

)r/p(∫ 1/x

0

w1−p′
)r/p′

u(x) dx =
q

r
u(0)r/p

(∫ 1

0

w1−p′
)r/p′

u(0).

Next, note that 1
x

∫ x
0
u is non-increasing and x

∫ 1/x

0
w1−p′ is non-decreasing so if

1 ≤ k ≤ x < k + 1, then x/k ≤ 2 and we have

1

2

∫ x

0

u ≤
∫ k

0

u ≤
∫ x

0

u and

∫ 1/x

0

w1−p′ ≤
∫ 1/k

0

w1−p′ ≤ 2

∫ 1/x

0

w1−p′ .
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Thus, for k = 1, 2, . . . ,∫ k+1

k

(∫ x

0

u

)r/p(∫ 1/x

0

w1−p′
)r/p′

u(x) dx ∼
(∫ k

0

u

)r/p(∫ 1/k

0

w1−p′
)r/p′

u(k).

The notation A ∼ B, in this case, means that 2−r/pA ≤ B ≤ 2r/p
′
A.

Since
∫ k

0
u =

∑k−1
j=0 u(j) we can sum over k to see that (3.1) is equivalent to

(6.1).
A similar analysis shows that the sufficient condition (1.5) is equivalent to

sup
k=1,2,...

( k−1∑
j=0

u(j)

)1/q(∫ 1/k

0

w1−p′
)1/p′

<∞.

Corresponding reductions may be carried out for all the weight conditions encoun-
tered in Theorem 3.4.

7. Examples

In this section we produce explicit weights U and W , depending on indices p
and q with 1 < q < 2 < p <∞, for which the Hardy inequality (1.4) holds but the
Fourier inequality (1.1) fails. For simplicity only the case n = 1 is considered.

Note that, by Proposition 3.1, proving (3.1) is enough to show that (1.4) holds.
Example 7.1, suggested by [8, Exercise 3.1.6], looks at the case of the Fourier

transform on T, where the compactness of T permits a straightforward argument.
Example 7.3 uses the same basic approach but is technically more complicated. A
Gaussian function is introduced to ensure convergence in the absence of compact-
ness in the domain space.

Example 7.1. Suppose p, q and r satisfy 1 < q < 2 < p <∞ and 1/r = 1/q−1/p.
Take α, β ∈ (0, 1) so that

1

2
<
β

q
<
α

p′
<

1

q
< 1.

Let U(k) = (|k| + 1)β−1, k ∈ Z, and W (x) = x(1−α)(p−1), 0 ≤ x < 1. Let u be
the rearrangement of U with respect to counting measure on Z and define w by
1/w = (1/W )∗ with respect to Lebesgue measure on T = [0, 1]. Then condition
(3.1) holds but the Fourier series inequality(∑

k∈Z
|f̂(k)|qU(k)

)1/q

≤ C
(∫ 1

0

|f(x)|pW (x) dx

)1/p

, f ∈ L1(T),

fails to hold for any C.

Proof. Observe that w(t) = t(1−α)(p−1) for 0 ≤ t < 1 and w(t) =∞ for t > 1. Also,
u(t) = 1 for 0 ≤ t < 1, and u(t) = (k + 1)β−1 for 2k − 1 ≤ t < 2k + 1, k = 1, 2, . . . .
It follows that u(t) ≤ ((t+ 1)/2)β−1 and easy estimates show that (3.1) holds.

On the other hand, completing [8, Exercise 3.1.6] shows that the sum

g(x) =

∞∑
k=2

k−1/2(log k)−2eik log ke2πikx

defines a continuous function on T. In particular, g is bounded on [0, 1] and thus
‖g‖Lp(W ) <∞ because W is integrable. However, ĝ(k) = k−1/2(log k)−2eik log k for
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k = 2, 3, . . . , so

‖ĝ‖q`q(U) ≥
∞∑
k=2

k−q/2(log k)−2q(|k|+ 1)β−1 =∞.

Thus, the Fourier series inequality fails with f = g. �

Before beginning with our second example, we set up to use van der Corput’s
lemma several times.

Lemma 7.2. Suppose 1 < a < b, x ∈ R, and f ≥ 0 is continuously differentiable.
If f is decreasing on [a, b] then∣∣∣∣ ∫ b

a

f(y)eiy log(y)e2πixy dy

∣∣∣∣ ≤ 24a1/2f(a) + 12

∫ b

a

y−1/2f(y) dy.

If f is increasing on [a, b] then∣∣∣∣ ∫ b

a

f(y)eiy log(y)e2πixy dy

∣∣∣∣ ≤ 24b1/2f(b).

Proof. Suppose [ā, b̄] ⊆ [a, b]. Letting y 7→ b̄y, we have∫ b̄

ā

eiy log(y)e2πixy dy = b̄

∫ 1

ā/b̄

eib̄y(log(y)+log(b̄)+2πx) dy.

The second derivative of y(log(y) + log(b̄) + 2πx) is 1/y, which is at least 1 when
0 < y ≤ 1. So the van der Corput lemma [8, Proposition 2.6.7(b)] (with k = 2)
shows that ∣∣∣∣ ∫ b̄

ā

E dy

∣∣∣∣ ≤ b̄(24b̄−1/2) = 24b̄1/2,

where we have written E = eiy log(y)e2πixy for simplicity.
First suppose that f is decreasing. Then −f ′(z) = |f ′(z)| for a < z < b so∣∣∣∣ ∫ b

a

f(y)E dy

∣∣∣∣ =

∣∣∣∣ ∫ b

a

(
f(b) +

∫ b

y

|f ′(z)| dz
)
E dy

∣∣∣∣
≤ f(b)

∣∣∣∣ ∫ b

a

E dy

∣∣∣∣+

∫ b

a

∣∣∣∣ ∫ z

a

E dy

∣∣∣∣|f ′(z)| dz
≤ 24b1/2f(b) + 24

∫ b

a

z1/2|f ′(z)| dz

= 24b1/2f(b) + 24

(
a1/2f(a)− b1/2f(b) +

1

2

∫ b

a

y−1/2f(y) dy

)
= 24a1/2f(a) + 12

∫ b

a

y−1/2f(y) dy.
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Next suppose f is increasing. Then f ′(z) ≥ 0 for a < z < b so∣∣∣∣ ∫ b

a

f(y)E dy

∣∣∣∣ =

∣∣∣∣ ∫ b

a

(
f(a) +

∫ y

a

f ′(z) dz

)
E dy

∣∣∣∣
≤ f(a)

∣∣∣∣ ∫ b

a

E dy

∣∣∣∣+

∫ b

a

∣∣∣∣ ∫ b

z

E dy

∣∣∣∣f ′(z) dz
≤ 24b1/2f(a) + 24

∫ b

a

b1/2f ′(z) dz

= 24b1/2f(b). �

Example 7.3. Suppose p, q and r satisfy 1 < q < 2 < p <∞ and 1/r = 1/q−1/p.
Take α, β ∈ (0, 1) so that

1

2
<
β

q
<
α

p′
<

1

q
< 1.

Let U(y) = (|y| + 1)β−1 for y ∈ R and W (x) = |x|(1−α)(p−1) for x ∈ R. Define u
and w by u = U∗ and 1/w = (1/W )∗. Then condition (3.1) holds but the Fourier
inequality (1.1) fails to hold for any constant C.

Proof. Observe that w(t) = (t/2)(1−α)(p−1) and u(t) = ((t/2) + 1)β−1. With these
in hand, easy estimates show that (3.1) holds.

For each K > 2 + e, let γ = (2/3)(1 + logK)3/2 and define m,n ∈ (0, 1) by
requiring that (1 + logK)m = π

3 and (1 + logK)n = π
2 . Take

h(x) =

√
2π

γ
e−2π2(x/γ)2 to get ĥ(y) = e−

1
2y

2γ2

.

Also, take

g(x) = h(x)

∫ K

e

y−1/2 log(y)−2eiy log(y)e2πixy dy.

Clearly g ∈ L1 and

ĝ(z) =

∫ ∞
−∞

g(x)e−2πixz dx =

∫ K

e

y−1/2 log(y)−2eiy log(y)ĥ(y − z) dy

=

∫ K

e

y−1/2 log(y)−2eiy log(y)e−
1
2 (y−z)2γ2

dy.

First we estimate ‖g‖Lp(W ). Since y−1/2 log(y)−2 is decreasing for y ≥ e, Lemma
7.2 gives,∣∣∣∣ ∫ K

e

y−1/2 log(y)−2eiy log(y)e2πixy dy

∣∣∣∣ ≤ 24 + 12

∫ K

e

log(y)−2 dy

y
≤ 36.

Using this estimate, and making the substitution x 7→ γx, yields

‖g‖Lp(W ) ≤ 36‖h‖Lp(W ) = γ−α/p
′
36
√

2π

(∫ ∞
−∞

e−2π2px2

|x|(1−α)(p−1) dx

)1/p

.

Since α/p′ > 0 and (1− α)(p− 1) > −1, this norm goes to zero as K →∞.
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Estimating ‖ĝ‖Lq(U) is next. Suppose e+ 1 < z < K − 1. Then,

|ĝ(z)| ≥
∣∣∣∣ ∫ z+n

z−n
y−1/2 log(y)−2e−

1
2 (y−z)2γ2

eiy log(y) dy

∣∣∣∣
−
∣∣∣∣ ∫ z−n

e

y−1/2 log(y)−2e−
1
2 (y−z)2γ2

eiy log(y) dy

∣∣∣∣
−
∣∣∣∣ ∫ K

z+n

y−1/2 log(y)−2e−
1
2 (y−z)2γ2

eiy log(y) dy

∣∣∣∣
≡ A−B1 −B2.

To estimate A, we will multiply by 1 = |e−iz log(z)| and then reduce the modulus
to its real part. This is justified by the mean value theorem: If z − n < y < z + n
then for some ȳ ∈ (z − n, z + n) ⊆ (e,K),

|y log(y)− z log(z)| = (1 + log ȳ)|y − z| ≤ (1 + logK)n = π/2

so cos(y log(y) − z log(z)) ≥ 0. Similarly, if z −m < y < z + m then |y log(y) −
z log(z)| ≤ π/3 so cos(y log(y)− z log(z)) ≥ 1/2. We have,

A =

∣∣∣∣ ∫ z+n

z−n
y−1/2 log(y)−2e−

1
2 (y−z)2γ2

eiy log(y)−iz log(z) dy

∣∣∣∣
≥
∫ z+n

z−n
y−1/2 log(y)−2e−

1
2 (y−z)2γ2

cos(y log(y)− z log(z)) dy

≥ 1

2

∫ z

z−m
y−1/2 log(y)−2e−

1
2 (y−z)2γ2

dy

≥ 1

2
z−1/2(log z)−2

∫ z

z−m
e−

1
2 (y−z)2γ2

dy

=
1

2
z−1/2(log z)−2γ−1

∫ mγ

0

e−
1
2y

2

dy

≥ 1

4
z−1/2(log z)−2γ−1.

The last estimate uses the fact that mγ = (π/3)(2/3)(1 + logK)1/2 > 1 to show
that ∫ mγ

0

e−
1
2y

2

dy ≥
∫ 1

0

e−
1
2 dy ≥ 1

2
.

To estimate B1 we apply Lemma 7.2 with x = 0. Since nγ2 = (π/2)(2/3)2(1 +

logK)2 ≥ 5/(2e) we can show that y−1/2 log(y)−2e−
1
2 (y−z)2γ2

is an increasing func-
tion of y on [e, z − n] by estimating the derivative of its logarithm to get

− 1

2y
− 2

y log(y)
+ (z − y)γ2 ≥ − 1

2e
− 2

e
+ nγ2 ≥ 0.

Thus,

B1 ≤ 24 log(z − n)−2e−
1
2n

2γ2

≤ 24e−
1
2n

2γ2

= 24e−
1
2 (π2 )2( 2

3 )2(1+logK) ≤ 24K−π
2/18.
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For y > z it is clear that the function y−1/2 log(y)−2e−
1
2 (y−z)2γ2

is decreasing,
so we may use Lemma 7.2, with x = 0, to estimate B2 as well. We have

B2 ≤ 24 log(z + n)−2e−
1
2n

2γ2

+ 12

∫ K

z+n

log(y)−2e−
1
2 (y−z)2γ2 dy

y

≤ 24 log(z + n)−2e−
1
2n

2γ2

+ 12e−
1
2n

2γ2

log(z + n)−1 ≤ 36K−π
2/18.

Since π2/18 > 1/2,

1

2
A ≥ 1

8
K−1/2(logK)−2 3

2
(1 + logK)−3/2 ≥ 60K−π

2/18 = B1 +B2.

for K sufficiently large. It follows that for such K, and z ∈ (e+ 1,K − 1),

|ĝ(z)| ≥ A−B1 −B2 ≥
1

2
A ≥ 1

8
z−1/2(log z)−2γ−1.

Now

‖ĝ‖Lq(U) ≥
1

8
γ−1

(∫ K−1

e+1

z−q/2(log z)−2q(z + 1)β−1 dz

)1/q

≥ 3

16
(1 + logK)−3/2(1 + logK)−2

(∫ K−1

e+1

(z + 1)−q/2+β−1 dz

)1/q

=
3

16
(1 + logK)−7/2

(
β − q

2

)−1/q

(Kβ−q/2 − (e+ 2)β−q/2)1/q.

This goes to infinity as K → ∞. We conclude that there is no finite constant C

such that ‖f̂‖Lq(U) ≤ C‖f‖Lp(W ) for all f ∈ L1. �

As we have pointed out earlier, the weight conditions (3.1) and (3.2) are equiv-
alent when q > 1. Thus the weight condition of [3, Theorem 1(ii)] holds in the
example above, yet the Fourier inequality fails.

The weight condition of [3, Theorem 4(iv)] holds as well because, as we have seen
in Section 4, the weight conditions of [3, Theorems 1 and 4] are equivalent whenever
the appropriate a priori condition holds. To see that the weight u of Example 7.3
satisfies u1−q′ ∈ Bq′ , observe that the continuous function of x given by

xq
′ ∫∞
x

(
t
2 + 1

)(1−β)(q′−1)
t−q

′
dt∫ x

0

(
t
2 + 1

)(1−β)(q′−1)
dt

is bounded as x→ 0 and as x→∞. The details are omitted.
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