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KUFNER’S CONJECTURE FOR HIGHER
ORDER HARDY INEQUALITIES

Abstract

A conjecture of A. Kufner is verified, giving an approximate func-
tional form of the Green’s function for a class of two-point boundary
value problems. The result is applied to give a simple characterisa-
tion of those weights for which the Hardy’s inequality for higher order
derivatives is valid.

1 Introduction and Statement of Main Results

The weighted Hardy inequality for derivatives of order k ≥ 1 is(∫ 1

0

|u(x)|qw0(x) dx
)1/q

≤ Ck
(∫ 1

0

|u(k)(x)|pwk(x) dx
)1/p

. (1)

Here k is a fixed positive integer, w0 and wk are non-negative weight functions,
1 < p <∞, and 0 < q <∞.

Estimating the size of a function in terms of its derivatives is a problem
of fundamental importance in real analysis and differential equations and the
weighted Lebesgue spaces we consider arise naturally in such settings. The
flexibility we have when applying the inequality (1) comes from the weight
functions w0 and wk so our object is to prove the inequality while placing the
minimum restrictions on these weights. In this paper we give necessary and
sufficient conditions on p, q, w0 and wk for there to exist a positive constant
Ck such that (1) holds for all functions u from a certain class.
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To describe the class of functions u that we consider, let Ni = {0, 1, . . . , i−
1} and fix subsets M0 and M1 of Nk such that |M0|+ |M1| = k. We consider
the class of all functions u which are solutions to the BVP (boundary value
problem)

u(k) = f ; u(i)(0) = 0 for i ∈M0, u(i)(1) = 0 for i ∈M1 (2)

for some locally integrable function f .
The validity of (1) over this class of functions u depends strongly on the

pair of sets (M0,M1). Drábek and Kufner [3] have shown that the inequality
is meaningful if and only if (M0,M1) satisfies the Pólya condition:

|M0 ∩Ni|+ |M1 ∩Ni| ≥ i, i = 1, 2, . . . , k. (3)

To better understand this condition we introduce the 2 × k incidence matrix
E = (eα i) of (M0,M1) by setting eα i = 1 if i−1 ∈Mα and eα i = 0 otherwise.
The condition (3) states that there are at least i 1’s in the first i columns of
E for i = 1, 2, . . . , k.

For a pair (M0,M1) satisfying the Pólya condition (3), it is proved in
[3] that the BVP (2) can be uniquely solved. There is, therefore, a Green’s
function G(x, t) for the BVP (see, for example, [2, p162ff]) so that for any
locally integrable function f , the solution of (2) is given by

u(x) =
∫ 1

0

G(x, t)f(t) dt.

Moreover, G has the form

G(x, t) =
(x− t)k−1

(k − 1)!
χ

(0,x)(t) +
k−1∑
i=0

k−1∑
j=0

wi j
xi

i!
tj

j!
(4)

for some constants wi j depending on (M0,M1). Here and in the sequel, χS
denotes the function that takes the value 1 on the set S and 0 elsewhere.

The connection between the Green’s function G(x, t) and the weight char-
acterisation for the inequality (1) is a conjecture of A. Kufner [4] and [5]
which describes an approximation to G(x, t) and a weight characterisation for
(1) based on that approximation. It is the purpose of this paper to verify the
conjecture and thereby complete the proof of the weight characterisation.

Before stating the conjecture we consider some special cases and make a
convenient definition.

If k = 1, (1) reduces to the weighted Hardy inequality characterised in [9],
[1], [8], [11] and elsewhere. (See [10] for proofs and futher references.) We will
assume that k ≥ 2 henceforth.
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If all boundary conditions are at one endpoint, that is, if

(M0,M1) = (Nk, {}) or (M0,M1) = ({}, Nk), (5)

then again inequality (1) has been characterised. See [12] and references
therein. We will not consider these cases here.

Other special cases have been solved in [6], [7], [5].

Definition 1.1 For a pair (M0,M1) satisfying (3) but not (5) we define non-
negative integers a, b, c, and d, as follows: Let a be the number of consecutive
1’s beginning the top row of E; b be the number of consecutive 1’s beginning
the bottom row of E; c be the number of consecutive 0’s ending the top row of
E; and d be the number of consecutive 0’s ending the bottom row of E.

To illustrate the definition we offer an example. Take k = 6, M0 =
{0, 1, 2, 4}, and M1 = {1, 3}. Then we have

E =
(

1 1 1 0 1 0
0 1 0 1 0 0

)
,

a = 3, b = 0, c = 1, and d = 2. Notice that (M0,M1) satisfies the Pólya
condition.

For any (M0,M1), a + c ≤ k and b + d ≤ k. Notice that a + c = k − 1 is
impossible, this will be important later.

We state Kufner’s conjecture in a somewhat different form than it appears
in [5].

Theorem 1.2 Suppose (M0,M1) satisfies |M0| + |M1| = k and (3) but not
(5). The Green’s function, G(x, t), of the BVP (2) satisfies

c1|G(x, t)| ≤ xa(1− x)BtC(1− t)d ≤ c2|G(x, t)|, for 0 < x < t < 1, (6)

and

c1|G(x, t)| ≤ xA(1− x)btc(1− t)D ≤ c2|G(x, t)|, for 0 < t < x < 1, (7)

for some positive constants c1 and c2. Here A, B, C, and D are given by

A =
{
a− 1, if a+ c = k
a, if a+ c < k

, C =
{
c− 1, if a+ c = k
c, if a+ c < k

,

B =
{
b− 1, if b+ d = k
b, if b+ d < k

, D =
{
d− 1, if b+ d = k
d, if b+ d < k

.



4 G. Sinnamon

Before proving Theorem 1.2 we show how approximating the Green’s func-
tion gives necessary and sufficient conditions for inequality (1). The next result
follows from Theorem 1.2 above and Corollary 1.5 in [5].

Theorem 1.3 Let k ≥ 2 and suppose (M0,M1) satisfies |M0|+ |M1| = k and
(3) but not (5). Define p′ and r by 1/p + 1/p′ = 1 and 1/r = 1/q − 1/p and
consider the statements (i), (ii), and (iii) below. If 1 < p ≤ q < ∞ then (i)
holds if and only if (ii) holds. If 0 < q < p < ∞ and 1 < p then (i) holds if
and only if (iii) holds.

(i) There is a positive constant Ck such that(∫ 1

0

|u(x)|qw0(x) dx
)1/q

≤ Ck
(∫ 1

0

|u(k)(x)|pwk(x) dx
)1/p

.

holds for all u whose derivatives of order k − 1 are absolutely continuous on
[0, 1] and which satisfies u(i)(0) = 0 for i ∈M0 and u(i)(1) = 0 for i ∈M1.

(ii) The following two suprema are finite.

sup
0<s<1

[∫ 1

s

xAq(1− x)bqw0(x) dx
]1/q [∫ s

0

tcp
′
(1− t)Dp

′
wk(t)1−p′ dt

]1/p′

.

sup
0<s<1

[∫ s

0

xaq(1− x)Bqw0(x) dx
]1/q [∫ 1

s

tCp
′
(1− t)dp

′
wk(t)1−p′ dt

]1/p′

.

(iii) The following two integrals are finite.∫ 1

0

[∫ 1

s

xAq(1− x)bqw0(x) dx
]r/p
×

×
[∫ s

0

tcp
′
(1− t)Dp

′
wk(t)1−p′ dt

]r/p′
sAq(1− s)bqw0(s) ds.∫ 1

0

[∫ s

0

xaq(1− x)Bqw0(x) dx
]r/p
×

×
[∫ 1

s

tCp
′
(1− t)dp

′
wk(t)1−p′dt

]r/p′
saq(1− s)Bqw0(s) ds.

Here a, b, c, d, A, B, C, and D depend on (M0,M1) as in Definition 1.1 and
Theorem 1.2.

The weight characterisation simplifies if both a + c < k and b + d <
k because in this case G(x, t) can be approximated by the function xa(1 −
x)btc(1− t)d on the whole unit square. We state this precisely below.
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Theorem 1.4 Let k ≥ 2 and suppose that (M0,M1) satisfies |M0|+ |M1| = k
and (3) but not (5). Also suppose that a+c < k and b+d < k. Then statement
(i) of Theorem 1.2 holds if and only if[∫ 1

0

xaq(1− x)bqw0(x) dx
]1/q [∫ 1

0

tcp
′
(1− t)dp

′
wk(t)1−p′ dt

]1/p′

<∞.

Here 0 < q <∞, 1 < p <∞, and 1/p+ 1/p′ = 1.

Proof. If we write u(k) = f then u(x) =
∫ 1

0
G(x, t)f(t) dt and (1) becomes(∫ 1

0

∣∣∣∣∫ 1

0

G(x, t)f(t) dt
∣∣∣∣q w0(x) dx

)1/q

≤ Ck
(∫ 1

0

|f(t)|pwk(t) dt
)1/p

.

By Theorem 1.2, G(x, t) does not change sign so we may restrict our atten-
tion to non-negative functions f . In this case the approximation for G from
Theorem 1.2 shows that the above inequality is equivalent to[∫ 1

0

xaq(1− x)bqw0(x) dx
]1/q∫ 1

0

tc(1− t)df(t) dt ≤ C ′k
(∫ 1

0

f(t)pwk(t) dt
)1/p

for some constant C ′k. Taking the supremum over all non-negative functions
f and using the sharpness of Hölder’s inequality we obtain the conclusion of
the theorem.

2 Approximating the Green’s Function

For the remainder of the paper we will regard M0 and M1 as fixed subsets
of Nk satisfying |M0| + |M1| = k and (3) but not (5). This implies that the
Green’s function G and the coefficients wi j from (4) are also fixed.

We begin with an argument that counts the zeros of G and its partial
derivatives.

Proposition 2.1 Let t be in (0, 1) and set g(x) = G(x, t). Then for 0 ≤ i ≤
k − 1,

(a) g(x) 6= 0 for x ∈ (0, 1),
(b) g(i)(0) = 0 if and only if i ∈M0, and
(c) g(i)(1) = 0 if and only if i ∈M1.

Proof. From the formula (4) it is clear that g has k− 2 continuous deriva-
tives and that g(k−2) is not differentiable. In particular, none of g, g′, . . . , g(k−2)
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is identically zero. Thus if we let Si be the (closed) support of g(i), then Si
is not empty. Since g is a polynomial on [0, t] and on [t, 1], Si is one of [0, 1],
[0, t], or [t, 1].

Let zi be the number of zeros of g(i) in Si. Take Li to be 1 if g(i) has a
zero at the left endpoint of Si and 0 otherwise. Take Ri to be 1 if g(i) has a
zero at the right endpoint of Si and 0 otherwise.

We have the trivial inequality

z0 ≥ L0 +R0. (8)

If 0 < i ≤ k − 2 then g(i−1) is constant off Si so the zi−1 zeros of g(i−1)

that lie in Si−1 are, in fact, in Si. By the Mean Value Theorem, g(i) has at
least zi−1 − 1 zeros in the interior of Si. Thus

zi ≥ zi−1 − 1 + Li +Ri, 0 < i ≤ k − 2. (9)

If Li = 0 then either g(i)(0) 6= 0 or Si = [t, 1] and g(i)(t) 6= 0. The latter is
impossible since g(i) is continuous. Since g is a section of the Green’s function
of the BVP (2), g must satisfy the boundary conditions, (see, for example, [2,
p165]) so the former implies that i /∈M0. Thus

Li ≥ χM0(i), 0 ≤ i ≤ k − 2. (10)

Similarly,
Ri ≥ χM1(i), 0 ≤ i ≤ k − 2. (11)

Now the graph of g(k−2) is a line segment on [0, t] and another line segment
on [t, 1] so it has at most two zeros in its support, that is zk−2 ≤ 2. If k−1 ∈M0

then g(k−1)(0) = 0 so g(k−2) is constant on [0, t]. Whether the constant is zero
or non-zero there is no contribution to zk−2 from [0, t] so in this case zk−2 ≤ 1.
Similarly, if k − 1 ∈ M1 then zk−2 ≤ 1. It would violate the Pólya condition
(3) for k − 1 to be in both M0 and M1 so we may conclude that

2 ≥ zk−2 + χ
M0(k − 1) + χ

M1(k − 1). (12)

Adding the inequalities (8), (9), (10), (11), and (12) and using the fact
that

k−1∑
i=0

(χM0(i) + χ
M1(i)) = |M0|+ |M1| = k,

we get the trivial inequality 2 ≤ 2. It follows that the inequalities (8), (9),
(10), (11), and (12) are actually equalities.

Suppose that S0 = [0, t]. Then S1 = . . . = Sk−2 = [0, t] and, by continuity,
R0 = R1 = . . . = Rk−2 = 1. Equality in (11) implies that {0, 1, . . . , k − 2} ⊂
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M1. Also, since Sk−2 = [0, t], the only zero of g(k−2) in Sk−2 is at x = t.
Thus zk−2 = 1 and g(k−1)(0) 6= 0 so k − 1 /∈ M0. Equality in (12) implies
that k − 1 ∈ M1 as well and we have Nk ⊂ M1 a case which was specifically
excluded. We conclude that S0 6= [0, t]. Similarly S0 6= [t, 1] so S0 = [0, 1].

Now equality in (8) implies that g has no zero in the interior of S0 = [0, 1]
which is statement (a).

If i ∈M0 then as we have noted, standard properties of Green’s functions
show that g(i)(0) = 0. On the other hand, if i /∈ M0 then equality in (10)
implies that Li = 0 and as argued above, g(i)(0) 6= 0. This proves statement
(b), and (c) follows similarly.

Corollary 2.2 If i < a then wi j = 0 so x−aG(x, t) is a polynomial when
x ≤ t. Also (1− x)−bG(x, t) is a polynomial when x ≥ t.

Proof. With t and g as in Proposition 2.1 and x ≤ t, the formula (4) becomes

g(x) =
k−1∑
i=0

k−1∑
j=0

wi j
xi

i!
tj

j!
.

Proposition 2.1(b) and the definition of a show that g(0) = g′(0) = . . . =
g(a−1)(0) = 0, which is,

k−1∑
j=0

wi j
tj

j!
= 0 for i < a.

Since this holds for all t in (0, 1), wi j = 0 for i < a and it is immediate that
x−aG(x, t) is a polynomial when x ≤ t. A similar argument using Proposi-
tion 2.1(c) shows that (1− x)−bG(x, t) is a polynomial when x ≥ t.

For our next application of Proposition 2.1, we introduce the BVP which
is adjoint to (2). Let M∗0 = {i ∈ Nk : k − 1 − i /∈ M0} and M∗1 = {i ∈ Nk :
k − 1− i /∈M1}. The boundary value problem adjoint to (2) is

v(k) = f ; v(i)(0) = 0 for i ∈M∗0 , v(i)(1) = 0 for i ∈M∗1 .

The transformation (M0,M1)→ (M∗0 ,M
∗
1 ) is easily visualized in terms of the

matrix E. To construct the incidence matrix E∗ for (M∗0 ,M
∗
1 ), reverse each

row of E and interchange 0’s and 1’s. So if

E =
(

1 1 1 0 1 0
0 1 0 1 0 0

)
then E∗ =

(
1 0 1 0 0 0
1 1 0 1 0 1

)
.

It is easy to see that (M∗0 ,M
∗
1 ) satisfies the Pólya condition (3). The numbers

a∗, b∗, c∗, and d∗ defined for (M∗0 ,M
∗
1 ) as in Definition 1.1 are immediately
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seen to satisfy a∗ = c, b∗ = d, c∗ = a, and d∗ = b. The Green’s function for
the adjoint BVP is

G∗(x, t) = G(t, x) =
(t− x)k−1

(k − 1)!
χ

(0,t)(x) +
k−1∑
i=0

k−1∑
j=0

wi j
ti

i!
xj

j!
.

(See [5].) Applying Proposition 2.1 to the adjoint problem gives the next
corollary.

Corollary 2.3 If j < c then wi j = (−1)j+1δi+j,k−1. (Here δ is the Kronecker
δ-symbol.)

Proof. Let t be in (0, 1) and set g∗(x) = G∗(x, t). If x < t we have

g∗(x) =
(t− x)k−1

(k − 1)!
+
k−1∑
i=0

k−1∑
j=0

wi j
ti

i!
xj

j!
.

Proposition 2.1(b) and the relation a∗ = c imply that g∗(0) = g∗′(0) = . . . =
g∗(c−1)(0) = 0, which is,

(−1)jtk−1−j

(k − 1− j)!
+
k−1∑
i=0

wi j
ti

i!
= 0 for j < c.

Since this polynomial vanishes for all t in (0, 1), all coefficients are zero. That
is,

(−1)j

i!
δi+j,k−1 +

wi j
i!

= 0 for j < c,

which completes the proof.

Corollary 2.4 When x ≤ t, x−a(1− t)−dG(x, t) is a polynomial.

Proof. We have already seen that x−aG(x, t) is a polynomial when x ≤ t
and the last assertion of Corollary 2.2, applied to the adjoint BVP shows that
(1−t)−dG(x, t) is also a polynomial when x ≤ t. The conclusion follows easily.

There is one more ingredient we need before proceeding to estimate the ker-
nel G(x, t). In the next proposition we investigate the behaviour of x−aG(x, t)
as x→ 0.

Proposition 2.5 Let h(t) =
∑k−1
j=0 wa j

tj

j! . Then for 0 ≤ i ≤ k − 1,
(a) h(t) 6= 0 for t in (0, 1),
(b) h(i)(0) = 0 if and only if i ∈M∗0 when i < k − 1− a,
(c) h(k−1−a)(0) 6= 0,
(d) h(i)(1) = 0 if and only if i ∈M∗1 .
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Proof. In view of Corollary 2.2 we may define

H(x, t) = x−a
(
G(x, t)− (x− t)k−1

(k − 1)!
χ

(0,x)(t)
)

=
k−1∑
i=a

k−1∑
j=0

wi j
xi−a

i!
tj

j!

and note that h(t) = H(0, t).
Since H(x, t) is a polynomial, it is clear that

h(i)(0) = lim
x→0

[(
∂

∂t

)i
H(x, t)

∣∣∣∣∣
t=0

]

= lim
x→0

[
x−a

(
∂

∂t

)i
G(x, t)

∣∣∣∣∣
t=0

− (−1)ixk−1−i−a

(k − 1− i)!

]
.

For each fixed x, G(x, t) is a section of the Green’s function for the adjoint
BVP so if i ∈M∗0 then

(
∂
∂t

)i
G(x, t)

∣∣∣
t=0

= 0. For such an i we have

h(i)(0) = lim
x→0
− (−1)ixk−1−i−a

(k − 1− i)!
=
{

0, if i < k − 1− a
(−1)k−a/a!, if i = k − 1− a .

This proves (c) and the “if” part of (b).
At the other endpoint we have, if i ∈M∗1 ,

h(i)(1) = lim
x→0

[(
∂

∂t

)i
H(x, t)

∣∣∣∣∣
t=1

]
= lim
x→0

[
x−a

(
∂

∂t

)i
G(x, t)

∣∣∣∣∣
t=1

]
= 0

so the “if” part of (d) holds as well.
Let T = {i ∈M∗0 : i < k − 1− a}. The definition of c∗ (which is a) shows

that k − 1 − a is the largest element of M∗0 . Thus T has exactly one fewer
element than M∗0 .

So far we have shown that h satisfies the boundary conditions h(i)(0) = 0,
for i ∈ T , and h(i)(1) = 0, for i ∈ M∗1 . The remainder of the proof is similar
to the proof of Proposition 2.1.

Let z∗i be the number of zeros of h(i) in its support. Since h(i) is a polyno-
mial, its support is all of [0, 1] unless h(i) ≡ 0. As we have seen h(k−1−a)(0) 6= 0
so h(i) 6≡ 0 for i ≤ k − 1− a.

For i = 0 we have the obvious inequality

z∗0 ≥ χT (0) + χ
M∗1

(0). (13)

If h(i) 6≡ 0 and 0 < i ≤ k − 1 then as in Proposition 2.1 we observe that
the number of zeros of h(i) in (0, 1) is at least z∗i−1 − 1 and, adding in the
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boundary zeros, we have

z∗i ≥ z∗i−1 − 1 + χ
T (i) + χ

M∗1
(i). (14)

If h(i) ≡ 0 then we have i > k− 1− a so i /∈ T . Also, both z∗i and z∗i−1 are
zero. It follows that (14) holds in this case as well, reducing to 0 ≥ −1+χM∗1 (i).

Since the degree of h is at most k − 1 we must have

0 = z∗k−1. (15)

Adding the inequality (13) and the inequalities (14) for 1 ≤ i ≤ k − 1 we
have

z∗0 + z∗1 + . . .+ z∗k−1 ≥ z∗0 + . . .+ z∗k−2 − (k − 1) +
k−1∑
i=0

(
χ
T (i) + χ

M∗1
(i)
)

and, applying (15), this simplifies to

0 ≥ −(k − 1) + (|T |+ |M∗1 |) = −(k − 1) + (k − 1) = 0.

Thus we have equality in (13) and in (14) for 1 ≤ i ≤ k − 1.
Equality in (13) proves that h has no interior zeros which is (a).
If h(i) 6≡ 0, equality in (14) means that h(i) has no boundary zeros except

those accounted for by the terms χT (i) and χM∗1 (i). Hence the “only if” parts
of (b) and (d) hold when h(i) 6≡ 0.

If h(i) ≡ 0 then of course both h(i)(0) = 0 and h(i)(1) = 0. As we have
seen, i > k − 1 − a in this case so the “only if” part of (b) holds vacuously.
Equality in (14) when h(i) ≡ 0 means that χM∗1 (i) = 1 so i ∈ M∗1 and the
“only if” part of (d) holds as well. This completes the proof.

Corollary 2.6 If a+ c = k then wa c−1 6= 0 and if a+ c < k then wa c 6= 0.

Proof. If a + c = k then Proposition 2.5(c) states that h(c−1)(0) 6= 0. This
means that wa c−1 6= 0.

It is impossible for a+c = k−1 so if a+c < k we have c < k−1−a. Now by
the definition of a∗ (which is equal to c) we have c /∈M∗0 so Proposition 2.5(b)
states that h(c)(0) 6= 0. This means that wa c 6= 0.

We now proceed with the estimate of the Green’s function.
Proof of Theorem 1.2. To reduce the number of estimates required we

introduce the symmetric BVP. Let M̂0 = M1 and M̂1 = M0. This just inter-
changes the rows of the incidence matrix so it is clear that the Pólya condition
(3) still holds. It is easy to see that â = b, b̂ = a, ĉ = d, d̂ = c, and indeed that
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Â = B, B̂ = A, Ĉ = D, and D̂ = C. The Green’s function of the symmetric
BVP is given by Ĝ(x, t) = G(1− x, 1− t). (See [5].)

It is enough to prove Theorem 1.2 under the restriction that x+t ≤ 1 since
if (6) and (7) are restricted to x+ t ≤ 1 and applied to the Green’s function,
Ĝ(x, t), of the symmetric BVP they become

c1|G(1− x, 1− t)| ≤ xb(1− x)AtD(1− t)c ≤ c2|G(1− x, 1− t)|,

for 0 < x < t ≤ 1− x, and

c1|G(1− x, 1− t)| ≤ xB(1− x)atd(1− t)C ≤ c2|G(1− x, 1− t)|,

for 0 < t < x ≤ 1− t. Replacing x by 1− x and t by 1− t we recover (7) and
(6) for the original Green’s function G(x, t) but restricted to x+ t ≥ 1.

A further reduction shows that it is enough to prove statement (6) since
(7) is just (6) applied to the adjoint BVP.

So to complete the proof we must establish (6) under the restriction x+t ≤
1. To do this, it is enough to prove the following five statements.

S1: x−a(1 − x)−Bt−C(1 − t)−d|G(x, t)| is continuous when 0 ≤ x ≤ t ≤
1 − x except possibly at (x, t) = (0, 0). (Strictly speaking we mean that this
function, defined on the open set, extends continuously to the closed set with
perhaps one exceptional boundary point.)

S2: 0 < x−a(1− x)−Bt−C(1− t)−d|G(x, t)| <∞ for 0 < x ≤ t ≤ 1− x.
S3: 0 < limx→0 x

−a(1− x)−Bt−C(1− t)−d|G(x, t)| <∞ for 0 < t < 1.
S4: 0 < lim(x,t)→(0,1) x

−a(1− x)−Bt−C(1− t)−d|G(x, t)| <∞.
S5: x−a(1− x)−Bt−C(1− t)−d|G(x, t)| is bounded above and below (away

from 0) in some neighbourhood of (0, 0) when 0 < x ≤ t.
On the set 0 ≤ x ≤ t ≤ 1−x, Corollary 2.4 shows that x−a(1− t)−dG(x, t)

is a polynomial, and the function (1 − x)−Bt−C is continuous on this set
except at (0, 0). The first statement follows. Proposition 2.1(a) proves S2
and Proposition 2.5(a) proves S3. Proposition 2.5(d) and the definition of b∗

(which is d) imply that

h(1) = h′(1) = . . . = h(d−1)(1) = 0 and h(d)(1) 6= 0

so (1− t)−dh(t) is a polynomial in the variable 1− t with a non-zero constant
term. Thus, for x ≤ t, x−a(1− t)−dG(x, t) is a polynomial in the variables x
and 1− t with a non-zero constant term. This proves S4.

We prove S5 in two cases. First suppose that a+ c < k. In this case C = c
so it suffices to prove that x−at−cG(x, t) has a non-zero limit as (x, t) → 0
with 0 < x ≤ t. By Corollary 2.6, wa c/(a!c!) is non-zero. We estimate as
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follows:∣∣∣∣G(x, t)
xatc

− wa c
a!c!

∣∣∣∣ =

∣∣∣∣∣∣
k−1∑
i=a

k−1∑
j=0

wi j
xi−a

i!
tj−c

j!

− wa c
a!c!

∣∣∣∣∣∣
≤
k−1∑
i=a

c−1∑
j=0

|wi j |
xi−a

i!
tj−c

j!
+

k−1∑
i=a+1

|wi c|
xi−a

i!c!
+
k−1∑
i=a

k−1∑
j=c+1

|wi j |
xi−a

i!
tj−c

j!
.

By Corollary 2.3, wi j = (−1)j+1δi+j,k−i for j < c so this becomes

k−1∑
i=a

xi−a

i!
tk−1−i−c

(k − 1− i)!
+

k−1∑
i=a+1

|wi c|
xi−a

i!c!
+
k−1∑
i=a

k−1∑
j=c+1

|wi j |
xi−a

i!
tj−c

j!
.

Now, 0 < x ≤ t and i−a ≥ 0 so in the first term, xi−atk−1−i−c ≤ tk−1−a−c ≤ t.
The last inequality is justified because 0 < t < 1 and k−1−a− c ≥ 1. (Recall
that a + c = k − 1 is impossible.) In the second term xi−a ≤ x ≤ t since
i ≥ a+ 1. In the third term we have i− a ≥ 0 and j ≥ c+ 1 so xi−atj−c ≤ t
as well. Thus the entire sum is dominated by a constant multiple of t and so
it tends to 0 as t does. This completes the case a+ c < k.

In the second case, a+ c = k, we do not have continuity at (0, 0) in general
so the argument is more delicate. We note that a > 0 since otherwise (M0,M1)
would satisfy (5) which is prohibited. Recall that in this case C = c− 1.

x−at−CG(x, t) =
k−1∑
i=a

k−1∑
j=0

wi j
xi−a

i!
tj−c+1

j!

=
k−1∑
i=a

(−1)k−i
xi−a

i!
tk−i−c

(k − 1− i)!
+
k−1∑
i=a

k−1∑
j=c

wi j
xi−a

i!
tj−c+1

j!

where we have used Corollary 2.3 again to simplify wi j for j < c. The second
term goes to zero with t since xi−atj−c+1 ≤ t for each i and j. It remains
to show that the first term is bounded above and below in absolute value as
(x, t)→ (0, 0).

Writing x as st for some s ∈ [0, 1] and using the hypothesis a+ c = k, the
first term simplifies to

k−1∑
i=a

(−1)k−i
si−a

i!(k − 1− i)!
(16)

which is continuous in s and hence bounded above in absolute value on [0, 1].
To show that it is also bounded below in absolute value it is enough to show
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that it has no zero in [0, 1]. At s = 0 the value is (−1)k−a/(a!(k−1−a)!) 6= 0 so
we may complete the argument by recognizing (16) as (−1)k−ask−1−ark−1(s)
where rn is the function defined in the following lemma. This completes the
proof.

Lemma 2.7 Suppose a > 0 and 0 < s ≤ 1. For all n ≥ a,

rn(s) = (−1)n−a
n∑
i=a

(−s)i−n

i!(n− i)!
> 0.

Proof. For n = a we have ra(s) = 1/a! > 0. Suppose rn(s) > 0 when 0 < s ≤ 1
for some n ≥ a. Then r′n+1(s) = −rn(s)/s2 < 0 so, for 0 < s ≤ 1,

rn+1(s) ≥ rn+1(1) =
(−1)n−a

n!

n∑
i=a

(
n

n− i

)
(−1)n−i =

1
n!

(
n− 1
n− a

)
> 0.

The last equality is an identity for binomial coefficients. See, for example, [13,
p16].

The author would like to thank Alois Kufner for the personal introduction
to this problem received during the latter’s visit to the University of Western
Ontario in May of 1995.
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