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Abstract. A sufficient condition for the convexity of a finite product of positive definite
quadratic forms is given in terms of the condition numbers of the underlying matrices. When only
two factors are involved the condition is also necessary. This complements and improves a result
recently obtained by Zhao [Convexity Conditions and the Legendre-Fenchel Transform for the Prod-
uct of Finitely Many Positive Definite Quadratic Forms, Applied Mathematics and Optimization,
Volume 62, (2010) Number 3, 411-434]. As a special case, a necessary and sufficient condition is
given for the Kantorovich function (xTAx)(xTA−1x), where A is positive definite, to be convex.
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1. Introduction. Given a function h : Rn → R, its Legendre-Fenchel conjugate
(LF-conjugate for short), which is also widely referred to as the Legendre-Fenchel
transform of h [1, 2, 4, 6, 8], is defined as,

h∗(x) = sup
y∈Rn

xT y − h(y).

The LF-conjugate has a significant impact in many areas. It plays an essential role in
developing the convex optimization theory and algorithms (e.g., [3, 5, 12]); it is also
widely used in matrix analysis and eigenvalue optimization [9, 10, 11].

In this paper, we consider finite products of positive definite quadratic forms. If
A is a real symmetric positive definite matrix we let qA denote the quadratic form

qA(y) =
1

2
yTAy.

It is easy to verify that qA is a convex function on Rn, and well known (see, e.g., [12])
that the LF-conjugate of qA is also a positive definite quadratic form; specifically,

q∗A(y) =
1

2
yTA−1y.

From a fast computation and practical application point of view, it is interesting and
important to know the LF-conjugate of the product of two positive definite quadratic
forms. This problem was posed by Hiriart-Urruty as an open question in the field of
nonlinear analysis and optimization [7] and recently studied by Y. B. Zhao in [13].
Zhao also considered products of finitely many positive definite quadratic forms in
[14]. Before introducing his result, we need to introduce some notation.

We write A � 0 to mean that A is a real symmetric positive definite matrix,

and let κ(A) denote the condition number of A; i.e., κ(A) = λmax(A)
λmin(A) , the ratio of its
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largest and smallest eigenvalues. Fix m ≥ 2, n× n matrices A1, . . . , Am � 0, and let
f : Rn → R be the product qA1

. . . qAm
, i.e.,

f(y) =

m∏
i=1

1

2
yTAiy.

For f to be a convex function on Rn it is necessary and sufficient that the Hessian
matrix ∇2f(y) of f be positive semi-definite at each point y. For y 6= 0, the gradient
and the Hessian matrix of f are given by,

∇f(y) = 2f(y)

m∑
i=1

Aiy

yTAiy
, ∇2f(y) = 2f(y)

 m∑
i=1

Ai
yTAiy

+ 2

m∑
i=1

∑
j 6=i

Aiyy
TAj

yTAiyyTAjy

 .

Since f(y) > 0 whenever y 6= 0, the convexity of f reduces to showing that

m∑
i=1

xTAix

yTAiy
+ 2

m∑
i=1

∑
j 6=i

xTAiy

yTAiy

xTAjy

yTAjy
≥ 0(1.1)

for all x, y ∈ Rn with y 6= 0. (When y = 0, ∇2f(0) = 0 is positive semi-definite for
any choice of A1, . . . , Am.)

In Theorem 3.6 of [14], Zhao gave an explicit formula for the LF-conjugate of f ,
provided f is known to be convex. So it is important to have simple, easily verified
conditions that ensure the convexity of f . Zhao obtained the following sufficient
condition for the convexity of f .

Proposition 1.1. [14] Let Ai � 0, i = 1, · · · ,m be n× n matrices. If

κ(A
−1/2
j AiA

−1/2
j ) ≤

√
4m− 2 + 2√
4m− 2− 2

for all i, j = 1, · · · ,m, i 6= j,

then the product of m quadratic forms f =
∏m
i=1 qAi

is convex.
As a consequence of our main result, Theorem 2.3, we give the following improve-

ment of Proposition 1.1. The proof will be given in the next section.
Theorem 1.2. Let Ai � 0, i = 1, · · · ,m be n× n matrices. If

κ(A
−1/2
j AiA

−1/2
j ) ≤

(√
2m− 2 + 1√
2m− 2− 1

)2

for all i, j = 1, · · · ,m, i 6= j,(1.2)

then the product of m quadratic forms f =
∏m
i=1 qAi

is convex. If m = 2 the condition
(1.2) is also necessary for the convexity of f .

Remark. For m ≥ 2,

2m− 1 <
√

(2m− 1)2 + [4(m− 1)2 − 1] =
√

4m− 2
√

2m− 2,

so (√
2m− 2 + 1√
2m− 2− 1

)2

=
2m− 1 + 2

√
2m− 2

2m− 1− 2
√

2m− 2
>

√
4m− 2 + 2√
4m− 2− 2

.

This shows that (1.2) is strictly weaker than the hypothesis of Proposition 1.1. When
m = 2, the upper bound in Theorem 1.2, i.e., 17 + 12

√
2, was already known to be
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the greatest possible right-hand-side value such that (1.2) could ensure the convexity
of the product of two positive definite quadratic forms. See Remark 2.7 in [14].

Corollary 1.3. If A � 0 is an n × n matrix, then the Kantorovich function
(xTAx)(xTA−1x), where x ∈ Rn, is convex if and only if κ(A) ≤ 3 + 2

√
2.

Proof. Let m = 2, A1 = A and A2 = A−1 in Theorem 1.2. The condition

κ(A
−1/2
2 A1A

−1/2
2 ) ≤ (3 + 2

√
2)2 is equivalent to κ(A2) ≤ (3 + 2

√
2)2, i.e., κ(A) ≤

3 + 2
√

2.
The result of the corollary in the case n = 2, as well as the necessity of the

condition on κ for general n, was given in [15].

2. Main Results. We start with a simple but useful lemma. It may be viewed
as a sharp version of Theorem 1.2 in the case of two 2× 2 matrices.

Lemma 2.1. If κ ≥ 1 and η = ((
√
κ− 1)/(

√
κ+ 1))2 then

η(κ+ s2)(1 + t2) + η(κ+ t2)(1 + s2) + 2(κ+ st)(1 + st) ≥ 0

for all s, t ∈ R. Equality holds if and only if s = −t = ±κ1/4 or κ = 1 and st = −1.
Proof. For any s, t, and z we may factor out z2 + 1 and complete the square on

z to get,

(z − 1)2(z2 + s2)(1 + t2) + (z − 1)2(z2 + t2)(1 + s2) + 2(z + 1)2(z2 + st)(1 + st)

= (z2 + 1)(4 + (s+ t)2)

((
z − (s− t)2

4 + (s+ t)2

)2

+
4(s+ t)2(1 + st)2

(4 + (s+ t)2)2

)
.

The second expression is non-negative and vanishes if and only if either s+ t = 0 and
z = s2, or st = −1 and z = 1. In the first expression, divide through by (z + 1)2 and
take z =

√
κ to obtain the conclusion of the lemma.

The next lemma essentially gives a reduction of the case of two n×n matrices to
the case of two 2× 2 matrices, and then applies the previous result.

Lemma 2.2. Suppose A,B � 0 are n× n matrices and let κ = κ(A−1/2BA−1/2).
Then for x, y ∈ Rn, with y 6= 0, we have

2
xTAy

yTAy

xTBy

yTBy
≥ −

(√
κ− 1√
κ+ 1

)2(
xTAx

yTAy
+
xTBx

yTBy

)
.

The inequality is sharp.
Proof. Since A−1/2BA−1/2 � 0, there exists an orthogonal matrix U such that

UTA−1/2BA−1/2U is a diagonal matrix with diagonal entries λ1 ≥ . . . ≥ λn > 0.
Note that κ = λ1/λn. Let η = ((

√
κ−1)/(

√
κ+1))2. If we replace x by A−1/2Ux and

y by A−1/2Uy, an invertible change of variable, the statement of the lemma reduces
to showing,

2

∑n
i=1 xiyi∑n
i=1 y

2
i

∑n
j=1 λjxjyj∑n
j=1 λjy

2
j

≥ −η

(∑n
i=1 x

2
i∑n

i=1 y
2
i

+

∑n
j=1 λjx

2
j∑n

i=j λjy
2
j

)
,(2.1)

for all x and y in Rn with y 6= 0. Multiplying through to eliminate the denominators,
we see that this is equivalent to showing

∑n
j=1 λjrj ≥ 0, where

rj = ηx2j

n∑
i=1

y2i + ηy2j

n∑
i=1

x2i + 2xjyj

n∑
i=1

xiyi.
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Because
∑n
j=1 λjrj is continuous in both x and y, it is enough to show that it is

non-negative for all x and y such that x1, xn, y1, yn are all non-zero. Fix x and y
satisfying that condition and partition {1, . . . , n} into subsets I1 and I2 as follows:
1 ∈ I1, n ∈ I2 and for 2 ≤ j ≤ n − 1, j ∈ I1 if ri ≤ 0 and j ∈ I2 otherwise. This
ensures that λjrj ≥ λ1rj for j ∈ I1 and λjrj ≥ λnrj for j ∈ I2. Thus,

n∑
j=1

λjrj ≥ λ1
∑
j∈I1

rj + λn
∑
j∈I2

rj .

Now for p = 1, 2, define up and vp by,

u2p =

(∑
i∈Ip x

2
i∑

i∈Ip y
2
i

)1/2 ∑
i∈Ip

xiyi and v2p =

(∑
i∈Ip y

2
i∑

i∈Ip x
2
i

)1/2 ∑
i∈Ip

xiyi,

ensuring that up ≥ 0 and choosing the sign of vp so that upvp =
∑
i∈Ip xiyi. The

Cauchy-Schwarz inequality shows u2p ≤
∑
i∈Ip x

2
i and v2p ≤

∑
i∈Ip y

2
i , and it follows

from the definition of rj that,∑
j∈Ip

rj ≥ ηu2p(v21 + v22) + ηv2p(u21 + u22) + 2upvp(u1v1 + u2v2).

These estimates complete the proof, as

n∑
j=1

λjrj ≥ λ1
∑
j∈I1

rj + λn
∑
j∈I2

rj

= λn

(
κ
∑
j∈I1

rj +
∑
j∈I2

rj

)
≥ λn(η(κu21 + u22)(v21 + v22) + η(κv21 + v22)(u21 + u22)

+2(κu1v1 + u2v2)(u1v1 + u2v2))

= λnu
2
1v

2
1 [η(κ+ s2)(1 + t2) + η(κ+ t2)(1 + s2) + 2(κ+ st)(1 + st)],

where s = u2/u1 and t = v2/v1. The last expression is non-negative by Lemma 2.1.
To see that the inequality of the lemma is sharp it is enough to find (x1, . . . , xn)

and (y1, . . . , yn) such that equality is achieved in (2.1). Since κ = λ1/λn it is routine
to verify that the choice, x1 = 1, xn = κ1/4, y1 = 1, yn = −κ1/4 and x2 = . . . =
xn−1 = y2 = . . . = yn−1 = 0 will suffice.

The following theorem gives the main result of the paper, a readily computed
condition for a product of positive definite quadratic forms to be a convex function.
The condition is expressed in terms of the condition numbers of the matrices involved.

Theorem 2.3. Let A1, A2, . . . , Am be real symmetric positive definite n × n

matrices and let κi,j = κ(A
−1/2
i AjA

−1/2
i ) for i, j = 1, . . . ,m. If

m∑
j=1

(√
κi,j − 1
√
κi,j + 1

)2

≤ 1

2
(2.2)

for i = 1, 2, . . . ,m, then f =
∏m
i=1 qAi

is convex. If m = 2 the condition is also
necessary for the convexity of f .
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Proof. First note that κi,i = 1. Next, observe that for i 6= j,

A
−1/2
i AjA

−1/2
i =

(
A

1/2
j A

−1/2
i

)−1 (
A
−1/2
j AiA

−1/2
j

)−1 (
A

1/2
j A

−1/2
i

)
.

That is, A
−1/2
i AjA

−1/2
i is similar to the inverse of A

−1/2
j AiA

−1/2
j . Similar matrices

have the same eigenvalues and hence the same condition number. Moreover, for
any matrix A with positive eigenvalues, λmin(A−1) = 1/λmax(A) and λmax(A−1) =
1/λmin(A) so κ(A−1) = κ(A). It follows that κi,j = κj,i. With this in mind, let

ηi,j =
(√

κi,j−1√
κi,j+1

)2
and apply Lemma 2.2 to get

m∑
i=1

xTAix

yTAiy
+ 2

m∑
i=1

∑
j 6=i

xTAiy

yTAiy

xTAjy

yTAjy

≥
m∑
i=1

xTAix

yTAiy
−

m∑
i=1

∑
j 6=i

ηi,j

(
xTAix

yTAiy
+
xTAjx

yTAjy

)

=

m∑
i=1

xTAix

yTAiy
− 2

m∑
i=1

(∑
j 6=i

ηi,j

)
xTAix

yTAiy

=

m∑
i=1

xTAix

yTAiy

(
1− 2

m∑
j=1

ηi,j

)
≥ 0.

As pointed out in (1.1) this shows that f is convex.
If m = 2, the convexity of f implies, via (1.1), that

2
xTA1y

yTA1y

xTA2y

yTA2y
≥ −1

2

(
xTA1x

yTA1y
+
xTA2x

yTA2y

)
for all x and non-zero y. Combining this with the sharpness of the inequality of
Lemma 2.2 gives, (√

κ1,2 − 1
√
κ1,2 + 1

)2

≤ 1

2
,

showing that (2.2) is necessary for convexity.
Proof. Proof of Theorem 1.2. We verify the condition of the Theorem 2.3. Recall

that ηi,i = 0 and calculate as follows,

m∑
j=1

(√
κi,j − 1
√
κi,j + 1

)2

≤ (m− 1)

 √2m−2+1√
2m−2−1 − 1
√
2m−2+1√
2m−2−1 + 1

2

=
1

2
.

So (2.2) is satisfied and therefore f is convex. If m = 2, an easy calculation shows
that the conditions (1.2) and (2.2) coincide so (1.2) is also necessary for convexity.

Remark. The proof of Theorem 2.3 suggests the following weakening of condition
(2.2). Since

1

κ(Ai)

xTx

yT y
≤ xTAix

yTAiy
≤ κ(Ai)

xTx

yT y
,
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if we define,

L =

{
i :

m∑
j=1

ηi,j ≤
1

2

}
and G =

{
i :

m∑
j=1

ηi,j >
1

2

}

then the proof goes through with condition (2.2) replaced by,

∑
i∈L

1

κ(Ai)

(
1− 2

m∑
j=1

ηi,j

)
+
∑
i∈G

κ(Ai)

(
1− 2

m∑
j=1

ηi,j

)
≥ 0.(2.3)

This condition is weaker than (2.2) and still implies that f is convex, but is compli-
cated and rather unwieldy. It can be applied, however, as we see in the next example
where it is used to show that the condition (2.2) is not necessary when m > 2.

Example. With m = 3, take A1 and A2 to be 2× 2 identity matrices, and A3 to
be a 2 × 2 diagonal matrix with diagonal entries (3 + δ)2 and 1. Calculations show
that for sufficiently small positive δ, (2.2) fails but (2.3) holds. (Any positive δ < 0.18
will do.) Thus, the sufficient condition of Theorem 2.3 is not necessary for general m.
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