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Abstract. Simple and natural proofs are given for the characterization of embed-

dings of the cones of monotone functions between Lebesgue spaces with different

indices and general measures. Also, Hardy inequalities with general measures are
shown to break into two parts, the action of a Hardy operator on a single Lebesgue

space followed by an embedding for monotone functions. This decomposition is used

to provide simple new proofs of the known characterizations for the Hardy inequal-
ity and to give some new necessary and sufficient conditions for such inequalities to

hold. The characterization extends to Geometric Mean Inequalities and to Hardy

inequalities for negative indices.

1. Introduction: One Hardy Inequality

Fix a measure λ on R for which intervals are measurable and define

Λ(x) ≡
∫

(−∞,x]

dλ and Λ̄(x) ≡
∫

[x,∞)

dλ, x ∈ R.

Theorem 1.1. Let 1 < p < ∞. For all λ-measurable f ,(∫ ∣∣∣∣ 1
Λ(x)

∫
(−∞,x]

f dλ

∣∣∣∣p dλ(x)

)1/p

≤ p

p− 1

(∫
|f |p dλ

)1/p

.

Before we proceed to the proof of this inequality, a discussion of its significance is
in order. Between 1915 and 1934, G. H. Hardy proved this result for sequences, for
functions on the half line, and for functions in Lebesgue spaces with power weights.
From the early 1970’s onward a great many related results were established under
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2 GORD SINNAMON

the general heading of Hardy-type inequalities. This expansion has been primarily
concerned with providing easily verified necessary and sufficient conditions under
which the various increasingly general and complicated inequalities should hold.

I hope that the inequality above, which we will prove presently using only tech-
niques available in 1934, will help to simplify some of the work on Hardy-type
inequalities. There are no conditions to check, the inequality holds for all measures
for which the inner integral makes sense. Moreover, as we show in Section 3, this
is in some sense the only Hardy inequality that is needed since all others factor
through this one, with the other factor being an embedding for a cone of monotone
functions.

The other factor is not neglected. Section 2 contains a new and simple approach
to embeddings for such cones. As illustrations of the simplicity of the method,
related inequalities for the Geometric Mean Operator and Hardy-type inequalities
with negative indices are given in Section 4.

In such a large field it is difficult to give comprehensive references. We refer the
reader to the monographs [3] and [4] and the references therein.

Notation is quite standard. For 1 < p < ∞ we let p′ = p/(p − 1) and let Lp(λ)
be the Banach space of all λ-measurable functions f for which

‖f‖Lp(λ) ≡
(∫

|f |p dλ

)1/p

< ∞.

All integrals are over the real line unless otherwise specified. We write F ↓ or F ↑ to
indicate that the function F is in the collection of all non-negative, non-increasing
functions or all non-negative, non-decreasing functions, respectively. The constant
C may be different at different occurrences. The notation A ≈ B indicates that
there are constants c and C such that cA ≤ B ≤ CA.

Proof of Theorem 1.1. Let f∗ denote the non-increasing rearrangement of f with
respect to the measure λ. That is,

f∗(t) = inf{α > 0 : λ{y : |f(y)| > α} ≤ t}.

Observe that for each x ∈ R,
(
χ(−∞,x]

)∗ = χ(0,Λ(x)]. It is well known (see [1]) that
for λ-measurable functions f and h,∫

|f |p dλ =
∫ ∞

0

(f∗)p and
∣∣∣∣ ∫ fh dλ

∣∣∣∣ ≤ ∫ ∞

0

f∗h∗.

Applying the second of these with h = χ(−∞,x] yields

(1.1)
∣∣∣∣ 1
Λ(x)

∫
(−∞,x]

f dλ

∣∣∣∣ ≤ 1
Λ(x)

∫ Λ(x)

0

f∗ = (F ◦ Λ)(x)

where F (t) = 1
t

∫ t

0
f∗. Note that F is a non-negative, non-increasing function on

[0,∞). Since
λ{y : F (Λ(y)) > F (t)} ≤ λ{y : Λ(y) < t} ≤ t
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we have (F ◦ Λ)∗(t) ≤ F (t). Hardy’s inequality [2, Theorem 330] shows that∫
(F ◦ Λ)p dλ ≤

∫ ∞

0

(
1
t

∫ t

0

f∗
)p

dt ≤ (p′)p

∫ ∞

0

(f∗)p = (p′)p

∫
|f |p dλ.

Combining this with (1.1) completes the proof.

The Hardy averaging operator P and its dual Q, defined by

Pf(x) =
1

Λ(x)

∫
(−∞,x]

f dλ and Qf(x) =
∫

[x,∞)

f
dλ

Λ
,

will be central to our discussion so the remainder of the section will be devoted to
their properties, beginning with two obvious but important ones.

If f ≥ 0 then Qf ≥ 0 and Qf is non-increasing.

If f ≥ 0 is non-increasing then Pf ≥ 0 is non-increasing and f ≤ Pf .

Next we note that the Hardy inequality of Theorem 1.1 expresses the bounded-
ness of P and Q on the Lebesgue spaces Lp(λ).

Corollary 1.2. Suppose 1 < p < ∞. Then

‖Pf‖Lp(λ) ≤ p′‖f‖Lp(λ) and ‖Qf‖Lp(λ) ≤ p‖f‖Lp(λ)

for all f ∈ Lp(λ).

Proof. The first statement is just Theorem 1.1 and we deduce the second from
the first, with p replaced by p′, by employing a standard duality argument. If
‖h‖Lp′ (λ) ≤ 1 then∣∣∣∣ ∫ h(Qf) dλ

∣∣∣∣ = ∣∣∣∣ ∫ (Ph)f dλ

∣∣∣∣ ≤ ‖Ph‖Lp′ (λ)‖f‖Lp(λ) ≤ p‖f‖Lp(λ).

Taking the supremum over all such h completes the proof.

A simple calculation shows that PQ = P + Q but for some measures it may not
be the case that QP = P + Q. Indeed, we easily check that

(1.2) QPf(x) =

(∫
[x,∞)

dλ

Λ2

)∫
(−∞,x]

f(t) dλ(t) +
∫

[x,∞)

f(t)

(∫
[t,∞)

dλ

Λ2

)
dλ(t)

but the hoped-for reduction to Pf(x)+Qf(x) requires that Λ−2 integrate to Λ(x)−1

on [x,∞). This property obviously fails for finite measures, even for absolutely con-
tinuous measures where the Fundamental Theorem of Calculus may be employed.
However, it may also fail for certain infinite measures, for more subtle reasons. Of
course, integration shows that ∫

[x,∞)

dλ

Λ2
=

1
Λ(x)

,

and hence QP = P + Q, when λ is an infinite, absolutely continuous measure.
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Definition 1.3. Let 1 < p < ∞. We say λ ∈ Ip(∞) provided

Λ(x)1−p − Λ(∞)1−p ≤ C

∫
[x,∞)

Λ−p dλ

for some constant C. Similarly, λ ∈ Ip(−∞) provided

Λ̄(x)1−p − Λ̄(−∞)1−p ≤ C

∫
(−∞,x]

Λ̄−p dλ

for some constant C.

The class Ip(∞) includes all non-atomic measures and a great many others.
However, as we show in Example 4.4, not all measures are in Ip(∞).

The remark that motivated Definition 1.3 now yields

Lemma 1.4. If λ ∈ I2(∞) then for all f ≥ 0,

Pf + Qf ≤ C(QPf) +
1

Λ(∞)

∫
f dλ

for some constant C ≥ 1.

Proof. Using Definition 1.3 to continue the calculation (1.2) we have

C(QPf(x))

≥
(

1
Λ(x)

− 1
Λ(∞)

)∫
(−∞,x]

f(t) dλ(t) +
∫

[x,∞)

f(t)
(

1
Λ(t)

− 1
Λ(∞)

)
dλ(t)

= Pf(x) + Qf(x)− 1
Λ(∞)

∫
f dλ.

Clearly, we may take C ≥ 1 if desired.

We have seen that the operator Q produces non-increasing functions from non-
negative ones. Now we observe that the image under Q of the non-negative functions
is a large subset of the cone of non-increasing functions. The result follows from
Lemma 1.2 of [7] where it was given for non-decreasing functions.

Proposition 1.5. If F is a non-negative, non-increasing function then there exist
non-negative functions f1, f2, . . . such that Qfn(x) increases to F (x) for λ-almost
every x ∈ R.

Finally, we will need some properties of the level function fo. See [6, 7] for
details.

Proposition 1.6. If f is a non-negative λ-measurable function which is bounded
and compactly supported then there is a non-negative, non-increasing function fo

such that Pf ≤ P (fo) and ‖fo‖Lp(λ) ≤ ‖f‖Lp(λ) for 1 < p < ∞.
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2. Embedding the Cones of Monotone Functions

The first three theorems in this section give a complete description of when
the cone of non-increasing functions of one Lebesgue space is embedded in another
Lebesgue space. These results are known for absolutely continuous measures and for
sequences but the proofs given here are more general and much simpler. Theorems
2.1 and 2.2 apply for all measures on R and Theorem 2.3 applies in almost as great
a generality and thus gives a widely applicable version of the most popular and
most useful form of the embedding characterization.

The fact that Theorem 2.3 does not apply for all measures shows that certain
difficulties encountered in the known embeddings for sequence spaces but not in
those for weighted spaces are essential features of the theory. It also explains why
these problems are not encountered in the case of weighted spaces.

In the remaining three theorems of the section we collect the corresponding
results for the cone of non-decreasing functions.

Theorem 2.1. If 0 < p ≤ q < ∞ then

(2.1) sup
F↓

(∫
F q dµ

)1/q(∫
F p dλ

)1/p
= sup

x

(∫
(−∞,x]

dµ
)1/q

(∫
(−∞,x]

dλ
)1/p

Proof. Replacing F p by F in (2.1) readily reduces the assertion to the case p = 1 ≤
q. For each x ∈ R, χ(−∞,x] is non-increasing so one inequality is obvious. For the
other, fix a non-negative, non-increasing F and apply Proposition 1.5 to find fn ≥ 0
such that Qfn increases to F λ-almost everywhere. If A denotes the right-hand
side of (2.1) then by the Monotone Convergence Theorem and Minkowski’s integral
inequality,

(∫
F q dµ

)1/q

= lim
n→∞

(∫ (∫
[t,∞)

fn(x)
dλ(x)
Λ(x)

)q

dµ(t)

)1/q

≤ lim
n→∞

∫
fn(x)

(∫
(−∞,x]

dµ(t)

)1/q
dλ(x)
Λ(x)

≤ A lim
n→∞

∫
fn(x)

∫
(−∞,x]

dλ(t)
dλ(x)
Λ(x)

= A lim
n→∞

∫ ∫
[t,∞)

fn(x)
dλ(x)
Λ(x)

dλ(t)

= A

∫
F dλ.
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Theorem 2.2. If 0 < q < p < ∞ and 1/r = 1/q − 1/p then

(2.2) sup
F↓

(∫
F q dµ

)1/q(∫
F p dλ

)1/p
≈

∫ (∫
[x,∞)

dµ

Λ

)r/q

dλ(x)

1/r

.

Proof. We can extend the operators P and Q to measures. If µ and ν are measures
on R define

Ṗ µ(x) =
1

Λ(x)

∫
(−∞,x]

dµ and Q̇ν(t) =
∫

[x,∞)

dν

Λ
.

Clearly

Ṗ (fλ) = Pf, Q̇(gλ) = Qg, and
∫

(Ṗ µ)ν =
∫

(Q̇ν)µ.

Replacing F q by F in (2.2) reduces the assertion to the case q = 1 ≤ p. In this
case r/q = p′. If F is non-increasing and

(∫
F p dλ

)1/p ≤ 1 then F ≤ PF so

∫
F dµ ≤

∫
PF dµ =

∫
F (Q̇µ) dλ ≤

(∫
(Q̇µ)p′

dλ

)1/p′

and taking the supremum over all such F yields

sup
F↓

∫
F dµ(∫

F p dλ
)1/p

≤

∫ (∫
[x,∞)

dµ

Λ

)p′

dλ(x)

1/p′

For the converse, suppose that h ≥ 0 with
(∫

hp dλ
)1/p ≤ 1 and observe that

Q̇µ ≤ PQ̇µ to get ∫
(Q̇µ)h dλ ≤

∫
(PQ̇µ)h dλ =

∫
(PQh) dµ

Now PQh is non-increasing and, by Corollary 1.2, ‖PQh‖Lp(λ) ≤ pp′ so taking the
supremum over all h yields∫ (∫

[x,∞)

dµ

Λ

)p′

dλ(x)

1/p′

≤ pp′ sup
F↓

∫
F dµ(∫

F p dλ
)1/p

and completes the proof.

For all absolutely continuous measures and a great many others we have an
alternate characterization of the embedding. Notice that the term below involving
Λ(∞) is absent when Λ(∞) = ∞.
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Theorem 2.3. Suppose that λ ∈ I2(∞). If 0 < q < p < ∞ and 1/r = 1/q − 1/p
then

(2.3) sup
F↓

(∫
F q dµ

)1/q(∫
F p dλ

)1/p
≈

∫ ( 1
Λ(x)

∫
(−∞,x]

dµ +
1

Λ(∞)

∫
dµ

)r/q

dλ(x)

1/r

.

Proof. As before, reduce to the case q = 1 < p and note that r/q becomes p′. We
introduce the constant-valued operator I and its extension to measures by

If(x) =
1

Λ(∞)

∫
f dλ and İµ(x) =

1
Λ(∞)

∫
dµ.

Note that I ≡ 0 if Λ(∞) = ∞. By Hölder’s inequality∫
|If |p dλ = Λ(∞)1−p

∣∣∣∣ ∫ f

∣∣∣∣p ≤ ∫ |f |p dλ

so I is a bounded operator on Lp(λ) for 1 < p < ∞ and its norm is at most 1. It
is easy to check that ∫

(İµ)f dλ =
∫

If dµ.

If h ≥ 0 with ‖h‖Lp(λ) ≤ 1 then∫
((Ṗ + İ)µ)h dλ =

∫
((Q + I)h) dµ.

Since (Q + I)h is non-increasing and ‖(Q + I)h‖Lp(λ) ≤ p + 1 we may take the
supremum over all such h to get “≥” in (2.3).

If F is non-increasing and ‖F‖Lp(λ) ≤ 1 then F ≤ PF and Lemma 1.4 shows
that for some C ≥ 1,

PF ≤ PF + QF ≤ C(QPF ) + IF ≤ C(QPF ) + IPF ≤ C((Q + I)PF ).

Therefore ∫
F dµ ≤ C

∫
(Q + I)PF dµ = C

∫
(PF )((Ṗ + İ)µ) dλ.

Since ‖PF‖Lp(λ) ≤ p′, applying Hölder’s inequality and taking the supremum over
all such F gives us “≤” in (2.3) and completes the proof.

Theorem 2.3 does not hold without some restriction like λ ∈ I2(∞). If we have
the equivalence (2.3) for some measure λ, then by taking µ to be a single atom at
the point y we find that the supremum is easy to evalute directly and we obtain,
for q = 1,

Λ(y)−1/p ≈

(∫
[y,∞)

Λ−p′
dλ

)1/p′

+ Λ(∞)−1/p.

This implies that λ ∈ Ip′(∞). Example 4.4 shows that this condition is not vacuous.
Embeddings for non-decreasing functions follow in a completely analogous fash-

ion or by simply by applying the above results to the measure λ(−x). We record
the results below.
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Theorem 2.4. If 0 < p ≤ q < ∞ then

sup
F↑

(∫
F q dµ

)1/q(∫
F p dλ

)1/p
= sup

x

(∫
[x,∞)

dµ
)1/q

(∫
[x,∞)

dλ
)1/p

.

Theorem 2.5. If 0 < q < p < ∞ and 1/r = 1/q − 1/p then

sup
F↑

(∫
F q dµ

)1/q(∫
F p dλ

)1/p
≈

∫ (∫
(−∞,x]

dµ

Λ̄

)r/q

dλ(x)

1/r

.

Theorem 2.6. Suppose that λ ∈ I2(−∞). If 0 < q < p < ∞ and 1/r = 1/q − 1/p
then

sup
F↑

(∫
F q dµ

)1/q(∫
F p dλ

)1/p
≈

∫ ( 1
Λ̄(x)

∫
[x,∞)

dµ +
1

Λ(∞)

∫
dµ

)r/q

dλ(x)

1/r

.

3. Hardy Inequalities with Two Measures and Two Indices

Considerable effort has been devoted to understanding under what conditions the
Hardy operators are bounded from one Lebesgue space to another. The problem
has been quite well resolved, not only for spaces of functions and for sequence
spaces, but also for Lebesgue spaces with general measures. We recover most of
these results in this section but once again with very simple proofs. Some of the
equivalent conditions given are new in this generality.

The main contribution of this section, however, is to show that every Hardy
inequality may be viewed as a combination of the Hardy inequality of Theorem 1.1
and an embedding of a cone of monotone functions.

Let µ be a measure on R and consider the inequality

(3.1)
(∫ ∣∣∣∣∫ x

−∞
f dλ

∣∣∣∣q dµ(x)
)1/q

≤ C

(∫
|f |p dλ

)1/p

.

It is routine matter to check that (3.1) holds for all f if and only if it holds
for non-negative f . Therefore we will generally restrict ourselves to non-negative
f and drop the absolute value signs. Proposition 1.6 yields a further reduction by
showing that (3.1) holds for all non-negative functions if and only if it holds for all
non-negative, non-increasing functions.
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Lemma 3.1. Inequality (3.1) holds for all f if and only if it holds for all non-
negative, non-increasing f .

Proof. Suppose (3.1) holds for all non-negative, non-increasing f . For an arbitrary
function f we define fn = min(n, |f |)χ[−n,n], n = 1, 2, . . . , and note that the
functions fn increase to |f | pointwise as n → ∞. Applying Proposition 1.6 we
have(∫ (∫

(−∞,x]

fn dλ

)q

dµ(x)

)1/q

≤

(∫ (∫
(−∞,x]

fo
n dλ

)q

dµ(x)

)1/q

≤ C

(∫
(fo

n)p dλ

)1/p

≤ C

(∫
fp

n dλ

)1/p

and the Monotone Convergence Theorem completes the proof.

With this in hand we may prove inequality (3.1) by combining Theorem 1.1 with
the inequality

(3.2)
(∫ (∫ x

−∞
f dλ

)q

dµ(x)
)1/q

≤ C

(∫ (
1

Λ(x)

∫ x

−∞
f dλ

)p

dλ(x)
)1/p

.

Inquality (3.2) may be viewed as an embedding of monotone functions in two
different ways: If f is non-increasing and we take F to be Pf then F is also non-
increasing so (3.2) holds for all non-increasing f provided

(3.3)
(∫

F qΛq dµ

)1/q

≤ C

(∫
F p dλ

)1/p

, F ↓ .

If we take F to be ΛPf instead then F is non-decreasing for every f ≥ 0 so (3.2)
holds provided

(3.4)
(∫

F q dµ

)1/q

≤ C

(∫
F pΛ−p dλ

)1/p

, F ↑ .

As we see in Theorem 3.2 below, nothing is lost in using this two-step approach
to inequality (3.1) when the second step is chosen to be the embedding (3.3) of
non-increasing functions. (The first step is always Theorem 1.1.) This is not really
surprising since the Hardy inequality of Theorem 1.1 is easily seen to be reversible
for non-increasing functions.

When the second step is the embedding (3.4), of non-decreasing functions, noth-
ing is lost in the two-step approach provided λ ∈ Ip(∞). There may be some
loss for badly behaved measures. Specifically, it is possible to construct a pair of
measures λ and µ for which (3.1) holds but (3.4) fails. See Example 4.5.

Since there is no need to check conditions on the measure, the first approach is
preferred. We nevertheless, take the second approach as well, in Theorem 3.3, be-
cause it leads to conditions that are always sufficient for (3.1). For a very large class
of measures, including all non-atomic measures, the conditions are also necessary.
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Theorem 3.2. Suppose 1 < p < ∞ and 0 < q < ∞. Inequality (3.1) holds if and
only if (3.3) does.

Proof. If (3.3) holds then (3.2) holds for all non-increasing functions f . By Theorem
1.1 we have (3.1) for all non-increasing f and Lemma 3.1 shows that (3.1) holds
for all f . Conversely, if (3.1) holds then, because any non-increasing F satisfies
F ≤ PF , (3.3) follows immediately.

Theorem 3.3. Suppose 1 < p < ∞ and 0 < q < ∞. Then (3.1) holds whenever
(3.4) does. If λ ∈ Ip(∞) and Λ(∞) = ∞ then condition (3.4) is also necessary for
(3.1).

Proof. If (3.4) holds then (3.2) holds for all f ≥ 0 and in view of Theorem 1.1 we
have (3.1). For the converse we suppose that λ ∈ Ip(∞) and Λ(∞) = ∞ and define
the measure ν = Λ−pλ. Set N̄(x) =

∫
[x,∞)

dν,

P̄νf(x) =
1

N̄(x)

∫
[x,∞)

f dν and Q̄νf(x) =
∫

(−∞,x]

f
dν

N̄
.

By Definition 1.3 and the comments that precede Example 4.4 we have

N̄(x) ≈ Λ(x)1−p.

It follows that N̄(−∞) = ∞ and∫
(−∞,x]

N̄−2 dν ≈
∫

(−∞,x]

Λp−2 dλ ≈ Λ(x)p−1 ≈ N̄(x)−1.

Therefore ν ∈ I2(−∞) and by Lemma 1.4 every non-decreasing function F satisfies

F ≤ P̄νF ≤ CQ̄ν P̄νF

for some constant C. Therefore(∫
F q dµ

)1/q

≤
(∫

(Q̄ν P̄νF )q dµ

)1/q

=

(∫ (∫
(−∞,x]

P̄νFN̄−1 dν

)q

dµ(x)

)1/q

and since N̄−1 dν ≈ Λ−1 dλ we may use (3.1) to see that this is dominated by a
multiple of (∫ (

P̄νFΛ−1
)p

dλ

)p

=
(∫

(P̄νF )p dν

)1/p

.

Since P̄ν is a bounded operator on Lp(ν) this is dominated in turn by a multiple of(∫
F p dν

)1/p

=
(∫

F pΛ−p dλ

)1/p

.

This completes the proof.

Theorems 3.2 and 3.3 reduce the Hardy inequality (3.1) to problems that we have
solved in Section 2. It is nevertheless interesting to directly observe the conditions
one obtains by this reduction and to compare them with known results.

First we look at the conditions obtained by factoring the Hardy inequality
through an embedding of the cone of non-increasing functions. The next three
results follow directly from Theorem 3.2 and Theorems 2.1, 2.2, and 2.3.
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Corollary 3.4. Suppose 1 < p ≤ q < ∞. Inequality (3.1) holds if and only if

sup
x

(∫
(−∞,x]

Λq dµ

)1/q (∫
(−∞,x]

dλ

)−1/p

< ∞.

Corollary 3.5. Suppose 0 < q < p < ∞, p > 1 and 1/r = 1/q − 1/p. Inequality
(3.1) holds if and only if

∫ (∫
[x,∞)

Λq−1 dµ

)r/q

dλ < ∞.

Corollary 3.6. Suppose 0 < q < p < ∞, p > 1 and 1/r = 1/q−1/p. If λ ∈ I2(∞)
then inequality (3.1) holds if and only if

∫ (
1

Λ(x)

∫
(−∞,x]

Λq dµ +
1

Λ(∞)

∫
Λq dµ

)r/q

dλ < ∞.

Now we turn our attention to the conditions obtained by factoring the Hardy
inequality through an embedding of the cone of non-decreasing functions. The next
three results follow from Theorem 3.3 and Theorems 2.4, 2.5, and 2.6.

Here we apply the results of Section 2 with the measure λ replaced by Λ−pλ.
Note that the function

N̄(x) ≡
∫

[x,∞)

Λ−p dλ

is equivalent to Λ(x)1−p when λ ∈ Ip(∞) and λ(∞) = ∞.

Corollary 3.7. Suppose 1 < p ≤ q < ∞. Inequality (3.1) holds whenever

sup
x

(∫
[x,∞)

dµ

)1/q (∫
[x,∞)

Λ−p dλ

)−1/p

< ∞.

If λ ∈ Ip(∞) and Λ(∞) = ∞ then (3.1) holds if and only if

(3.5) sup
x

(∫
[x,∞)

dµ

)1/q (∫
(−∞,x]

dλ

)1/p′

< ∞.
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Corollary 3.8. Suppose 0 < q < p < ∞, p > 1 and 1/r = 1/q − 1/p. Inequality
(3.1) holds whenever

∫ (∫
(−∞,x]

dµ

N̄

)r/q

Λ(x)−p dλ(x) < ∞.

If λ ∈ Ip(∞) and Λ(∞) = ∞ then (3.1) holds if and only if

∫ (∫
(−∞,x]

Λp−1 dµ

)r/q

Λ(x)−p dλ(x) < ∞.

Corollary 3.9. Suppose 0 < q < p < ∞, p > 1 and 1/r = 1/q−1/p. If λ ∈ I2(∞)
then inequality (3.1) holds whenever

∫ (
1

N̄(x)

∫
[x,∞)

dµ +
1

N̄(∞)

∫
dµ

)r/q

Λ(x)−p dλ(x) < ∞.

If λ ∈ Ip(∞) ∩ I2(∞) and Λ(∞) = ∞ then (3.1) holds if and only if

(3.6)
∫ (∫

[x,∞)

dµ

)r/q

Λ(x)r/q′
dλ(x) < ∞.

Our proofs require some mild assumptions on the measure λ to show the equiva-
lence of (3.1) with either (3.5) or (3.6), depending on the range of indices. However,
it is known that when q > 1 these conditions are necessary and sufficient for (3.1)
for any measures. See [5] or [6]. This is not due to a lack of care in our proofs, but
points to an essential feature of the approach. Although all Hardy inequalities fac-
tor through an embedding of the cone of non-increasing functions, not every Hardy
inequality factors through an embedding of the cone of non-decreasing functions.
See Example 4.5.

4. Related Results

Fix a function ϕ : (0,∞) → R that is either concave and non-decreasing or else
convex and non-increasing and define the operator T on f ≥ 0 by

Tf(x) = (ϕ−1 ◦ P (ϕ ◦ f))(x) = ϕ−1

(
1

Λ(x)

∫
(−∞,x]

ϕ(f(t)) dλ(t)

)
.
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Theorem 4.1. Suppose 1 < p < ∞ and 0 < q < ∞. Then

(4.1)
(∫

(Tf)q dµ

)1/q

≤ C

(∫
fp dλ

)1/p

, f ≥ 0,

if and only if

(4.2)
(∫

(Pf)q dµ

)1/q

≤ C

(∫
fp dλ

)1/p

, f ≥ 0,

if and only if

(4.3)
(∫

F q dµ

)1/q

≤ C

(∫
F p dλ

)1/p

, F ↓ .

(The constants C need not be the same.)

Proof. Jensen’s inequality shows that Tf ≤ Pf so (4.2) implies (4.1). Theorem
3.2, with µ replaced by Λqµ shows that (4.3) implies (4.2). To prove the remaining
implication, fix a non-negative, non-increasing function F .

In the case that ϕ is concave and non-decreasing, ϕ ◦F is also non-increasing so
P (ϕ ◦ F ) is non-increasing and ϕ ◦ F ≤ P (ϕ ◦ F ). Applying ϕ−1 we conclude that
TF is non-increasing and F ≤ TF .

If instead, ϕ is convex and non-increasing, then ϕ◦F is non-decreasing so P (ϕ◦F )
is non-decreasing and ϕ ◦F ≥ P (ϕ ◦F ). Applying ϕ−1 we again conclude that TF
is non-increasing and F ≤ TF .

Now it is evident that (4.1) implies (4.3). This completes the proof.

The function ϕ(s) = log s is non-decreasing and concave so Theorem 4.1 includes
the following.

Corollary 4.2. Suppose 1 < p < ∞ and 0 < q < ∞. The inequality(∫ (
exp

(
1

Λ(x)

∫
(−∞,x]

log(f(t)) dλ(t)

))q

dµ(x)

)1/q

≤ C

(∫
fp dλ

)1/p

holds for all f ≥ 0 if and only if

sup
F↓

(∫
F q dµ

)1/q(∫
F p dλ

)1/p
< ∞.

This corollary, together with Theorems 2.1, 2.2, and 2.3, yields a weight charac-
terization for the Geometric Mean Operator.

The function ϕ(s) = 1/s is non-increasing and convex so Theorem 4.1 also
includes the next assertion. We have replaced f by 1/f in the statement and raised
both sides to the power −1.
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Corollary 4.3. Suppose 1 < p < ∞ and 0 < q < ∞. The inequality

(∫
f−p dλ

)−1/p

≤ C

∫ ( 1
Λ(x)

∫
(−∞,x]

f(t) dλ(t)

)−q

dµ(x)

−1/q

, f ≥ 0,

holds if and only if

sup
F↓

(∫
F q dµ

)1/q(∫
F p dλ

)1/p
< ∞.

Using this corollary, Theorems 2.1, 2.2, and 2.3 characterize Hardy inequalities
with negative indices.

We return briefly to the classes Ip(∞) to make some comments and provide two
examples.

Firstly, it is not clear that the classes Ip(∞) are different for different p. The
measure constructed in Example 4.4 is not in Ip(∞) for any p > 1. However, we
do know that if 1 < p < q then Iq(∞) ⊂ Ip(∞) because if λ ∈ Iq(∞) then

Λ(x)1−p − Λ(∞)1−p ≤ Λ(x)q−p(Λ(x)1−q − Λ(∞)1−q)

≤ CΛ(x)q−p

∫
[x,∞)

Λ−q dλ ≤ C

∫
[x,∞)

Λ−p dλ

so λ ∈ Ip(∞). For the last inequality above we have used the monotonicity of Λ to
take Λq−p inside the integral.

Secondly, it is worth pointing out that although the inequality defining Ip(∞)
may fail in exceptional cases, a reverse inequality always holds. To see this, first
observe that for each s > 0, λ{t : Λ(t) < s} ≤ s so for each x ∈ R,

λ{t ≤ x : Λ(t) < s} ≤ min(s,Λ(∞)).

Now ∫
[x,∞)

Λ(t)−p dλ(t) =
∫

[x,∞)

∫ ∞

Λ(t)

ps−p−1 ds dλ(t)

=
∫ ∞

Λ(x)

∫
{t≤x:Λ(t)<s}

dλ(t)ps−p−1 ds

≤
∫ ∞

Λ(x)

min(s,Λ(∞))ps−p−1 ds

= p′Λ(x)1−p − (p′ − 1)Λ(∞)1−p.

Thirdly, an estimate much like the last one reveals that no problem of this sort
arises when integrating powers greater than −1. One can show that for p > −1,∫

(−∞,x]

Λp dλ ≈ Λ(x)p+1.
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Example 4.4. There exists a measure λ that is not in Ip(∞) for any p > 1.

Proof. The measure we construct is purely atomic with atoms of weight λ{n} = bn

at each positive integer n. The bn are defined below. The remainder of the example
is phrased in terms of sequences and sums rather than functions and integrals.

Suppose an ≥ 1 are rapidly increasing for n ≥ 1 so that 2 ≤ an+1
an

→∞. Then

an ≤
n∑

k=1

ak =
n∑

k=1

ak

ak+1

ak+1

ak+2
. . .

an−1

an
an ≤ an

n∑
k=1

2k−n ≤ 2an.

Also, for any α < 0,

aα
n ≤

∞∑
k=n

aα
k =

∞∑
k=n

(
ak

ak−1

ak−1

ak−2
. . .

an+1

an

)α

aα
n ≤ aα

n

∞∑
k=n

2α(k−n) ≤ 1
1− 2α

aα
n.

Define bn = an when n is even and bn = 1 when n is odd. Then for any n ≥ 2 we
have

n∑
k=1

bk ≥ bn + bn−1 ≥ an−1.

If m ≥ 2 is odd then
m∑

n=1

bn ≤ 1 +
m−1∑
n=1

an ≤ 3am−1

and

∞∑
n=m

(
n∑

k=1

bk

)−p

bn ≤ a−p
m−1 +

∞∑
n=m+1

a−p
n an ≤ a−p

m−1 + a1−p
m /(1− 21−p).

As m →∞ through the odd numbers we see that∑∞
n=m (

∑n
k=1 bk)−p

bn

(
∑m

n=1 bn)1−p ≤ C(a−1
m−1 + (am/am−1)1−p) → 0.

Example 4.5. There exist measures λ and µ such that the Hardy inequality (3.1)
holds but the embedding of non-increasing functions (3.4) does not.

Proof. Fix p > 1 and let q = p. We use the measure λ constructed in Example 4.4
and define µ to be the purely atomic measure with atoms of weight

µ{n} =
( n∑

k=1

bk

)1−p

−
( n+1∑

k=1

bk

)1−p

at each positive integer n. Since the series
∑

bn diverges,

∞∑
n=m

µ{n} =
( m∑

k=1

bk

)1−p

.
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Using this fact and Theorem 2.4, we see that the embedding (3.4) holds if and only
if for all m, ( m∑

k=1

bk

)1−p

≤ C
∞∑

n=m

( n∑
k=1

bk

)−p

bn.

This is not the case, according to Example 4.4, and we conclude that the embedding
(3.4) fails for these measures.

To show that (3.1) does hold we apply Theorem 3.4. We have

m∑
n=1

( n∑
k=1

bk

)−p

µ{n} ≤
m∑

n=1

( n∑
k=1

bk

)−p( n∑
k=1

bk

)1−p

≤
m∑

n=1

n∑
k=1

bk.

Using the estimates from Example 4.4 see that for n ≥ 2

n∑
k=1

bk = bn +
n−1∑
k=1

ak ≤ bn + 2an−1 ≤ 2bn−1 + 3bn

and so
m∑

n=1

( n∑
k=1

bk

)−p

µ{n} ≤ b1 +
m∑

n=2

(2bn−1 + 3bn) ≤ 5
m∑

n=1

bn.

This verifies the condition of Theorem 3.4 and shows that inequality (3.1) holds for
the measures µ and λ.
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