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Abstract. Necessary and sufficient conditions on the weight v and the measure σ
for the operator

Kf(s) =

∫ b(s)

a(s)
k(s, y)f(y) dy

to be bounded from Lpv [0,∞) to Lqσ(S) are given. Here a(s) and b(s) are similarly

ordered functions and k(s, y) satisfies a modified GHO condition. Nearly block di-
agonal decompositions of positive operators are introduced as is the concept of a

normalizing measure. An application is made to estimates for the remainder in a
Taylor approximation.

1. Introduction: Monotonicity

Generalized Hardy Operators are instances of integral operators having non-
negative kernels:

Tf(s) =
∫ ∞

0

k(s, y)f(y) dy.

Since the early seventies there has been continual progess on the following question:

(1.1) Between which weighted Lebesgue spaces is T a bounded operator?

Underlying the successes of the last twenty-five years has been the exploitation of
the monotonicity of the kernel k. The kernel in Hardy’s integral operator is k(s, y) =
χ(0,s)(y) which is non-decreasing in s and non-increasing in y. The generalized
Stieljtes kernel k(s, y) = (s + y)−λ and the Riemann-Liouville kernel k(s, y) =
χ(0,s)(s−y)λ, λ > 0, are also monotone in each variable. See [9] for references. The
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above question has been answered for Generalized Hardy Operators, those whose
kernel k(s, y) is supported in {(s, y) : 0 ≤ y ≤ s} and satisfies the GHO condition:

D−1k(s, y) ≤ k(s, t) + k(t, y) ≤ Dk(s, y) for y ≤ t ≤ s.

Here D is some fixed positive constant. This condition, imposed in [1] and [7] and
later in [2, 3, 5, 8, 12] was sometimes accompanied by (superfluous) monotonicity
conditions. However, it is largely a monotonicity condition itself as we will see in
Lemma 2.2 below.

Recently, Question (1.1) has been answered for some operators whose kernels
are not monotone. This is a important step, especially since the necessary and
sufficient conditions given have retained the simple character of those given for
previously studied operators. The new operators include variable limits on the
defining integral, essentially restricting the support of the kernel to the region
between two curves. In [4], Question (1.1) was resolved for the operator∫ b(s)

a(s)

f(y) dy

with a and b smooth functions on [0,∞) which increase from 0 to ∞ with s. The
paper [3] looks at the more general operator

Kf(s) =
∫ b(s)

a(s)

k(s, y)f(y) dy

with a and b non-decreasing but not necessarily smooth and k satisfying a modified
GHO condition. The boundedness of K is established between certain Banach
function spaces including the weighted Lebesgue spaces K : Lpv[0,∞) → Lqu[0,∞)
for p ≤ q but not for q < p. The case q < p was the difficult case in [4] and
necessitated the introduction there of the concept of a normalizing function.

In this paper we answer (1.1) for the operator K in the case q < p. We also drop
the monotonicity assumptions on a and b and as a result we are able to take the
variable s off the half line and allow it to be in a general measure space. We explore
the normalizing function concept further, placing it in the more general and more
natural context of normalizing measures. We examine the GHO condition in some
depth, showing its connection with monotonicity assumptions and formulating it
for use when s is in a general measure space.

An orderly presentation of this investigation requires that we begin with our
look at the GHO condition and prove some needed results over general measure
spaces. This is done in Section 2. Section 3 contains technical results on nearly
block diagonal decomposition of operators with positive kernels. These results
are quite generally applicable and may be of independent interest. In Section 4
we define normalizing measures and use a block diagonal decomposition to prove
our main result—giving necessary and sufficient conditions for K to be bounded
from Lpv[0,∞) to Lqσ(S) for an arbitrary measure space (S, σ). The existence of
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normalizing measures for a large class of pairs (a, b) is established in Section 5
where we also see the interesting form taken by what remains of our monotonicity
assumptions. The final section is a brief presentation of the application of these
results to approximation by Taylor polynomials. The integral form of the Taylor
remainder is readily recognized as one of the operators we have been studying.

The notation of the paper is standard. The harmonic conjugate of the Lebesgue
index p is denoted p′ so that 1/p + 1/p′ = 1. Weight functions are non-negative
and allowed to take the value∞. As usual, 0 ·∞ = 0. The supremum of the empty
set is taken to be zero. Integrals with limits are assumed to include the endpoints
when possible so that ∫ b

a

=
∫

[a,b]

but
∫ ∞
a

=
∫

[a,∞)

.

The expression “A is comparable to B,” written A ≈ B, means that there are
positive constants C1 and C2 such that C1A ≤ B ≤ C2A. If X0 ⊂ X then counting
measure on X0 is the measure defined on the σ-algebra of all subsets of X whose
value on E is just #(E ∩X0), the number of elements in E ∩X0.

2. The case a(s) = 0

The operators we consider in this section take the function f(y), y ∈ [0,∞) to
the function Kf(s), s ∈ S, with the formula

Kf(s) =
∫ b(s)

0

k(s, y)f(y) dy.

Here (S, σ) is an arbitrary measure space, b : S → [0,∞) is σ-measurable, and
k : S × [0,∞) → [0,∞) satisfies the GHO condition given in Definition 2.1 below.
The main result of this section, Theorem 2.6, gives simple integral conditions on k,
b, v, and σ which are necessary and sufficient for the operator K to be bounded as
a map from Lpv[0,∞) to Lqσ(S).

Definition 2.1. Suppose that (S, σ) is a measure space and b : S → [0,∞) is
σ-measurable. A kernel k satisfies the GHO condition on {(s, y) : 0 ≤ y ≤ b(s)}
provided there exists a D ≥ 1 such that

D−1k(s, y) ≤ k(s, b(t)) + k(t, y) ≤ Dk(s, y) for y ≤ b(t) ≤ b(s) and(2.1)

D−1k(s, y) ≤ k(s, w) ≤ Dk(s, y) for y ≤ w ≤ b(s), w /∈ b(S).(2.2)

If S = [0,∞) and b(s) = s then the case (2.2) does not arise and we see that this
definition agrees with the usual GHO condition.

Lemma 2.2. Suppose (S, σ) is a measure space, b : S → [0,∞) is σ-measurable
and k satisfies the GHO condition on {(s, y), 0 ≤ y ≤ b(s)}. Then there exists a
kernel l satisfying the GHO condition on {(x, z) : 0 ≤ z ≤ x} such that l(x, z)
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is non-decreasing in x, l(x, z) is non-increasing in z, and k(s, y) ≈ l(b(s), y) for
0 ≤ y ≤ b(s).

Proof. Define l : {(x, z) : 0 ≤ z ≤ x} → [0,∞] by

(2.3) l(x, z) = sup{k(t, y) : z ≤ y ≤ b(t) ≤ x}.

It is clear that l(x, z) is non-decreasing in x and non-increasing in z. It is also clear
that k(s, y) ≤ l(b(s), y) whenever 0 ≤ y ≤ b(s). Let D be the constant in the GHO
condition satisfied by k. If we show that l(b(s), z) ≤ D2k(s, z) whenever 0 ≤ z ≤
b(s) we will have shown that k(s, y) ≈ l(b(s), y). To this end, fix z ≥ 0 and s ∈ S
such that z ≤ b(s) and suppose that y ≥ 0 and t ∈ S satisfy z ≤ y ≤ b(t) ≤ b(s).
First observe that k(t, y) ≤ Dk(s, y) by the second inequality in (2.1). If y /∈ b(S)
we have k(s, y) ≤ Dk(s, z) by the second inequality in (2.2) but if y ∈ b(S), say
y = b(t1), then k(s, y) = k(s, b(t1)) ≤ Dk(s, z) by the second inequality in (2.1). In
either case we have k(t, y) ≤ Dk(s, y) ≤ D2k(s, z) and, taking the supremum over
all y and t we get l(b(s), z) ≤ D2k(s, z) as required.

To complete the proof it remains to show that l satisfies the GHO condition on
{(x, z) : 0 ≤ z ≤ x}. To do this it is enough to show that

(2.4) D−1l(x, z) ≤ l(x,w) + l(w, z) ≤ 2l(x, z) for 0 ≤ z ≤ w ≤ x.

The monotonicity of l, already established, proves the second inequality in (2.4).
To prove the first we suppose that y and t satisfy z ≤ y ≤ b(t) ≤ x and show that

(2.5) k(t, y) ≤ D(l(x,w) + l(w, z))

whenever z ≤ w ≤ x by looking at four cases.
Case 1: z ≤ y ≤ b(t) ≤ w ≤ x. The definition of l yields k(t, y) ≤ l(w, z) so (2.5)

holds. (Recall that D ≥ 1.)
Case 2: z ≤ w ≤ y ≤ b(t) ≤ x. The definition of l shows that k(t, y) ≤ l(x,w) so

again (2.5) holds.
Case 3: z ≤ y ≤ w ≤ b(t) ≤ x and w /∈ b(S). By the first inequality in

(2.2), k(t, y) ≤ Dk(t, w) and by the definition of l, k(t, w) ≤ l(x,w) so we have
k(t, y) ≤ Dl(x,w) and (2.5) follows.

Case 4: z ≤ y ≤ w ≤ b(t) ≤ x and w = b(s) for some s ∈ S. The first inequality
in (2.2), with s and t interchanged, shows that k(t, y) ≤ D(k(t, b(s))+k(s, y)). The
definition of l, used twice, shows that k(t, b(s)) ≤ l(x,w) and k(s, y) ≤ l(w, z) so in
this case too we have (2.5).

Taking the supremum over all t and y satisfying z ≤ y ≤ b(t) ≤ x, (2.5) becomes
l(x, z) ≤ D(l(x,w) + l(w, z)) which completes the proof of (2.4) and the lemma.

Lemma 2.2 permits us to move from the kernel k depending on the variable s ∈ S
to a kernel l defined in the familiar triangle {(x, y) : 0 ≤ y ≤ x}. We must also be
able to move from the measure σ on S to a measure on [0,∞) and, in order to apply
Stepanov’s results on Generalized Hardy Operators, from there to weight functions
on [0,∞). Somewhat surprisingly, the latter move proves to be more problematic
than the former.
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Lemma 2.3. Suppose (S, σ) is a measure space and b : S → [0,∞) is σ-measurable.
Then there exists a measure µ defined on the Borel subsets of [0,∞) and satisfying

(2.6)
∫

[0,∞)

F (x) dµ(x) =
∫
S

F (b(s)) dσ(s)

for every Borel measurable function F : [0,∞)→ [0,∞).

Proof. Since b is σ-measurable, b−1(E) is σ-measurable for every Borel set E ⊂
[0,∞). Define µ by

(2.7) µ(E) = σ(b−1(E)).

It is routine to check that µ is a measure and that (2.6) holds.

Theorem 2.4. Suppose (S, σ) is a measure space and b : S → [0,∞) is σ-
measurable. Let k be a kernel satisfying the GHO condition on {(s, y) : 0 ≤ y ≤
b(s)} and define l by (2.3). Define µ by (2.7). If q > 0 then∫

S

(∫ b(s)

0

k(s, y)f(y) dy

)q
dσ(s) ≈

∫
(0,∞)

(∫ x

0

l(x, y)f(y) dy
)q

dµ(x)

for all f ≥ 0.

Proof. The work has been done. By Lemma 2.2, k(s, y) ≈ l(b(s), y) so we have∫
S

(∫ b(s)

0

k(s, y)f(y) dy

)q
dσ(s) ≈

∫
S

(∫ b(s)

0

l(b(s), y)f(y) dy

)q
dσ(s)

with constants independent of f . Now let F (x) =
(∫ x

0
l(x, y)f(y) dy

)q
and note

that F is non-decreasing and hence Borel measurable. Lemma 2.3 provides∫
S

(∫ b(s)

0

l(b(s), y)f(y) dy

)q
dσ(s) =

∫
[0,∞)

(∫ x

0

l(x, y)f(y) dy
)q

dµ(x).

The point 0 may be omitted from the range of integration because the integrand is
zero there. This completes the proof.

Theorem 2.4 takes us from the measure space (S, σ) back to the half line but the
measure µ may not be a weighted Lebesgue measure. However, the monotonicity
of l enables us to overcome this difficulty and approximate integrals with respect
to dµ by integrals with respect to absolutely continuous measures.

Lemma 2.5. If µ is a measure on [0,∞) then there exists a sequence un of non-
negative functions such that∫ ∞

0

F (x)un(x) dx increases with n to
∫

(0,∞)

F (x) dµ(x) and(2.8)

lim
n→∞

∫ ∞
0

F (x)
(∫ ∞

x

un(z) dz
)β

un(x) dx ≈
∫

(0,∞)

F (x)

(∫
[x,∞)

dµ(z)

)β
dµ(x)

(2.9)
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for every β > 0 and every non-negative, non-decreasing, left continuous function
F .

Proof. Set U(y) =
∫

(y,∞)
dµ(x) for y ≥ 0 and note that Uχ(0,n) is non-increasing

and right continuous for each integer n ≥ 1. Set

un(x) = n[U(x)χ(0,n)(x)− U(x+ 1/n)χ(0,n)(x+ 1/n)].

If y < n− 1 then∫ ∞
y

un(x) dx = n

∫ n

y

U(x) dx− n
∫ n−1/n

y

U(x+ 1/n) dx = n

∫ y+1/n

y

U(x) dx.

Since U is non-increasing, this sequences of averages is non-decreasing and

U(y + 1/n) ≤
∫ ∞
y

un(x) dx ≤ U(y).

The right continuity of U shows that

(2.10)
∫ ∞
y

un(x) dx increases with n to
∫

(y,∞)

dµ(x).

Suppose that F is non-negative, non-decreasing, and left continuous. Standard
arguments [10, p262ff] show that there exists a measure φ on the Borel subsets of
[0,∞) such that F (x) =

∫
[0,x)

dφ(y) for x > 0. Now (2.10) and the Monotone
Convergence Theorem show that∫

[0,∞)

∫
(y,∞)

un(x) dx dφ(y) increases with n to
∫

[0,∞)

∫
(y,∞)

dµ(x) dφ(y).

Interchange the order of integration and this becomes∫
(0,∞)

∫
[0,x)

dφ(y)un(x) dx increases with n to
∫

(0,∞)

∫
[0,x)

dφ(y) dµ(x)

which establishes (2.8).
Now we repeat the last part of the above argument with un(x) replaced by(∫∞
x
un(z) dz

)β
un(x) and dµ(x) replaced by

(∫
[x,∞)

dµ(z)
)β

dµ(x). The conclu-
sion (2.9) will follow once we show that∫ ∞

y

(∫ ∞
x

un(z) dz
)β

un(x) dx

increases with n to something equivalent to∫
(y,∞)

(∫
[x,∞)

dµ(z)

)β
dµ(x).
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Performing the integration, we have

(β + 1)
∫ ∞
y

(∫ ∞
x

un(z) dz
)β

un(x) dx =
(∫ ∞

y

un(x) dx
)β+1

which increases to
(∫

(y,∞)
dµ(x)

)β+1

by (2.10). It remains to show that

(∫
(y,∞)

dµ(x)

)β+1

≈
∫

(y,∞)

(∫
[x,∞)

dµ(z)

)β
dµ(x).

Replacing the interval [x,∞) by (y,∞) in the right hand integral shows that the left
hand integral dominates it. To prove the other direction, suppose that µ(y,∞) <∞
and choose y0 > y such that∫

(y,∞)

dµ(x) ≤ 2
∫

(y,y0]

dµ(x) and
∫

(y,∞)

dµ(x) ≤ 2
∫

[y0,∞)

dµ(x).

It is easy to see that such a y0 must exist. Now(∫
(y,∞)

dµ(x)

)β+1

≤ 2β+1

∫
(y,y0]

dµ(x)

(∫
[y0,∞)

dµ(x)

)β

≤ 2β+1

∫
(y,y0]

(∫
[x,∞)

dµ(z)

)β
dµ(x)

≤ 2β+1

∫
(y,∞)

(∫
[x,∞)

dµ(z)

)β
dµ(x).

Although such a y0 may not exist in the case µ(y,∞) =∞, the conclusion remains
valid. We omit the details.

Generally speaking, the result of the last lemma cannot be extended to include
functions F which are not left continuous. This leads us to make the following
technical restriction on the function b and the kernel k. If 0 < z < x then

(2.11) sup{k(t, y) : z ≤ y ≤ b(t) < x} = sup{k(t, y) : z ≤ y ≤ b(t) ≤ x}.

This will ensure that the kernel l(x, z), defined by (2.3), is left continuous in x.

Theorem 2.6. Let p, q ∈ (1,∞) and v be a non-negative weight function on (0,∞).
Suppose that (S, σ) is a measure space, b : S → [0,∞) is σ-measurable, k satisfies
the GHO condition on {(s, y) : 0 ≤ y ≤ b(s)} and (2.11) holds whenever 0 < z < x.
Let C be the least constant, finite or infinite, for which the inequality(∫

S

(∫ b(s)

0

k(s, y)f(y) dy

)q
dσ(s)

)1/q

≤ C
(∫ ∞

0

f(y)pv(y) dy
)1/p
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holds for all non-negative functions f . If 1 < p ≤ q < ∞ then C ≈ max(A0, A1)
and if 1 < q < p <∞ then C ≈ max(B0, B1) where

A0 = sup
y>0

(∫
{s:b(s)>y}

k(s, y)q dσ(s)

)1/q (∫ y

0

v(z)1−p′ dz

)1/p′

A1 = sup
s∈S

(∫
{t:b(t)≥b(s)}

dσ(t)

)1/q (∫ b(s)

0

k(s, y)p
′
v(y)1−p′ dy

)1/p′

B0 =

∫ ∞
0

(∫
{s:b(s)>y}

k(s, y)q dσ(s)

)r/q (∫ y

0

v(z)1−p′ dz

)r/q′
v(y)1−p′ dy

1/r

B1 =

∫
S

(∫
{t:b(t)≥b(s)}

dσ(t)

)r/p(∫ b(s)

0

k(s, y)p
′
v(y)1−p′ dy

)r/p′
dσ(s)

1/r

Here r is defined by 1/r = 1/q − 1/p.

Proof. Define l and µ by (2.3) and (2.7) respectively. Let C ′ be the least constant,
finite or infinite, such that

(∫
(0,∞)

(∫ x

0

l(x, y)f(y) dy
)q

dµ(x)

)1/q

≤ C ′
(∫ ∞

0

f(y)pv(y) dy
)1/p

holds for all non-negative f . By Theorem 2.4, C ≈ C ′. Now let un be the sequence
from Lemma 2.5 and define C(n) to be the least constant, finite or infinite, such
that

(∫ ∞
0

(∫ x

0

l(x, y)f(y) dy
)q

un(x) dx
)1/q

≤ C(n)
(∫ ∞

0

f(y)pv(y) dy
)1/p

holds for all non-negative f . The assumption (2.11) shows that l(x, y) is left con-
tinuous in the variable x and it follows that

(∫ x
0
l(x, y)f(y) dy

)q
is non-negative,

non-decreasing, and left continuous for each non-negative f . By Lemma 2.5

∫ ∞
0

(∫ x

0

l(x, y)f(y) dy
)q
un(x) dx increases to

∫
(0,∞)

(∫ x

0

l(x, y)f(y) dy
)q

dµ(x)

as n→∞ so C(n) is an increasing sequence and supn C(n) = limn→∞ C(n) = C ′.
Now we apply the results of [12] to get C(n) ≈ max(A0(n), A1(n)) when 1 <
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p ≤ q <∞ and C(n) ≈ max(B0(n), B1(n)) when 1 < q < p <∞ where

A0(n) = sup
y>0

(∫ ∞
y

l(x, y)qun(x) dx
)1/q (∫ y

0

v(z)1−p′ dz

)1/p′

A1(n) = sup
x>0

(∫ ∞
x

un(z) dz
)1/q (∫ x

0

l(x, y)p
′
v(y)1−p′ dy

)1/p′

B0(n) =

(∫ ∞
0

(∫ ∞
y

l(x, y)qun(x) dx
)r/q (∫ y

0

v(z)1−p′ dz

)r/q′
v(y)1−p′ dy

)1/r

B1(n) =

(∫ ∞
0

(∫ ∞
x

un(z) dz
)r/p(∫ x

0

l(x, y)p
′
v(y)1−p′ dy

)r/p′
un(x) dx

)1/r

We show supnA0(n) ≈ A0, supnA1(n) ≈ A1, supnB0(n) ≈ B0, and supnB1(n) ≈
B1 to complete the proof.

For each fixed y, χ(y,∞)(x)l(x, y)q is non-negative, non-decreasing, and left con-
tinuous so, by Lemma 2.5,∫ ∞

y

l(x, y)qun(x) dx =
∫ ∞

0

χ(y,∞)(x)l(x, y)qun(x) dx

increases with n to∫
(0,∞)

χ(y,∞)(x)l(x, y)q dµ(x) =
∫

[0,∞)

χ(y,∞)(x)l(x, y)q dµ(x).

Lemma 2.3 shows that the last expression is equal to∫
S

χ(y,∞)(b(s))l(b(s), y)q dσ(s) =
∫
{s:b(s)>y}

l(b(s), y)q dσ(s)

which is equivalent, by Lemma 2.2, to∫
{s:b(s)>y}

k(s, y)q dσ(s).

Thus, supnA0(n) ≈ A0 and, by the Monotone Convergence Theorem, supnB0(n) ≈
B0.

The proof that supnA1(n) ≈ A1 also relies on the left continuity in x of l(x, y).
As above we find that

∫∞
x
un(z) dz increases to∫

(0,∞)

χ(x,∞)(z) dµ(z) =
∫

[0,∞)

χ(x,∞)(z) dµ(z) =
∫
{t:b(t)>x}

dσ(t).

Observe that since {t : b(t) > x} ⊂ {t : b(t) ≥ inf(b(S) ∩ [x,∞))} we have∫
{t:b(t)>x}

dσ(t) ≤ sup
{s:b(s)≥x}

∫
{t:b(t)≥b(s)}

dσ(t).
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Now

sup
x>0

(∫
b(t)>x

dσ(t)

)1/q (∫ x

0

l(x, y)p
′
v(y)1−p′ dy

)1/p′

≤ sup
x>0

sup
b(s)≥x

(∫
b(t)≥b(s)

dσ(t)

)1/q (∫ b(s)

0

l(b(s), y)p
′
v(y)1−p′ dy

)1/p′

≤ sup
b(s)>0

(∫
b(t)≥b(s)

dσ(t)

)1/q (∫ b(s)

0

l(b(s), y)p
′
v(y)1−p′ dy

)1/p′
(2.12)

≤ sup
b(s)>0

lim
x→b(s)−

(∫
b(t)>x

dσ(t)

)1/q (∫ x

0

l(x, y)p
′
v(y)1−p′ dy

)1/p′

≤ sup
x>0

(∫
b(t)>x

dσ(t)

)1/q (∫ x

0

l(x, y)p
′
v(y)1−p′ dy

)1/p′

.

Because the first and last expressions coincide all the inequalities above are equal-
ities and since Lemma 2.2 shows that the expression (2.12) is equivalent to A1 we
have supnA1(n) ≈ A1 as required.

For the proof of supnB1(n) ≈ B1 we apply Lemma 2.5 with β = r/p to see that
supnB1(n) is equivalent to∫

(0,∞)

(∫
[x,∞)

dµ(z)

)r/p(∫ x

0

l(x, y)p
′
v(y)1−p′ dy

)r/p′
dµ(x)

1/r

which Lemma 2.3, applied twice, shows to be just∫
S

(∫
{t:b(t)≥b(s)}

dσ(t)

)r/p(∫ b(s)

0

l(b(s), y)p
′
v(y)1−p′ dy

)r/p′
dσ(s)

1/r

.

By Lemma 2.2 the last expression is equivalent to B1.

When the kernel k ≡ 1 the weight conditions simplify and the result extends to
include the case 0 < q < 1.

Corollary 2.7. Suppose 0 < q < ∞, 1 < p < ∞, v is a non-negative weight
function on (0,∞), (S, σ) is a measure space, and b : S → [0,∞) is σ-measurable.
Let C be the least constant, finite or infinite, for which the inequality(∫

S

(∫ b(s)

0

f(y) dy

)q
dσ(s)

)1/q

≤ C
(∫ ∞

0

f(y)pv(y) dy
)1/p
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holds for all f ≥ 0. If 1 < p ≤ q < ∞ then C ≈ A and if 0 < q < p < ∞ then
C ≈ B where

A = sup
y>0

(∫
{s:b(s)>y}

dσ(s)

)1/q (∫ y

0

v(z)1−p′ dz

)1/p′

B =

∫
S

(∫
{t:b(t)≥b(s)}

dσ(t)

)r/p(∫ b(s)

0

v(y)1−p′ dy

)r/p′
dσ(s)

1/r

.

Here 1/r = 1/q − 1/p. Also, if q > 1 or 0 < q < 1 and v1−p′ is locally integrable
then

B ≈

∫ ∞
0

(∫
{s:b(s)>y}

dσ(s)

)r/q (∫ y

0

v(z)1−p′ dz

)r/q′
v(y)1−p′ dy

1/r

.

Proof. The case 1 < p ≤ q < ∞ follows from Theorem 2.6 by taking k ≡ 1
since in this case A = A0 and it is not difficult to see that A1 ≤ A. In the case
0 < q < p <∞ we define C(n) as in Theorem 2.6. We still have limn→∞ C(n) ≈ C.
Using [11, Theorem 2.4] we have

C(n) ≈

(∫ ∞
0

(∫ ∞
x

un(z) dz
)r/p(∫ x

0

v(y)1−p′ dy

)r/p′
un(x) dx

)1/r

.

In the same way that we showed supB1(n) ≈ B1 in Theorem 2.6 we see that the
right hand side converges to B. The final assertion follows from the remark on page
93 of [11]. This completes the proof.

Corollary 2.8. Suppose 0 < q < ∞, 1 < p < ∞, v is a non-negative weight
function on (0,∞), (S, σ) is a measure space, and a : S → [0,∞) is σ-measurable.
Let C be the least constant, finite or infinite, for which the inequality(∫

S

(∫ ∞
a(s)

f(y) dy

)q
dσ(s)

)1/q

≤ C
(∫ ∞

0

f(y)pv(y) dy
)1/p

holds for all f ≥ 0. If 1 < p ≤ q < ∞ then C ≈ A′ and if 0 < q < p < ∞ then
C ≈ B′ where

A′ = sup
y>0

(∫
{s:a(s)<y}

dσ(s)

)1/q (∫ ∞
y

v(z)1−p′ dz

)1/p′

B′ =

∫
S

(∫
{t:a(t)≤a(s)}

dσ(t)

)r/p(∫ ∞
a(s)

v(y)1−p′ dy

)r/p′
dσ(s)

1/r

.
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Here 1/r = 1/q − 1/p. Also, if q > 1 or 0 < q < 1 and v1−p′ is locally integrable
then

B′ ≈

∫ ∞
0

(∫
{s:a(s)<y}

dσ(s)

)r/q (∫ ∞
y

v(z)1−p′ dz

)r/q′
v(y)1−p′ dy

1/r

.

Proof. Make the change of variable y → 1/y and apply Corollary 2.7 with b(s) =
1/a(s). We omit the details.

3. Decomposition of Nearly Block Diagonal Operators

Block diagonal matrices are well understood. There are direct sum decompo-
sitions of both the domain and codomain spaces so that the action of the whole
matrix is broken down into the action of the blocks on their individual summands.
A similar process can be carried out for more general linear operators whose domain
and codomain can be decomposed in such a fashion. We restrict our attention to
positive linear operators, those that take non-negative functions to non-negative
functions. This restriction allows us to consider operators which do not have a
strictly block diagonal decomposition but which decompose into blocks whose nat-
ural domains (and codomains) may overlap to some extent. Our decomposition
theorem for these nearly block diagonal operators is Theorem 3.3.

Definition 3.1. If K is a linear operator taking non-negative ν-measurable func-
tions to non-negative σ-measurable functions we define the norm of K to be

‖K‖Lpν→Lqσ = sup
{∫

S

Kf(s)g(s) dσ(s) : f ≥ 0, g ≥ 0, ‖f‖Lpν ≤ 1, ‖g‖
Lq
′
σ
≤ 1
}
.

We identify a function ϕ on the measure space (X, ξ) with the multiplication oper-
ator f 7→ ϕf so that if ϕ : X → [0,∞) then

‖ϕ‖Lpξ→Lqξ = sup
{∫

X

ϕ(x)f(x)g(x) dξ(x) : f ≥ 0, g ≥ 0, ‖f‖Lpξ ≤ 1, ‖g‖
Lq
′
ξ

≤ 1
}
.

Definition 3.2. A non-negative, linear operator K is nearly block diagonal pro-
vided there exists a measure space (X, ξ), σ-measurable subsets Sx of (S, σ), ν-
measurable subsets Yx of (Y, ν), and a positive constant M such that

(1/M)Kf(s) ≤
∫
X

χSx(s)K(fχYx)(s) dξ(x) ≤MKf(s), s ∈ S, f ≥ 0;(3.1)

M−1 ≤
∫
{x:s∈Sx}

dξ(x) ≤M, s ∈ S; and

M−1 ≤
∫
{x:y∈Yx}

dξ(x) ≤M, y ∈ Y.
(3.2)
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In this case we say that
(ξ, {(Sx, Yx) : x ∈ X})

is a nearly block diagonal decomposition of K.

The assertion of (3.1) is that the action of the operator K can be expressed in
terms of the action of the blocks and (3.2) controls the extent of the overlap of the
decompositions of the spaces Y and S.

Theorem 3.3. Suppose that (X, ξ) is a measure space and (ξ, {(Sx, Yx) : x ∈ X})
is a nearly block diagonal decomposition of K. If Kxf = χSxK(fχYx) then

(3.3) ‖K‖Lpν(Y )→Lqσ(S) ≤M1+1/p+1/q′‖ ‖Kx‖Lpν(Yx)→Lqσ(Sx)‖Lpξ(X)→Lqξ(X).

If ξ is counting measure on a subset of X then

(3.4) ‖ ‖Kx‖Lpν(Yx)→Lqσ(Sx)‖Lpξ(X)→Lqξ(X) ≤M1+1/p′+1/q‖K‖Lpν(Y )→Lqσ(S).

Here M is the constant from Definition 3.2.

Proof. Fix non-negative functions f and g with ‖f‖Lpν(Y ) ≤ 1 and ‖g‖
Lq
′
σ (S)

≤ 1.

Set F (x) = M−1/p‖fχYx‖Lpν(Yx) and G(x) = M−1/q′‖gχSx‖Lq′σ (Sx)
. Note that

‖F (x)‖Lpξ(X) =M−1/p

(∫
X

∫
Y

f(y)pχYx(y) dν(y) dξ(x)
)1/p

=M−1/p

(∫
Y

f(y)p
∫
X

χYx(y) dξ(x) dν(y)
)1/p

≤M−1/pM1/p‖f‖Lpν(Y ) ≤ 1

by (3.2). In a similar way we see that ‖G(x)‖
Lq
′
ξ (X)

≤ 1.

To establish (3.3) we use Definition 3.1.

∫
S

Kf(s)g(s) dσ(s) ≤M
∫
S

∫
X

Kxf(s) dξ(x)g(s) dσ(s)

=M
∫
X

∫
S

Kx(fχYx)(s)g(s)χSx(s) dσ(s) dξ(x)

≤M
∫
X

‖Kx‖Lpν(Yx)→Lqσ(Sx)‖fχYx‖Lpν(Yx)‖gχSx‖Lq′σ (Sx)
dξ(x)

=M1+1/p+1/q′
∫
X

‖Kx‖Lpν(Yx)→Lqσ(Sx)F (x)G(x) dξ(x)

≤M1+1/p+1/q′‖ ‖Kx‖Lpν(Yx)→Lqσ(Sx)‖Lpξ(X)→Lqξ(X).

Taking the supremum over all choices of f and g we have

‖K‖Lpν(Y )→Lqσ(S) ≤M1+1/p+1/q′‖ ‖Kx‖Lpν(Yx)→Lqσ(Sx)‖Lpξ(X)→Lqξ(X)



14 TIELING CHEN AND GORD SINNAMON

which is (3.3).
Suppose now that ξ is counting measure on some subset of X. Inequality (3.4)

is trivial if ‖K‖Lpν(Y )→Lqσ(S) is infinite so we assume that it is finite. It is clear
from the definition of Kx that Kxf(s) ≤ Kf(s) for all x ∈ X, all s ∈ S and all
non-negative f . It follows that ‖Kx‖Lpν(Yx)→Lqσ(Sx) <∞ for all x ∈ X.

Fix λ ∈ (0, 1). For each x ∈ X choose non-negative functions fx and gx such
that ‖fx‖Lpν(Yx) ≤ 1, ‖gx‖Lq′σ (Sx)

≤ 1 and

(3.5) λ‖Kx‖Lpν(Yx)→Lqσ(Sx) ≤
∫
S

Kxfx(s)gx(s) dσ(s).

Replacing fx by fxχYx and gx by gxχSx does not affect (3.5) and cannot increase the
norms of fx and gx so we may assume henceforth that fx = fxχYx and gx = gxχSx .

Let F (x) and G(x) be non-negative functions on (X, ξ) with ‖F‖Lpξ(X) ≤ 1 and
‖G‖

Lq
′
ξ (X)

≤ 1 and set

F(y) = M−1/p′
∫
X

F (x)fx(y) dξ(x) and G(s) = M−1/q

∫
X

G(x)gx(s) dξ(x).

Since ξ is counting measure, it is clear that

F (x)fx(y) ≤M1/p′F(y) and G(x)gx(s) ≤M1/qG(s)

for all y ∈ Y , s ∈ S and x in the support of ξ.
We use duality to estimate the norm of F in Lpν(Y ). Suppose H is non-negative

and ‖H‖
Lp
′
ν (Y )

≤ 1. Then

‖ ‖HχYx‖Lp′ν (Yx)
‖
Lp
′
ξ (X)

=
(∫

X

∫
Y

H(y)p
′
χYx(y) dν(y) dξ(x)

)1/p′

=
(∫

Y

H(y)p
′
∫
X

χYx(y) dξ(x) dν(y)
)1/p′

≤M1/p′

so we have∫
Y

F(y)H(y) dν(y) =M−1/p′
∫
Y

∫
X

F (x)fx(y) dξ(x)H(y) dν(y)

=M−1/p′
∫
X

F (x)
∫
Y

fx(y)H(y) dν(y) dξ(x)

=M−1/p′
∫
X

F (x)
∫
Y

fx(y)H(y)χYx(y) dν(y) dξ(x)

≤M−1/p′
∫
X

F (x)‖fx‖Lpν(Yx)‖HχYx‖Lp′ν (Yx)
dξ(x)

≤M−1/p′
∫
X

F (x)‖HχYx‖Lp′ν (Yx)
dξ(x)

≤M−1/p′‖F‖Lpξ(X)‖ ‖HχYx‖Lp′ν (Yx)
‖
Lp
′
ξ (X)

≤M−1/p′M1/p′ = 1.



GENERALIZED HARDY OPERATORS AND NORMALIZING MEASURES 15

Taking the supremum over the functions H we have ‖F‖Lpν(Y ) ≤ 1.
A similar argument shows that ‖G‖

Lq
′
σ (S)

≤ 1.
Now

λ

∫
X

‖Kx‖Lpν(Yx)→Lqσ(Sx)F (x)G(x) dξ(x)

≤
∫
X

∫
S

Kxfx(s)gx(s) dσ(s)F (x)G(x) dξ(x)

=
∫
S

∫
X

Kx(F (x)fx)(s)G(x)gx(s) dξ(x) dσ(s)

≤M1/p′+1/q

∫
S

∫
X

KxF(s)G(s) dξ(x) dσ(s)

≤M1+1/p′+1/q

∫
S

KF(s)G(s) dσ(s)

≤M1+1/p′+1/q‖K‖Lpν(Y )→Lqσ(S).

Taking the supremum over all non-negative F (x) and G(x) with ‖F‖Lpξ(X) ≤ 1 and
‖G‖

Lq
′
ξ (X)

≤ 1 and letting λ→ 1− we have

‖ ‖Kx‖Lpν(Yx)→Lqσ(Sx)‖Lpξ(X)→Lqξ(X) ≤M1+1/p′+1/q‖K‖Lpν(Y )→Lqσ(S).

This completes the proof.

To use the above theorem we must understand the norm ‖ ‖Lpξ(X)→Lqξ(X). This
is not difficult. A proof of the following simple proposition may be found in [6].

Proposition 3.4. If (X, ξ) is a measure space, 1 ≤ q < p ≤ ∞ and 1/r = 1/q−1/p
then

‖φ‖Lpξ(X)→Lqξ(X) = ‖φ‖Lrξ(X)

for any non-negative φ. If ξ is counting measure on a subset of X and 1 ≤ p ≤ q ≤
∞ then

‖φ‖Lpξ(X)→Lqξ(X) = ‖φ‖L∞ξ (X).

4. Conditions for Boundedness of K

To give necessary and sufficient conditions for the boundedness of the operator

(4.1) Kf(s) =
∫ b(s)

a(s)

k(s, y)f(y) dy

from Lpv[0,∞) to Lqσ(S) we apply the decomposition theorem of the previous section.
The action of the operator on the resulting blocks is handled using the results of
Section 2. The necessary and sufficient conditions for boundedness on the blocks
combine to give integral conditions similar in form to those of Theorem 2.6.

The values of f off Y = ∪s∈S [a(s), b(s)] have no effect on the values of Kf so
it is natural to consider the functions f to be defined on Y . It is easy to see that
K : Lpv[0,∞)→ Lqσ(S) if and only if K : Lpv(Y )→ Lqσ(S).

We begin by introducing the concept of a normalizing measure which provides
us with a nearly block diagonal decomposition of the operator K.
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Definition 4.1. Let (S, σ) be a measure space and suppose that a and b are non-
negative σ-measurable functions on S such that a(s) ≤ b(s) for all s. A measure
ξ on [0,∞] is called a normalizing measure for (a, b) provided there exist positive
constants c1 and c2 such that

(4.2) c1 ≤
∫ b(s)

a(s)

dξ(x) ≤ c2

for all s ∈ S. If, in addition, ξ is counting measure on a subset of [0,∞) then ξ is
called a discrete normalizing measure.

Next we show that a normalizing measure is all that is required for the operator
K of (4.1) to be nearly block diagonal.

Lemma 4.2. Let (S, σ) be a measure space and suppose that a and b are non-
negative σ-measurable functions on S such that a(s) ≤ b(s) for all s. If ξ is a
normalizing measure for (a, b) then (ξ, {(Sx, Yx) : x ∈ X}) is a nearly block diagonal
decomposition of K where X = Y = ∪s∈S [a(s), b(s)], Sx = {s ∈ S : a(s) ≤ x ≤
b(s)}, and Yx = {y ∈ [0,∞) : Sy ∩ Sx 6= ∅}.
Proof. Let c1 and c2 be positive constants for which ξ satisfies (4.2) and set M =
max(1/c1, 2c2). Since ∫

{x:s∈Sx}
dξ(x) =

∫ b(s)

a(s)

dξ(x)

for each s ∈ S, the first inequality in (3.2) follows from (4.2).
Note that Yx = ∪s∈Sx [a(s), b(s)] which is a union of intervals containing x so Yx

is an interval. The symmetry in the definition of Yx shows that {x : y ∈ Yx} = Yy
and since Yy is an interval there exist sequences sn and s′n of points in Sy such that

ξ(Yy) = lim
n→∞

ξ[a(sn), b(s′n)].

Since y is in both [a(sn), b(sn)] and [a(s′n), b(s′n)] the last expression is no greater
than

lim
n→∞

ξ[a(sn), b(sn)] + ξ[a(s′n), b(s′n)] ≤ 2c2 ≤M.

For y ∈ X, there exists some s with a(s) ≤ y ≤ b(s) so we have [a(s), b(s)] ⊂ Yy
and hence

1/M ≤ c1 ≤ ξ[a(s), b(s)] ≤ ξ(Yy).

We have shown that 1/M ≤ ξ(Yy) ≤M which establishes the second inequality in
(3.2).

It remains to show that (3.1) holds. An interchange of the order of integration
yields∫

X

χSx(s)K(fχYx)(s) dξ(x) =
∫
X

χSx(s)
∫ b(s)

a(s)

k(s, y)f(y)χYx(y) dy dξ(x)

=
∫ b(s)

a(s)

k(s, y)f(y)
∫
X

χSx(s)χYx(y) dξ(x) dy.
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The inner integral in the last expression is just ξ[a(s), b(s)] so (4.2) implies (3.1).
This completes the proof.

The main results of the paper are presented in Theorems 4.3 and 4.4. It is
convenient to split up the cases 1 < q < p <∞ and 1 < p ≤ q <∞

Theorem 4.3. Let 1 < q < p < ∞, v be a non-negative weight, (S, σ) be a
measure space, a and b be σ-measurable functions on S, and k be a non-negative
kernel satisfying the GHO condition on {(s, y) : 0 ≤ y ≤ b(s)} and also (2.11).
Suppose that ξ is a normalizing measure for (a, b). Let C be the least constant,
finite or infinite, such that(∫

S

(∫ b(s)

a(s)

k(s, y)f(y) dy

)q
dσ(s)

)1/q

≤ C
(∫ ∞

0

f(y)pv(y) dy
)1/p

holds for all f ≥ 0. Then C is bounded above by a multiple of max(B1,B2,B3,B4)
where

Br1 =
∫
X

∫ x

0

(∫
a(s)<y
x≤b(s)

k(s, x)q dσ(s)

)r/q (∫ x

y

v(z)1−p′ dz

)r/q′
v(y)1−p′ dy dξ(x)

Br2 =
∫
X

∫ ∞
x

(∫
a(s)≤x
y<b(s)

k(s, y)q dσ(s)

)r/q (∫ y

x

v(z)1−p′ dz

)r/q′
v(y)1−p′ dy dξ(x)

Br3 =
∫
S

∫ b(s)

a(s)

(∫
a(t)≤x
b(s)≤b(t)

dσ(t)

)r/p(∫ b(s)

x

k(s, y)p
′
v(y)1−p′ dy

)r/p′
dξ(x) dσ(s)

Br4 =
∫
S

∫ b(s)

a(s)

(∫
a(t)≤a(s)
x≤b(t)

dσ(t)

)r/p(∫ x

a(s)

k̄(x, y)p
′
v(y)1−p′ dy

)r/p′
dξ(x) dσ(s).

Here k̄(x, y) = sup{k(t, y) : b(t) = x}.
If ξ is a discrete normalizing measure then C is also bounded below by a multiple

of max(B1,B2,B3,B4).

Proof. Let X, Y , Sx and Yx be as in Lemma 4.2. Then (ξ, {(Sx, Yx) : x ∈ X})
is a nearly block diagonal decomposition of K. It follows from Theorem 3.3 and
Proposition 3.4 that

‖K‖Lpv(Y )→Lqσ(S) ≤M1+1/p+1/q′‖ ‖Kx‖Lpv(Yx)→Lqσ(Sx)‖Lpξ(X)→Lqξ(X)

=M1+1/p+1/q′‖ ‖Kx‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X).

whereM depends only on the constants c1 and c2 in the definition of the normalizing
measure ξ.

If ξ is a discrete normalizing measure, the inequality may be essentially reversed
to give

‖ ‖Kx‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X) ≤M1+1/p′+1/q‖K‖Lpv(Y )→Lqσ(S).
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Since C = ‖K‖Lpv [0,∞)→Lqσ(S) = ‖K‖Lpv(Y )→Lqσ(S), this reduces the problem to
looking at the norms of Kx for each x in X. To work with Kx we decompose it
into three operators and apply the results of Section 2. Fix x ∈ X and take f ≥ 0
to be supported in Yx. Then

(4.3) Kxf(s) = χSx(s)
∫ b(s)

a(s)

k(s, y)f(y) dy

= χSx(s)
∫ x

a(s)

k(s, y)f(y) dy + χSx(s)
∫ b(s)

x

k(s, y)f(y) dy.

Note that, according to the definition of Sx, a(s) ≤ x ≤ b(s) whenever χSx(s) 6= 0.
We now use the GHO condition on k to further decompose the first summand. If
x /∈ b(S) then k̄(x, y) = 0 and if x ∈ b(S), say x = b(t), then it follows from the
condition (2.1) on k that k(t, y) ≤ k̄(x, y) ≤ Dk(t, y). In either case we have (using
(2.1) or (2.2) as appropriate)

D−1k(s, y) ≤ k(s, x) + k̄(x, y) ≤ D2k(s, y)

whenever y ≤ x ≤ b(s). Applying this estimate to the kernel k in the first summand
of (4.3) shows that Kxf(s) is bounded above and below by multiples of

χSx(s)k(s, x)
∫ x

a(s)

f(y) dy + χSx(s)
∫ x

a(s)

k̄(x, y)f(y) dy

+ χSx(s)
∫ b(s)

x

k(s, y)f(y) dy ≡ K(1)
x f(s) +K(2)

x f(s) +K(3)
x f(s).

Since the operators K(1)
x , K(2)

x , and K
(3)
x , are all non-negative

‖Kx‖Lpv(Yx)→Lqσ(Sx) ≈ ‖K(1)
x ‖Lpv(Yx)→Lqσ(Sx)

+ ‖K(2)
x ‖Lpv(Yx)→Lqσ(Sx) + ‖K(3)

x ‖Lpv(Yx)→Lqσ(Sx).

and hence

‖ ‖Kx‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X) ≈‖‖K(1)
x ‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X)

+‖ ‖K(2)
x ‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X)+‖ ‖K(3)

x ‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X).

To complete the proof we show that

‖ ‖K(1)
x ‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X) ≈B1,

‖ ‖K(2)
x ‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X) ≈B4, and

‖ ‖K(3)
x ‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X) ≈max(B2,B3).
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The norm ‖K(1)
x ‖Lpv(Yx)→Lqσ(Sx) is the least constant for which the inequality

(∫
Sx

(∫ x

a(s)

f(y) dy

)q
k(s, x)q dσ(s)

)1/q

≤ C
(∫

Yx

f(y)pv(y) dy
)1/p

holds for all f ≥ 0. It is straightforward to see that it is also the least constant for
which (∫

S

(∫ ∞
a(s)

f(y) dy

)q
dσ(1)

x (s)

)1/q

≤ C
(∫ ∞

0

f(y)pv(1)
x (y) dy

)1/p

holds for all f ≥ 0 where dσ(1)
x (s) = χSx(s)k(s, x)qdσ(s), v(1)

x (y) = v(y) for y ∈
[0, x] ∩ Yx and v

(1)
x (y) =∞ otherwise. By Corollary 2.8 we have

‖K(1)
x ‖rLpv(Yx)→Lqσ(Sx)

≈
∫ x

0

χYx(y)

(∫
a(s)<y

χSx(s)k(s, x)q dσ(s)

)r/q (∫ x

y

v(z)1−p′ dz

)r/q′
v(y)1−p′ dy.

From this it readily follows that

‖ ‖K(1)
x ‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X) ≈ B1.

The norm ‖K(2)
x ‖Lpv(Yx)→Lqσ(Sx) is the least constant for which the inequality

(∫
Sx

(∫ x

a(s)

k̄(x, y)f(y) dy

)q
dσ(s)

)1/q

≤ C
(∫

Yx

f(y)pv(y) dy
)1/p

holds for all f ≥ 0. Making the substitution g(y) = k̄(x, y)f(y), we see that it is
also the least constant for which(∫

S

(∫ ∞
a(s)

g(y) dy

)q
dσ(2)

x (s)

)1/q

≤ C
(∫ ∞

0

g(y)pv(2)
x (y) dy

)1/p

holds for all g ≥ 0 where dσ
(2)
x (s) = χSx(s)dσ(s), v(2)

x (y) = k̄(x, y)−pv(y) for
y ∈ [0, x] ∩ Yx and v

(1)
x (y) = ∞ otherwise. Again we appeal to Corollary 2.8. We

get

‖K(2)
x ‖rLpv(Yx)→Lqσ(Sx)

≈
∫
S

(∫
a(t)≤a(s)

χSx(t) dσ(t)

)r/p(∫ x

a(s)

k̄(x, y)p
′
v(y)1−p′ dy

)r/p′
χSx(s) dσ(s)
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and so, with an interchange in the order of integration,

‖ ‖K(2)
x ‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X) ≈ B4.

The norm ‖K(3)
x ‖Lpv(Yx)→Lqσ(Sx) is the least constant for which the inequality

(∫
Sx

(∫ b(s)

x

k(s, y)f(y) dy

)q
dσ(s)

)1/q

≤ C
(∫

Yx

f(y)pv(y) dy
)1/p

holds for all f ≥ 0. It is also the least constant for which

(∫
S

(∫ b(s)

0

k(s, y)f(y) dy

)q
dσ(3)

x (s)

)1/q

≤ C
(∫ ∞

0

f(y)pv(3)
x (y) dy

)1/p

holds for all f ≥ 0 where dσ(3)
x (s) = χSx(s)dσ(s), v(3)

x (y) = v(y) for y ∈ [x,∞) ∩
Yx and v

(3)
x (y) = ∞ otherwise. This time we apply Theorem 2.6 to see that

‖K(3)
x ‖rLpv(Yx)→Lqσ(Sx)

is comparable to the maximum of

∫ ∞
x

χYx(y)

(∫
y<b(s)

k(s, y)qχSx(s) dσ(s)

)r/q (∫ y

x

v(z)1−p′ dz

)r/q′
v(y)1−p′ dy

and

∫
S

(∫
b(s)≤b(t)

χSx(t) dσ(t)

)r/p(∫ b(s)

x

k(s, y)p
′
v(y)1−p′ dy

)r/p′
χSx(s) dσ(s).

From these we conclude that

‖ ‖K(3)
x ‖Lpv(Yx)→Lqσ(Sx)‖Lrξ(X) ≈ max(B2,B3)

to complete the proof.

Theorem 4.4. Let 1 < p ≤ q <∞, v be a non-negative weight, (S, σ) be a measure
space, a and b be σ-measurable functions on S with a(s) ≤ b(s), and k be a non-
negative kernel satisfying the GHO condition on {(s, y) : 0 ≤ y ≤ b(s)} and also
(2.11). Suppose that (a, b) admits a discrete normalizing measure. Let C be the
least constant, finite or infinite, such that

(∫
S

(∫ b(s)

a(s)

k(s, y)f(y) dy

)q
dσ(s)

)1/q

≤ C
(∫ ∞

0

f(y)pv(y) dy
)1/p
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holds for all f ≥ 0. Then C ≈ max(A1,A2) where

A1 = sup
{(x,y):x<y}

(∫
a(s)≤x
y≤b(s)

k(s, y)q dσ(s)

)1/q (∫ y

x

v(z)1−p′ dz

)1/p′

A2 = sup
{(x,s):x<b(s)}

(∫
a(t)≤x
b(s)≤b(t)

dσ(t)

)1/q (∫ b(s)

x

k(s, z)p
′
v(z)1−p′ dz

)1/p′

.

Proof. Suppose that counting measure on X0 is a discrete normalizing measure for
(a, b). Then for any choice of x1 and x2, counting measure on X0 ∪ {x1, x2} is also
a discrete normalizing measure for (a, b). Choose x1 and x2 such that

A1/2 ≤ sup
{y:x1<y}

(∫
a(s)≤x1
y≤b(s)

k(s, y)q dσ(s)

)1/q (∫ y

x1

v(z)1−p′ dz

)1/p′

and

A2/2 ≤ sup
{s:x2<b(s)}

(∫
a(t)≤x2
b(s)≤b(t)

dσ(t)

)1/q (∫ b(s)

x2

k(s, z)p
′
v(z)1−p′ dz

)1/p′

.

Let ξ be counting measure on X0 ∪ {x1, x2}. We decompose the operator K just
as in Theorem 4.3 and apply the results of Section 3 to get

‖K‖Lpv [0,∞)→Lqσ(S) ≈‖‖Kx‖Lpv(Yx)→Lqσ(Sx)‖L∞ξ (X)

≈‖‖K(1)
x ‖Lpv(Yx)→Lqσ(Sx)‖L∞ξ (X)

+‖ ‖K(2)
x ‖Lpv(Yx)→Lqσ(Sx)‖L∞ξ (X)

+‖ ‖K(3)
x ‖Lpv(Yx)→Lqσ(Sx)‖L∞ξ (X).

As we have seen above, the norm ‖K(1)
x ‖Lpv(Yx)→Lqσ(Sx) is the least constant for

which the inequality(∫
S

(∫ ∞
a(s)

f(y) dy

)q
dσ(1)

x (s)

)1/q

≤ C
(∫ ∞

0

f(y)pv(1)
x (y) dy

)1/p

holds for all f ≥ 0 where dσ(1)
x (s) = χSx(s)k(s, x)qdσ(s), v(1)

x (y) = v(y) for y ∈
[0, x] ∩ Yx and v

(1)
x (y) =∞ otherwise. Corollary 2.8 shows that

‖ ‖K(1)
x ‖Lpv(Yx)→Lqσ(Sx)‖L∞ξ (X)

is comparable to

(4.4) sup
x∈X
ξ(x)>0

sup
y>0

(∫
a(s)<y<x≤b(s)

k(s, x)q dσ(s)

)1/q (∫ x

y

v(z)1−p′ dz

)1/p′

.
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The norm ‖K(2)
x ‖Lpv(Yx)→Lqσ(Sx) is the least constant for which the inequality(∫

S

(∫ ∞
a(s)

g(y) dy

)q
dσ(2)

x (s)

)1/q

≤ C
(∫ ∞

0

g(y)pv(2)
x (y) dy

)1/p

holds for all g ≥ 0 where dσ
(2)
x (s) = χSx(s)dσ(s), v(2)

x (y) = k̄(x, y)−pv(y) for
y ∈ [0, x] ∩ Yx and v

(1)
x (y) =∞ otherwise. Corollary 2.8 shows that

‖ ‖K(2)
x ‖Lpv(Yx)→Lqσ(Sx)‖L∞ξ (X)

is comparable to

sup
x∈X
ξ(x)>0

sup
y>0

(∫
a(s)<y<x≤b(s)

dσ(s)

)1/q (∫ x

y

k̄(x, z)p
′
v(z)1−p′ dz

)1/p′

.

Since k̄(x, z) = 0 when x /∈ b(S) and k̄(x, z) ≈ k(t, z) when x = b(t) the last
expression is comparable to

(4.5) sup
t∈S

ξ(b(t))>0

sup
y>0

(∫
a(s)<y<b(t)≤b(s)

dσ(s)

)1/q (∫ b(t)

y

k(t, z)p
′
v(z)1−p′ dz

)1/p′

.

The norm ‖K(3)
x ‖Lpv(Yx)→Lqσ(Sx) is the least constant for which the inequality(∫

S

(∫ b(s)

0

k(s, y)f(y) dy

)q
dσ(3)

x (s)

)1/q

≤ C
(∫ ∞

0

f(y)pv(3)
x (y) dy

)1/p

holds for all f ≥ 0 where dσ(3)
x (s) = χSx(s)dσ(s), v(3)

x (y) = v(y) for y ∈ [x,∞)∩Yx
and v

(3)
x (y) =∞ otherwise. By Theorem 2.6 the norm

‖ ‖K(3)
x ‖Lpv(Yx)→Lqσ(Sx)‖L∞ξ (X)

is comparable to the maximum of

(4.6) sup
x∈X
ξ(x)>0

sup
y>0

(∫
{s:a(s)≤x<y<b(s)}

k(s, y)q dσ(s)

)1/q (∫ y

x

v(z)1−p′ dz

)1/p′

and

(4.7) sup
x∈X
ξ(x)>0

sup
s∈S

(∫
{t:a(t)≤x<b(s)≤b(t)}

dσ(t)

)1/q (∫ b(s)

x

k(s, y)p
′
v(y)1−p′ dy

)1/p′

.

The maximum of the expressions (4.4) and (4.6) is comparable to

sup
{(x,y):x<y}
ξ(x)>0

(∫
a(s)≤x
y≤b(s)

k(s, y)q dσ(s)

)1/q (∫ y

x

v(z)1−p′ dz

)1/p′

which is comparable to A1 because ξ(x1) > 0.
In a similar way we see that the maximum of (4.5) and (4.7) is comparable to

A2. This completes the proof.



GENERALIZED HARDY OPERATORS AND NORMALIZING MEASURES 23

5. Normalizing Measures

The results of the previous section depend on the existence of a discrete normal-
izing measure for the functions a and b. Here we prove that such a measure exists
whenever a and b are similarly ordered in the following sense.

Definition 5.1. Let I = {[c, d] : 0 ≤ c ≤ d ≤ ∞} and define a partial order on I
by [c, d] ≺ [c̄, d̄] provided c ≤ c̄ and d ≤ d̄. We say that non-negative functions a
and b on S are similarly ordered provided the set {[a(s), b(s)] : s ∈ S} is a totally
ordered subset of I.

To construct a discrete normalizing measure ξ, we need the set X0 of atoms of
ξ. This set is constructed in the next theorem.

Theorem 5.2. If T is a totally ordered subset of I then there exists a subset X0

of [0,∞] such that 1 ≤ #(X0 ∩ [c, d]) ≤ 3 for all [c, d] ∈ T .

Proof. A straightforward application of Zorn’s Lemma shows that we may assume
without loss of generality that T is a maximal totally ordered subset of I. That
is, we may assume that the only totally ordered subset of I which contains T is T
itself. It follows from this assumption that ∪T = [0,∞].

If x ∈ [0,∞] define Lx = inf{c̄ : x ∈ [c̄, d̄] ∈ T } and Mx = sup{d̄ : x ∈ [c̄, d̄] ∈
T }. Clearly, Lx ≤ x ≤ Mx. If x ≤ y and x ∈ [c̄, d̄] ∈ T then either y ∈ [c̄, d̄]
or y > d̄. In the former case My ≥ d̄ by definition and in the latter we have
My ≥ y > d̄. Taking the supremum over all such d̄ proves the first half of:

(5.1) If x ≤ y then Mx ≤My and Lx ≤ Ly.

The other half is proved similarly.
We now establish the first half of:

(5.2) For each x, [Lx, x] ∈ T and [x,Mx] ∈ T .

Once again the second half may be proved similarly. By the maximality of T , if we
show that {[Lx, x]} ∪ T is totally ordered then [Lx, x] ∈ T will follow. To do this
we fix [c, d] ∈ T and show that either [c, d] ≺ [Lx, x] or [Lx, x] ≺ [c, d]. If x ≤ c
then [Lx, x] ≺ [c, d]. If c < x ≤ d then Lx ≤ c by definition so again [Lx, x] ≺ [c, d].
In the remaining case, when d < x, we see that whenever x ∈ [c̄, d̄] ∈ T we have
d < x ≤ d̄ so [c, d] ≺ [c̄, d̄] because T is totally ordered. Thus c ≤ c̄ and, taking the
infimum over all such [c̄, d̄], we conclude that c ≤ Lx so [c, d] ≺ [Lx, x]. We have
shown that {[Lx, x]} ∪ T is totally ordered and hence [Lx, x] ∈ T .

For each x ∈ [0,∞] define the subset Ex of [0,∞] as follows.

Ex =
(
∪∞k=1[Lkx, Lk−1x]

)
∪
(
∪∞k=1[Mk−1x,Mkx]

)
.

Here the exponents represent repeated application of the operator and L0x = x =
M0x. It is clear that Ex = ∪∞k=1[Lkx,Mkx] and hence that Ex is an interval (or a
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single point) containing x. It is important to observe that the operators L and M
fix the sets Ex. That is:

(5.3) If y ∈ Ex then Ly ∈ Ex and My ∈ Ex.

We prove the second half only. If y ∈ [Mk−1x,Mkx] for some k ≥ 1 then (5.1)
shows that My ∈ [Mkx,Mk+1x] ⊂ Ex. If y ∈ [Lkx, Lk−1x] for some k ≥ 1 then
y ≤ Lk−1x ≤ x so Lkx ≤ y ≤My ≤Mx ≤Mkx and again we have My ∈ Ex.

It follows by induction from (5.3) that if y ∈ Ex then Lky and Mky are in Ex.
Since Ex is an interval, [Lky,Mky] ⊂ Ex and hence Ey ⊂ Ex. Thus we have:

(5.4) If y ∈ Ex then Ey ⊂ Ex.

Next we improve this to:

(5.5) If y ∈ Ex then Ey = Ex.

Suppose first that y ∈ [Lkx, Lk−1x] for some k ≥ 1. We have y ≤ Lk−1x ≤ x and
since Ey is an interval it will follow that x ∈ Ey if there is any point of Ey greater
than or equal to x. Suppose for the sake of contradiction that Mny < x for all
n ≥ 0. Choose m as large as possible so that Mny < Lmx for all n. This is possible
because the property holds for m = 0 and fails for m = k. Now choose n ≥ 0
so that Lm+1x ≤ Mny and we have Mny ∈ [Lm+1x, Lmx] so the definition of M
yields Mn+1y ≥ Lmx contradicting the choice of m. This contradiction shows that
x ∈ Ey. We may now apply (5.4) twice to get Ey = Ex. The proof in the case
y ∈ [Mk−1x,Mkx] is analogous.

Since x ∈ Ex and (5.5) holds we see that the sets Ex partition [0,∞] so we
may choose a set of representatives {xj : j ∈ J}, for some index set J , such that
∪j∈JExj = [0,∞] and Exi ∩ Exj = ∅ whenever i, j ∈ J with i 6= j. Define the set
X0 to be

X0 = {Mkxj , L
kxj : j ∈ J, k = 0, 1, . . . }.

It remains to verify that X0 has the desired property. If [c, d] ∈ T then choose
j ∈ J so that c ∈ Exj . We suppose that c ∈ [Mk−1xj ,M

kxj ] for some k ≥ 1 since
if c ∈ [Lk+1xj , L

kxj ] for some k ≥ 1 the argument is similar. Either c ∈ X0 or
c ∈ (Mk−1xj ,M

kxj). In the latter case we have d ≥ Mkxj because (5.2) holds
and T is totally ordered. In both cases there is at least one point of X0 in [c, d] so
1 ≤ #(X0 ∩ [c, d]).

To show that #(X0 ∩ [c, d]) ≤ 3 it is enough to show that at most one point of
X0 is in (c, d). Since [c, d] ⊂ [c,Mc] ⊂ Ec = Exj the only points of X0 that may
be in (c, d) are points of the form Mkxj or Lkxj for some k ≥ 0. This is because
all other points of X0 are in some Exi disjoint from Exj . If Mkxj ∈ (c, d) for some
k ≥ 0 then Mk+1xj ≥ d and if Lkxj ∈ (c, d) for some k ≥ 0 then Lk+1xj ≤ c so at
most one such point can be in (c, d). This completes the proof.
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Corollary 5.3. If non-negative functions a and b on S are similarly ordered then
there is a discrete normalizing measure for (a, b).

Proof. Since {[a(s), b(s)] : s ∈ S} is totally ordered, there exists a subset X0 of
[0,∞] satisfying 1 ≤ #(X0 ∩ [a(s), b(s)]) ≤ 3 for all s ∈ S. Let ξ be counting
measure on the subset X0 \ {∞} of [0,∞). Since ∞ /∈ [a(s), b(s)] for any s ∈ S we
have

1 ≤
∫ b(s)

a(s)

dξ ≤ 3

for all s ∈ S.

While a discrete normalizing measure exists whenever a and b are similarly or-
dered, the construction can be somewhat complicated. In many cases, however, it
is easy to discover normalizing measures.

Example 5.4. Let S = [0,∞), a(s) = 0, and b(s) = s. The Dirac measure at 0 is a
discrete normalizing measure for a and b.

Example 5.5. Let S = [0,∞), a(s) = s, and b(s) = s + L. Lebesgue measure is
a normalizing measure for a and b and counting measure on the set {n + L : n =
0, 1, . . . } is a discrete normalizing measure.

Example 5.6. Fix A and B with 0 < A < B. Let S = [0,∞), a(s) = As, and
b(s) = Bs. The measure dx/x is a normalizing measure for a and b and counting
measure on the set {(B/A)n : n = 0,±1,±2, . . . } is a discrete normalizing measure.

Example 5.7. (cf. [4, Theorem 2.5]) Let S = [0,∞). Suppose a and b are increasing,
differentiable functions satisfying a(0) = b(0) = 0, a(∞) = b(∞) = ∞, and 0 <
a(s) < b(s) < ∞ for 0 < s < ∞. Fix x0 ∈ (0,∞) and define xn = (b ◦ a−1)n(x0)
for each n ∈ Z. Then counting measure on {xn : n ∈ Z} is a discrete normalizing
measure for a and b. Also, ξ defined by

dξ(x) =
∑
n∈Z

χ[xn,xn+1)d(b ◦ a−1)−n(x)

is a normalizing measure for a and b.

6. Application to Taylor Approximation

Suppose F is an n + 1 times differentiable function on (0,∞). The nth degree
Taylor polynomial of F , centred at a, is

Pn,a(F )(b) = F (a) + F ′(a)(b− a) + · · ·+ F (n)(a)
n!

(b− a)n

and the remainder, Rn,a(F )(b) ≡ F (b)− Pn,a(F )(b), may be expressed in the form

(6.1) Rn,a(F )(b) =
1
n!

∫ b

a

(b− y)nF (n+1)(y) dy.
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If we let a and b vary with s we recognize the above remainder as an operator of
the form (4.1) applied to F (n+1). Theorems 4.3 and 4.4 can therefore be used to
control the accuracy of the approximation by a Taylor polynomial as the centre
and the point of evaluation vary. The control is in terms of the size of the n + 1
derivative of the function. Rather than state this as a general result, we provide a
simple example in which F (s) is approximated by its Taylor polynomial centred at
s/2.

Example 6.1. Let n be a positive integer. There exists a positive constant C such
that the inequality

(6.2)
(∫ ∞

0

Rn,s/2(F )(s)2 (s+ 1)−2n−3 ds

)1/2

≤ C
(∫ ∞

0

F (n+1)(y)4 dy

)1/4

for all n+ 1 times differentiable functions F .

Proof. We apply Theorem 4.3 with p = 4, q = 2, k(s, y) = (s− y)n/n!, a(s) = s/2,
b(s) = s, v(y) = 1, and d σ(s) = (s+ 1)−2n−3 ds. In view of (6.1), the conclusion of
the Theorem 4.3, with f replaced by F (n+1), will yield (6.2).

To complete the proof we check the hypotheses of Theorem 4.3. As in Example
5.6 we have

∫ s
s/2

dx
x = log(2) so the measure dx/x is a normalizing measure for

(a, b). Since

2−n(s− y)n ≤ (s− t)n + (t− y)n ≤ 2(s− y)n for y ≤ t ≤ s,

the kernel k satisfies the GHO condition.
Simple-minded estimates show that B1, B2, B3, and B4 are all finite. We show

only the first.

(n!)4B4
1 =

∫ ∞
0

∫ x

x/2

(∫ 2y

x

(s− x)2n(s+ 1)−2n−3 ds

)2

(x− y)2 dy
dx

x

≤
∫ ∞

0

∫ x

x/2

(
(2y − x)(2y − x)2n(x+ 1)−2n−3

)2
(x− y)2 dy

dx

x

≤
∫ ∞

0

(x/2)x4n+2(x+ 1)−4n−6(x/2)2 dx

x
<∞.
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