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Abstract. Characterizations are obtained for those pairs of weight functions u and

v for which the operators Tf(x) =
∫ b(x)
a(x)

f(t) dt with a and b certain non-negative

functions are bounded from Lpu(0,∞) to Lqv(0,∞), 0 < p, q < ∞, p ≥ 1. Sufficient

conditions are given for T to be bounded on the cones of monotone functions.

The results are applied to give a weighted inequality comparing differences and

derivatives as well as a weight characterization for the Steklov operator.

1. Introduction

In this paper we study mapping properties of the operator

(1.1) Tf(x) =
∫ b(x)

a(x)

f(t) dt, f ≥ 0,

where a and b are increasing, differentiable functions satisfying a(0) = b(0) = 0,

a(x) < b(x) for x ∈ (0,∞) and a(∞) = b(∞) = ∞. Specifically, conditions on the
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weight functions u and v are given which are equivalent to

(1.2)

(∫ ∞
0

(∫ b(x)

a(x)

f

)q
v(x) dx

)1/q

≤ C
(∫ ∞

0

fpu

)1/p

, 0 < p, q <∞.

For example (see Theorem 2.2) if 1 < p ≤ q <∞ then (1.2) holds if and only if

(1.3) sup

(∫ b(t)

a(x)

u1−p′
)1/p′ (∫ x

t

v

)1/q

= K <∞,

where the supremum is taken over all x, t such that t < x and a(x) < b(t). Moreover,

the least constant C in (1.2) is comparable to K, K ≤ C ≤ 2p1/q(p′)1/p′K.

Weight characterizations for the corresponding Hardy inequality

(1.4)

(∫ ∞
0

(∫ b(x)

0

f

)q
v(x) dx

)1/q

≤ C
(∫ ∞

0

fpu

)1/p

follow easily from well known results ([3], [10]). If 1 < p ≤ q < ∞, (1.4) holds if

and only if

(1.5) sup
t>0

(∫ b(t)

0

u1−p′
)1/p′ (∫ ∞

t

v

)1/q

<∞.

Of course, this condition implies (1.3), but is actually more restrictive. For example

if b(x) = 2a(x) = x, v(x) = xβ , and u(x) = xα then (1.3) is satisfied ([12]) if and

only if α
p = β+1

q + 1
p′ , while (1.5) if and only if this equality holds with β < −1.

In another direction, let f ∈ C(1)(R+) with f(0) = f(∞) = 0, then it is known

(Gurka [10, Ex. 8.6], Grisvard [6], Jakovlev [8]) that for 1 < p <∞

(1.6)

∫ ∞
0

|f(x)|px−λp dx ≤ C
∫ ∞

0

|f ′(x)|px(1−λ)p dx∫ ∞
0

|f(x)|px−λp dx ≤ C
∫ ∞

0

∫ ∞
0

|f(x)− f(y)|p

|x− y|1+λp
dx dy
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where λ 6= 1/p. It is natural to ask which of the right sides of (1.6) is larger, the

one involving the derivative of f or the one involving differences of f . On applying

the weight characterizations of (a special case of) the operator Tf , we answer this

question by showing that for C(1)-functions the inequality

(1.7)
∫ ∞

0

∫ ∞
0

|f(x)− f(y)|p

|x− y|1+λp
dx dy ≤ C

∫ ∞
0

|f ′(x)|px(1−λ)p dx, 1 < p <∞,

is satisfied if 0 < λ < 1.

The paper is divided into three sections. Section 2 contains the main results,

namely the weight characterizations for the operator T given by (1.1), in the case

1 ≤ p ≤ q < ∞ (Theorem 2.2) and the case 0 < q < p, p > 1 (Theorem 2.5).

Corollaries yield a result of Sawyer ([12]) and a weight characterization of the

related Steklov operator studied by Batuev and Stepanov ([2]). Although both are

characterizations, our weight conditions have a somewhat different form than the

ones given in [2].

There is considerable current interest in mapping properties of the Hardy oper-

ator defined on the cones of monotone functions. In Section 3 we provide simple

sufficient conditions on weight functions under which the operator T of (1.1) de-

fined on a cone of monotone functions is bounded on weighted Lebesgue spaces. In

addition we give weighted extensions of (1.7), complementing the weighted results

for the inequalities in (1.6), (see [4],[7],[10, p. 99]). In particular, we establish (1.7).

The notation is standard. χE denotes the characteristic function of the set E; if

0 < q <∞, then q′ denotes the conjugate exponent of q defined by 1/q + 1/q′ = 1,
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and similarly for p. Expressions of the form 0/0, ∞/∞, and 0 · ∞ are taken

to be zero, and A ≈ B means that A/B is bounded above and below by positive

constants. Let Z, R, and R+ denote the sets of integers, real numbers, and positive

real numbers respectively, while C(n)(E) denotes the space of functions on E whose

nth derivative is continuous. Finally, inequalities (such as (1.2)) are interpreted to

mean that if the right hand side is finite, so is the left hand side and the inequality

holds.

2. Main Results

Throughout, a and b are taken to be increasing differentiable functions on R+,

satisfying a(0) = b(0) = 0, a(x) < b(x) for x > 0, and a(∞) = b(∞) =∞. Since a−1

and b−1 exist and are increasing we may define the sequence {mk}k∈Z recursively

as follows: Fix m > 0 and define

(2.1) m0 = m, mk+1 = a−1(b(mk)), if k ≥ 0 and mk = b−1(a(mk+1)), if k < 0.

Clearly a(mk+1) = b(mk) for all k ∈ Z.

Lemma 2.1. Fix m and let {mk}k∈Z be defined by (2.1). Then mk < mk+1 for

k ∈ Z, limk→∞mk =∞, and limk→−∞mk = 0.

Proof. Since a(mk) < b(mk) = a(mk+1) and a−1 is increasing, mk < mk+1 for all

k ∈ Z. Also the monotonicity of {mk} ensures the existence of M− ∈ [0,∞) and

M+ ∈ (0,∞] such that mk →M− as k → −∞ and mk →M+ as k →∞. Since a
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and b are continuous

b(M−) = lim
k→−∞

b(mk) = lim
k→−∞

a(mk+1) = a(M−)

and similarly b(M+) = a(M+). But a(x) < b(x) for all x ∈ (0,∞) so M− = 0 and

M+ =∞ as required.

In order to study weighted norm inequalities for the operator T of (1.1), that is

(2.2)

(∫ ∞
0

(∫ b(x)

a(x)

f

)q
v(x) dx

)1/q

≤ C
(∫ ∞

0

fpu

)1/p

, f ≥ 0,

it is convenient to consider the equivalent inequality

(2.3)

(∫ ∞
0

(∫ b(x)

a(x)

fw

)q
v(x) dx

)1/q

≤ C
(∫ ∞

0

fpw

)1/p

, f ≥ 0,

where w = u1−p′ .

We also write va(y) = v(a−1(y))(a−1)′(y) so that va(y) dy = v(x) dx if y = a(x).

vb is defined similarly.

Theorem 2.2. Let u and v be weight functions, then there is a constant C such

that (2.2) holds for 1 < p ≤ q <∞ if and only if

(2.4) K ≡ sup

(∫ b(t)

a(x)

u1−p′
)1/p′ (∫ x

t

v

)1/q

<∞,

where the supremum is taken over all x and t such that t ≤ x and a(x) ≤ b(t).

Moreover, the best constant C in (1) satisfies

K ≤ C ≤ 2p1/q(p′)1/p′K.
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Proof. Suppose first that (2.4) is satisfied. If t is fixed and y = a(x) in (2.4) then

with w = u1−p′

sup
a(t)≤y≤b(t)

(∫ b(t)

y

w

)1/p′ (∫ y

a(t)

va

)1/q

= K <∞,

and it follows from [3, Theorem 2] that for all f ≥ 0

(2.5)

(∫ b(t)

a(t)

(∫ b(t)

y

fw

)q
va(y) dy

)1/q

≤ CK

(∫ b(t)

a(t)

fpw

)1/p

,

where C = p1/q(p′)1/p′ . Similarly, if x is fixed and y = b(t) in (2.4) then we have

sup
a(x)≤y≤b(x)

(∫ y

a(x)

w

)1/p′ (∫ b(x)

y

vb

)1/q

≤ K

and it follows from [3, Theorem 1] that

(2.6)

(∫ b(x)

a(x)

(∫ y

a(x)

fw

)q
vb(y) dy

)1/q

≤ CK

(∫ b(x)

a(x)

fpw

)1/p

.

Fix m ∈ (0,∞) and let {mk}k∈Z be the sequence defined in (2.1). If mk < x <

mk+1, then a(x) < a(mk+1) = b(mk) ≤ b(x). Writing ak = a(mk), bk = b(mk),

and Ek = (mk,mk+1) we get, using Minkowski’s inequality,(∫ ∞
0

(∫ b(x)

a(x)

fw

)q
v(x) dx

)1/q

=

(∫ ∞
0

(∑
k∈Z

χ
Ek(x)

∫ bk

a(x)

fw +
∑
k∈Z

χ
Ek(x)

∫ b(x)

ak+1

fw

)q
v(x) dx

)1/q

≤

(∫ ∞
0

(∑
k

χ
Ek(x)

∫ bk

a(x)

fw

)q
v(x) dx

)1/q

+

(∫ ∞
0

(∑
k

χ
Ek(x)

∫ b(x)

ak+1

fw

)q
v(x) dx

)1/q

≡I1 + I2,
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respectively. But since for each x only one term of the sum can be non-zero

I1 =

(∫ ∞
0

∑
k

χ
Ek(x)

(∫ bk

a(x)

fw

)q
v(x) dx

)1/q

=

(∑
k

∫ mk+1

mk

(∫ bk

a(x)

fw

)q
v(x) dx

)1/q

=

(∑
k

∫ bk

ak

(∫ bk

y

fw

)q
va(y) dy

)1/q

,

where the last equality follows from the change of variable y = a(x). Applying (2.5)

and using the fact that 1 ≤ q/p it follows that

I1 ≤

∑
k

CqKq

(∫ bk

ak

fpw

)q/p1/q

≤ CK

(∑
k

∫ bk

ak

fpw

)q/p1/q

=CK
(∫ ∞

0

fpw

)1/p

.

Similarly

I2 =

(∫ ∞
0

∑
k

χ
Ek(x)

(∫ b(x)

ak+1

fw

)q
v(x) dx

)1/q

=

(∑
k

∫ mk+1

mk

(∫ b(x)

ak+1

fw

)q
v(x) dx

)1/q

=

(∑
k

∫ bk+1

ak+1

(∫ y

ak+1

fw

)q
vb(y) dy

)1/q

≤

∑
k

CqKq

(∫ bk+1

ak+1

fpw

)q/p1/q

≤CK

(∑
k

∫ bk+1

ak+1

fpw

)q/p1/q

=CK
(∫ ∞

0

fpw

)1/p
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where we have made the change of variable y = b(x) and applied (2.6).

From these two estimates, (2.3) and hence (2.2) follows with constant 2CK.

Conversely, if (2.2) (or equivalently (2.3)) holds for some C, let x and t satisfy

t ≤ x and a(x) ≤ b(t). Let w0 be an L1 weight such that w0 < w and define

f = χ
(a(x),b(t))w0/w. If t ≤ s ≤ x then a(s) ≤ a(x) ≤ b(t) ≤ b(s) and therefore(∫ b(t)

a(x)

w0

)(∫ x

t

v(s) ds
)1/q

=

(∫ x

t

(∫ b(t)

a(x)

fw

)q
v(s) ds

)1/q

≤

(∫ ∞
0

(∫ b(s)

a(s)

fw

)q
v(s) ds

)1/q

≤C
(∫ ∞

0

fpw

)1/p

= C

(∫ b(t)

a(x)

wp0w
1−p

)1/p

≤C

(∫ b(t)

a(x)

w0

)1/p

.

But since w0 ∈ L1, the last integral is finite and on dividing we get(∫ b(t)

a(x)

w0

)1/p′ (∫ x

t

v(s) ds
)1/q

≤ C.

Let w0 ↑ w, then the Monotone Convergence Theorem implies that(∫ b(t)

a(x)

w

)1/p′ (∫ x

t

v(s) ds
)1/q

≤ C.

Finally, taking the supremum over all x, t with t ≤ x and a(x) ≤ b(t) we obtain

(2.4) with w = u1−p′ and K ≤ C.

Remark 2.3. The case 1 = p ≤ q of Theorem 2.2 also holds and follows from [9, p.

316]. If 1 = p ≤ q <∞, then (2.2) holds if and only if

ess sup
t>0

u(t)−1

(∫ a−1(t)

b−1(t)

v(x) dx

)1/q

<∞.

We now give the weight characterization when 0 < q < p, p > 1. First we require

the following:
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Proposition 2.4. Suppose w and v are weights, a and b as before and va and vb

defined by

(2.8) va(y) = v(a−1(y))(a−1)′(y), vb(y) = v(b−1(y))(b−1)′(y).

Let 0 < q < p, 1 < p < ∞, 1/r = 1/q − 1/p, and for m > 0, C(m) and C∗(m) be

the best constants in(∫ b(m)

a(m)

(∫ y

a(m)

f(t)w(t) dt

)q
vb(y) dy

)1/q

≤ C

(∫ b(m)

a(m)

f(t)pw(t) dt

)1/p

and(∫ b(m)

a(m)

(∫ b(m)

y

f(t)w(t) dt

)q
va(y) dy

)1/q

≤ C∗
(∫ b(m)

a(m)

f(t)pw(t) dt

)1/p

respectively. Then D(m) ≈ C(m) and D∗(m) ≈ C∗(m), where

(2.9)

D(m) =

∫ b(m)

a(m)

(∫ y

a(m)

w

)r/p′ (∫ b(m)

y

vb

)r/p
vb(y) dy

1/r

, m ∈ (0,∞).

D∗(m) =

∫ b(m)

a(m)

(∫ b(m)

y

w

)r/p′ (∫ y

a(m)

va

)r/p
va(y) dy

1/r

, m ∈ (0,∞).

Proof. Writing the first inequality and D(m) in the forms

(∫ ∞
0

(∫ y

0

fwχ(a(m),b(m))

)q
vb(y)χ(a(m),b(m))(y) dy

)1/q

≤ C(m)
(∫ ∞

0

fpwχ(a(m),b(m))

)1/p

,

respectively,(∫ ∞
0

(∫ y

0

wχ(a(m),b(m))

)r/p′(∫ ∞
y

vbχ(a(m),b(m))

)r/p
vb(y)χ(a(m),b(m))(y) dy

)1/r

,



10 H. P. HEINIG AND G. SINNAMON

then by [13, Theorem 2.4]

(p′)1/p′q1/p(1− q/p)D(m) ≤ C(m) ≤ (r/q)1/rp1/pp′
1/p′

D(m).

The estimate for C∗(m) follows in the same way, only now we use the dual of [13,

Theorem 2.4].

Theorem 2.5. Suppose v and w = u1−p′ are weights and 0 < q < p, 1 < p < ∞,

then (2.2) (or equivalently (2.3)) is satisfied if and only if

(2.10)

∫ ∞
0

∫ t

b−1(a(t))

(∫ b(x)

a(t)

w

)r/p′ (∫ t

x

v

)r/p
v(x) dxσ(t)dt

1/r

<∞,

and

(2.11)

∫ ∞
0

∫ a−1(b(t))

t

(∫ b(t)

a(x)

w

)r/p′ (∫ x

t

v

)r/p
v(x) dxσ(t)dt

1/r

<∞.

Here the “normalizing function” σ is defined by

σ(t) =
∑
k∈Z

χ
(Mk,Mk+1)(t)

d

dt
(b−1 ◦ a)k(t)

where (b−1 ◦ a)k denotes k times repeated composition and {Mk} is constructed as

{mk} (see (2.1)), but with M0 = b−1(1).

Proof. (Necessity.) Suppose first that (2.3) is satisfied. Let v0 and w0 be weights

in L1 such that v0 < v and w0 < w. If vb,0(y) = v0(b−1(y))(b−1)′(y) then

vb,0 < vb, where vb is given in (2.8). Fix m > 0 and let {mk}k∈Z be the se-

quence constructed in (2.1). If D and D∗ are the functions given by (2.9), let

D(m) =
(∑

k∈ZD(mk)r
)1/r and D∗(m) =

(∑
k∈ZD

∗(mk)r
)1/r.
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We shall show that

(2.12) max
(

sup
m>0
D(m), sup

m>0
D∗(m)

)
<∞.

Again write ak = a(mk), bk = b(mk), and let χ = χ
(ak, bk). Since r/(pq′) + 1 =

r/(qp′), integration yields∑
k∈Z

∫ bk

ak

(∫ y

ak

w0

)r/p′ (∫ bk

y

vb,0

)r/p
vb,0(y) dy

1/q

=
r

p′q

∑
k

∫ bk

ak

(∫ y

ak

(∫ t

ak

w0

)r/pq′
w0(t) dt

)q (∫ bk

y

vb,0

)r/p
vb,0(y) dy

1/q

≤ r

p′q

∑
k

∫ bk

ak

∫ y

ak

(∫ t

ak

w0

)r/pq′ (∫ bk

t

vb,0

)r/pq
w0(t) dt

q

vb,0(y) dy

1/q

since t < y. Now for each k, y satisfies ak < y < bk, and t satisfies ak < t < y and

therefore ak < t < bk. Hence the last expression is equal to

r

p′q

(∫ ∞
0

∑
k

χ(y)
(∫ y

ak

(∫ t

ak

w0

)r/pq′
×

(∫ bk

t

vb,0

)r/pq
χ(t)w0(t) dt

)q
vb,0(y) dy

)1/q

=
r

p′q

(∫ ∞
0

(∑
k

χ(y)
∫ y

ak

(∫ t

ak

w0

)r/pq′
×

(∫ bk

t

vb,0

)r/pq
χ(t)w0(t) dt

)q
vb,0(y) dy

)1/q

.

Here we used the fact that for each y only one term of the sum can be non-zero.

Now if y < bk, that is b−1(y) < mk, then a(b−1(y)) < ak and hence we may increase

the interval of integration from (ak, y) to (a(b−1(y)), y). Moreover, replacing χ(y)
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by 1, the last expression is not larger than

r

p′q

(∫ ∞
0

(∑
k

∫ y

a(b−1(y))

(∫ t

ak

w0

)r/pq′
×

(∫ bk

t

vb,0

)r/pq
χ(t)w0(t) dt

)q
vb,0(y) dy

)1/q

=
r

p′q

(∫ ∞
0

(∫ y

a(b−1(y))

(∑
k

(∫ t

ak

w0

)r/q′
×

(∫ bk

t

vb,0

)r/q
χ(t)

)1/p

w0(t) dt
)q
vb,0(y) dy

)1/q

.

Again we used the fact that only one term of the sum can be non-zero. If we take

f(t) =

∑
k

(∫ t

ak

w0

)r/q′ (∫ bk

t

vb,0

)r/q
χ(t)

1/p

w0(t)/w(t)

and make the change of variable y = b(x), this is equal to

r

p′q

(∫ ∞
0

(∫ b(x)

a(x)

(∑
k

(∫ t

ak

w0

)r/q′
×

(∫ bk

t

vb,0

)r/q
χ(t)

)1/p

w0(t) dt
)q
v0(x) dx

)1/q

.

=
r

p′q

(∫ ∞
0

(∫ b(x)

a(x)

f(t)w(t) dt

)q
v0(x) dx

)1/q

≤ r

p′q

(∫ ∞
0

(∫ b(x)

a(x)

f(t)w(t) dt

)q
v(x) dx

)1/q

≤ Cr

p′q

(∫ ∞
0

fpw

)1/p
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by (2.3). Now since w0 < w

(∫ ∞
0

fpw

)1/p

=

∫ ∞
0

∑
k

(∫ t

ak

w0

)r/q′ (∫ bk

t

vb,0

)r/q
χ(t)w0(t)pw(t)1−p dt

1/p

≤

∫ ∞
0

∑
k

(∫ t

ak

w0

)r/q′ (∫ bk

t

vb,0

)r/q
χ(t)w0(t) dt

1/p

=

∑
k

∫ bk

ak

(∫ t

ak

w0

)r/q′ (∫ bk

t

vb,0

)r/q
w0(t) dt

1/p

=
(
p′

q

)1/p
∑

k

∫ bk

ak

(∫ y

ak

w0

)r/p′ (∫ bk

y

vb,0

)r/p
vb,0(y) dy

1/p

.

where the last equality is obtained on integrating by parts. Since vb,0 and w0 are

in L1, the sum is finite and on dividing we obtain

∑
k

∫ bk

ak

(∫ y

ak

w0

)r/p′ (∫ bk

y

vb,0

)r/p
vb,0(y) dy

1/r

≤ Cr

p′q

(
p′

q

)1/p

.

Since vb,0 < vb and w0 < w the Monotone Convergence Theorem implies that

this inequality also holds with vb,0 and w0 replaced by vb and w respectively. In

particular (see (2.9)) we obtain that supm>0(
∑
k D(mk)r)1/r < ∞. The same

argument, with minor modifications, shows that supm>0(
∑
k D∗(mk)r)1/r < ∞

and we have proved (2.12).
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Let σ be the normalizing function defined above, then

(2.13)∫ ∞
0

∫ b(t)

a(t)

(∫ y

a(t)

w

)r/p′ (∫ b(t)

y

vb

)r/p
vb(y)σ(t) dy dt

1/r

=

∑
k

∫ Mk+1

Mk

∫ b(t)

a(t)

(∫ y

a(t)

w

)r/p′(∫ b(t)

y

vb

)r/p
vb(y) dy

(
d

dt
(b−1 ◦ a)k(t)

)
dt

1/r

=

∑
k

∫ a−1(1)

b−1(1)

∫ bk

ak

(∫ y

ak

w

)r/p′ (∫ bk

y

vb

)r/p
vb(y) dy dm

1/r

=

(∫ a−1(1)

b−1(1)

∑
k

D(mk)r dm

)1/r

≤(a−1(1)− b−1(1))1/r sup
m>0

(∑
k

D(mk)r
)1/r

<∞.

Here we made the change of variable t = (a−1◦b)k(m) = mk so that when t = Mk+1

we have (a−1 ◦ b)k(m) = (a−1 ◦ b)k+1(M0) which implies m = a−1(1) and when

t = Mk we have (a−1 ◦ b)k(m) = (a−1 ◦ b)k(M0) which implies m = b−1(1). In the

same way, using supm>0(
∑
k D∗(mk)r)1/r <∞ one shows that

(2.14)

∫ ∞
0

∫ b(t)

a(t)

(∫ b(t)

y

w

)r/p′ (∫ y

a(t)

va

)r/p
va(y)σ(t) dy dt

1/r

<∞.

The changes of variable y = b(x) in (2.13) and y = a(x) in (2.14) yield (2.10)

and (2.11), respectively.

(Sufficiency.) To prove sufficiency, we first show that for some m > 0, both D(m)

and D∗(m) are finite. Since (2.10) and (2.11) are satisfied therefore (2.13) and 2.14

are finite. As we have just seen this means that(∫ a−1(1)

b−1(1)

D(m)r dm

)1/r

and

(∫ a−1(1)

b−1(1)

D∗(m)r dm

)1/r
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are finite. Thus D(m) and D∗(m) are finite almost everywhere in (b−1(1), a−1(1))

and so there is an m ∈ (b−1(1), a−1(1)) where both D(m) and D∗(m) are finite.

Next construct {mk} from this m. If mk < x < mk+1 then a(x) < a(mk+1) =

b(mk) < b(x) so (with ak = a(mk) and bk = b(mk))

∫ ∞
0

(∫ b(x)

a(x)

fw

)q
v(x) dx =

∑
k∈Z

∫ mk+1

mk

(∫ bk

a(x)

fw +
∫ b(x)

ak+1

fw

)q
v(x) dx

≤C̃

(∑
k

∫ mk+1

mk

(∫ bk

a(x)

fw

)q
v(x) dx+

∑
k

∫ mk+1

mk

(∫ b(x)

ak+1

fw

)q
v(x) dx

)
≡C̃ (S1 + S2) ,

where C̃ = max(1, 2q − 1). In S1 make the change of variable y = a(x), apply

Proposition 2.4 and then Hölders inequality with indices r/q and p/q to get

S1 =
∑
k

∫ bk

ak

(∫ bk

y

fw

)q
va(y) dy

≤
∑
k

C∗(mk)q
(∫ bk

ak

fpw

)q/p

≤

(∑
k

C∗(mk)r
)q/r (∑

k

∫ bk

ak

fpw

)q/p

≤Cq1

(∑
k

D∗(mk)r
)q/r (∫ ∞

0

fpw

)q/p
= Cq1D∗(m)q

(∫ ∞
0

fpw

)q/p
.

Here C1 is the constant from Proposition 2.4.

In S2 make the change of variable y = b(x), apply Proposition 2.4 and then
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Hölder’s inequality to get

S2 =
∑
k

∫ bk+1

ak+1

(∫ y

ak+1

fw

)q
vb(y) dy

≤
∑
k

C(mk+1)q
(∫ bk+1

ak+1

fpw

)q/p

≤

(∑
k

C(mk+1)r
)q/r (∑

k

∫ bk+1

ak+1

fpw

)q/p

≤Cq1

(∑
k

D(mk+1)r
)q/r (∫ ∞

0

fpw

)q/p
= Cq1D(m)q

(∫ ∞
0

fpw

)q/p
.

Therefore

(∫ ∞
0

(∫ b(x)

a(x)

fw

)q
v(x) dx

)1/q

≤ C̃1/qC1 (D(m)q +D∗(m)q)1/q

(∫ ∞
0

fpw

)1/p

.

This completes the proof of the theorem.

Corollary 2.6. Let u and v be weight functions and A and B be real numbers such

that 0 < A < B. Then there is a constant C > 0 such that

(2.15)

(∫ ∞
0

(∫ Bx

Ax

f

)q
v(x) dx

)1/q

≤ C
(∫ ∞

0

fpu

)1/p

for all f ≥ 0 if and only if

i) for 1 < p ≤ q <∞,

K ≡ sup
t≤x≤Bt/A

(∫ Bt

Ax

u1−p′
)1/p′ (∫ x

t

v

)1/q

<∞;

ii) for 0 < q < p, 1 < p <∞, max(K1,K2) <∞ where

K1 =

∫ ∞
0

1
t

∫ t

At/B

(∫ Bx

At

u1−p′
)r/p′ (∫ t

x

v

)r/p
v(x) dx dt

1/r
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and

K2 =

∫ ∞
0

1
t

∫ Bt/A

t

(∫ Bt

Ax

u1−p′
)r/p′ (∫ x

t

v

)r/p
v(x) dx dt

1/r

,

where 1/r = 1/q − 1/p.

Moreover, if C is the best constant in (2.15) then for 1 < p ≤ q <∞, K ≤ C ≤

2p1/q(p′)1/p′K and in the case 0 < q < p, 1 < p <∞, max(K1,K2) ≈ C.

Proof. Let a(x) = Ax and b(x) = Bx in Theorem 2.2 and (i) follows. With the

same choice of a and b in Theorem 2.5 it is easy to see that (b−1 ◦a)k(t) = (A/B)kt

so d
dt (b

−1 ◦ a)k(t) = (A/B)k. Now with M0 = 1/B we obtain Mk = Bk−1/Ak for

all k ∈ Z. If Mk < t < Mk+1 the normalizing function σ satisfies

1/B = Mk(A/B)k < tσ(t) < Mk+1(A/B)k = 1/A

for all k. Hence σ(t) ≈ 1/t and substituting this into (2.10) and (2.11) we get (ii).

The estimate of C in (2.15) in terms of max(K1,K2) follows on tracing the proof

of Theorem 2.5.

The next corollary involves the Steklov operator SF (x) =
∫ x+1

x−1
F , F ≥ 0.

Corollary 2.7. Let U and V be weight functions on R. Then there is a constant

C > 0 such that

(2.16)

(∫ ∞
−∞

(∫ y+1

y−1

F (s) ds
)q

V (y) dy

)1/q

≤ C
(∫ ∞
−∞

F (s)pU(s) ds
)1/p

for all F ≥ 0 if and only if
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i) for 1 < p ≤ q <∞,

sup
s≤y≤s+2

(∫ s+1

y−1

U1−p′
)1/p′ (∫ y

s

V

)1/q

<∞;

ii) for 0 < q < p, 1 < p <∞, max(K1,K2) <∞ where

K1 =

(∫ ∞
−∞

∫ s

s−2

(∫ y+1

s−1

U1−p′
)r/p′ (∫ s

y

V

)r/p
V (y) dy ds

)1/r

and

K2 =

(∫ ∞
−∞

∫ s+2

s

(∫ s+1

y−1

U1−p′
)r/p′ (∫ y

s

V

)r/p
V (y) dy ds

)1/r

,

where 1/r = 1/q − 1/p.

Proof. Take A = 1/e, B = e, v(x) = (1/x)V (log(x)), and u(t) = tp−1U(log(t))

in Corollary 2.6 and make the substitutions x = ey and t = es. Since F is a

non-negative function on R if and only if f(t) = (1/t)F (log(t)) is a non-negative

function on (0,∞) the result follows.

Remark 2.8. In the case 1 < p ≤ q <∞ the result of Corollary 2.6 was obtained by

Sawyer [12] while the result of Corollary 2.7 for 1 < p, q <∞ was given by Batuev

and Stepanov ([2, Theorems 2.1 and 2.2]) with somewhat different (but equivalent)

weight conditions.

3. Monotone functions and a weighted Hardy type inequality

Let a and b be as before. We now consider the operator of (1.1) where f is

monotone on (0,∞). The next result considers the case when f is non-increasing.
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Theorem 3.1. Suppose u and v are weight functions with
∫∞

0
u =∞. Then (2.2)

is satisfied for all non-negative, non-increasing f whenever

(3.1) sup
x>0

(∫ a(x)

0

u

)−1/p(∫ x

0

[b(s)− a(s)]qv(s) ds
)1/q

<∞,

if 1 < p ≤ q <∞, and

(3.2)
∫ ∞

0

(∫ x

0

[b(s)− a(s)]qv(s) ds
)r/q (∫ a(x)

0

u

)−r/q
u(a(x))a′(x) dx <∞,

if 1 < q < p <∞, 1/r = 1/q − 1/p.

Proof. It is well known ([11],[5],[14]) that for non-increasing f (2.2) is equivalent

to the inequality

(3.3)

(∫ ∞
0

(∫ x

0

T ∗g

)p′ (∫ x

0

u

)−p′
u(x) dx

)1/p′

≤ C
(∫ ∞

0

gq
′
v1−q′

)1/q′

,

where T ∗ is the adjoint of T , and g ≥ 0 is arbitrary.

But since

(T ∗g)(t) =
∫ a−1(t)

b−1(t)

g

we have

∫ x

0

(T ∗g)(t) dt =
∫ x

0

(∫ a−1(t)

b−1(t)

g(s) ds

)
dt

=
∫ a−1(x)

0

∫ y

b−1(a(y))

g(s) dsa′(y) dy

≤
∫ a−1(x)

0

g(s)
∫ a−1(b(s))

s

a′(y) dy ds

=
∫ a−1(x)

0

[b(s)− a(s)]g(s) ds.
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Therefore, after the change of variable x = a(t), we see that the validity of

(3.4)

∫ ∞
0

[∫ t

0

[b(s)− a(s)]g(s) ds
]p′ (∫ a(t)

0

u

)−p′
u(a(t))a′(t) dt

1/p′

≤ C
(∫ ∞

0

gq
′
v1−q′

)1/q′

.

for all non-negative g is sufficient to imply (3.3) for all non-negative g and hence

(2.2) for all non-increasing f . But (3.4) is a weighted Hardy inequality which holds

([3],[10]) if and only if for 1 < p ≤ q <∞

sup
x>0

∫ ∞
x

(∫ a(t)

0

u

)−p′
u(a(t))a′(t) dt

1/p′ (∫ x

0

[b(s)− a(s)]qv(s) ds
)1/q

is finite, and for 1 < q < p <∞ ([10],[13, Theorem 2.5])∫ ∞
0

(∫ x

0

[b(s)− a(s)]qv(s) ds
)r/q∫ ∞

x

(∫ a(t)

0

u

)−p′
u(a(t))a′(t) dt

r/q′

×

(∫ a(x)

0

u

)−p′
u(a(x))a′(x) dx

1/r

is finite. Since integration yields∫ ∞
x

(∫ a(t)

0

u

)−p′
u(a(t))a′(t) dt = (p′ − 1)−1

(∫ a(x)

0

u

)1−p′

,

and r(1− p′)/q′ − p′ = −r/q, these conditions are (3.1) and (3.2).

A result corresponding to Theorem 3.1 for non-negative, non-decreasing func-

tions follows at once by imitating the proof of Theorem 3.1.

Proposition 3.2. Suppose u and v are weight functions with
∫∞

0
u = ∞. Then

inequality (2.2) holds for all non-negative, non-decreasing f whenever

sup
x>0

(∫ ∞
b(x)

u

)−1/p(∫ ∞
x

[b(s)− a(s)]qv(s) ds
)1/q

<∞,
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if 1 < p ≤ q <∞, and

∫ ∞
0

(∫ ∞
x

[b(s)− a(s)]qv(s) ds
)r/q (∫ ∞

b(x)

u

)−r/q
u(b(x))b′(x) dx <∞,

if 1 < q < p <∞, 1/r = 1/q − 1/p.

In order to give a weighted generalization of (1.7) we require the following result.

Theorem 3.3. Let u and v be weight functions and 1 < p ≤ q <∞. If

(3.6)

∫ 1

0

sup
0<a<b<a/t

∫ a/t

b

w(t, x)

(∫ b

a

u1−p′
)q/p′

dx

 dt
1/q

= K <∞

then

(3.7)
(∫ 1

0

∫ ∞
0

w(t, x)
(∫ x

xt

g

)q
dx dt

)1/q

≤ C
(∫ ∞

0

u(x)g(x)p dx
)1/p

is satisfied for all g ≥ 0.

Conversely, if (3.7) holds for all g ≥ 0 then

(3.8) sup
0<a<b<∞

(∫ a/b

0

∫ a/t

b

w(t, x) dx dt

)1/q (∫ b

a

u1−p′
)1/p′

<∞.

Proof. For each t ∈ (0, 1) we apply Corollary 2.6 with B = 1, A = t, and v(x) =

w(t, x) to get

(∫ 1

0

(∫ ∞
0

w(t, x)
(∫ x

xt

g

)q
dx

)
dt

)1/q

≤2p1/q(p′)1/p′
(∫ ∞

0

gpu

)1/p

×∫ 1

0

sup
0<a<b<a/t

∫ a/t

b

w(t, x)

(∫ b

a

u1−p′
)q/p′

dx

q dt
1/q

=2Kp1/q(p′)1/p′
(∫ ∞

0

gpu

)1/p

,



22 H. P. HEINIG AND G. SINNAMON

so (3.7) follows.

Conversely, if (3.7) is satisfied for all g ≥ 0, fix 0 < a < b and define g(x) =

χ
(a,b)(x)u(x)1−p′ . Then

C

(∫ b

a

u1−p′
)1/p

=C
(∫ ∞

0

ugp
)1/p

≥
(∫ 1

0

∫ ∞
0

w(t, x)
(∫ x

xt

g

)q
dx dt

)1/q

≥

(∫ a/b

0

∫ a/t

b

w(t, x)
(∫ x

xt

u(s)1−p′χ
(a,b)(s) ds

)q
dx dt

)1/q

=

(∫ a/b

0

∫ a/t

b

w(t, x) dx dt

)1/q (∫ b

a

u1−p′
)
,

since b < x < a/t and hence (a, b) ⊂ (xt, x). The result follows on dividing by(∫ b
a
u1−p′

)1/p

and taking the supremum over a < b.

The next two examples show that the necessary condition of Theorem 3.3 is not

sufficient and the sufficient condition is not necessary. The problem of characteriz-

ing the weights for which (3.7) holds remains open.

Example 3.4a. Let p = q = 2, u(x) = x, and w(t, x) = (1/xt)[log(1/t)]−3 for

0 < t < 1 and x > 0. The necessary condition (3.8) of Theorem 3.3 holds because

sup
0<a<b

(∫ a/b

0

∫ a/t

b

w(t, s) ds dt

)(∫ b

a

u−1

)

= sup
0<a<b

(∫ a/b

0

1
t
[log(1/t)]−3 log(a/bt) dt

)
log(b/a)

≤ sup
0<a<b

(∫ a/b

0

1
t
[log(1/t)]−2 dt

)
log(b/a) = 1.

However, the inequality (3.7) fails. To see this set g(s) = s1/2χ
(0,1) and notice that
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the right hand side of (3.7) is finite. The left hand side (squared) becomes

∫ 1

0

1
t
[log(1/t)]−3

∫ ∞
0

1
x

(∫ x

xt

g(s) ds
)2

dx dt

≥
∫ 1

0

1
t
[log(1/t)]−3

∫ 1

0

1
x

(∫ x

xt

s1/2 ds

)2

dx dt

=
4
27

(∫ 1

0

1
t
[log(1/t)]−3

(
1− t3/2

)2

dt

)
.

This integral diverges because the integrand behaves like 1/(1− t) near t = 1. For

this choice of g the right hand side is finite and the left hand side is infinite so

inequality (3.7) fails.

Example 3.4b. Let p = q = 2, u(x) ≡ 1, and w(t, x) = χ
(1/(x+1),1/x)(t). The

inequality (3.7) follows from the classical Hardy inequality:

(∫ 1

0

∫ ∞
0

w(t, x)
(∫ x

xt

g

)2

dx dt

)1/2

≤

(∫ ∞
0

∫ 1

0

χ
(1/(x+1),1/x)(t) dt

(∫ x

0

g

)2

dx

)1/2

≤

(∫ ∞
0

(
1
x
− 1
x+ 1

)(∫ x

0

g

)2

dx

)1/2

≤

(∫ ∞
0

(
1
x

∫ x

0

g

)2

dx

)1/2

≤2
(∫ ∞

0

g2

)1/2

.

On the other hand, the sufficient condition (3.6) fails in this case. If t < 1/2, then

with a = 1 and b = 1/t− 1 > 1 we have

sup
a<b<a/t

∫ a/t

b

w(t, x)

(∫ b

a

u−1

)
dx

≥
∫ 1/t

1/t−1

χ
(1/(x+1),1/x)(t)

(∫ 1/t−1

1

ds

)
dx = 1/t− 2.
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With this estimate we see that (3.6) is not less than

(∫ 1/2

0

(1/t− 2) dt

)1/2

=∞.

Since (3.7) holds but (3.6) fails, the sufficient condition (3.6) is not necessary.

Corollary 3.5. Let u and v be weights and 1 < p ≤ q <∞. Then for f ∈ C1(R+)

(3.9)
(∫ ∞

0

∫ ∞
0

|f(x)− f(y)|q

v(|x− y|)
dx dy

)1/q

≤ C
(∫ ∞

0

|f ′(x)|pu(x) dx
)1/p

whenever

(3.10)

∫ 1

0

sup
0<a<b<a/t

(∫ a/t

b

x

v(x(1− t))
dx

)(∫ b

a

u1−p′
)q/p′

dt

1/q

<∞.

Proof. An interchange of the order of integration and two changes of variable show

that

(∫ ∞
0

∫ ∞
0

|f(x)− f(y)|q

v(|x− y|)
dx dy

)1/q

=
(∫ ∞

0

∫ x

0

|f(x)− f(y)|q

v(|x− y|)
dy dx+

∫ ∞
0

∫ ∞
x

|f(x)− f(y)|q

v(|x− y|)
dy dx

)1/q

=
(

2
∫ ∞

0

∫ x

0

|f(x)− f(y)|q

v(|x− y|)
dy dx

)1/q

=21/q

(∫ 1

0

∫ ∞
0

x|f(x)− f(xt)|q

v(|x− xt|)
dx dt

)1/q

≤21/q

(∫ 1

0

∫ ∞
0

x

v(x(1− t))

(∫ x

xt

|f ′(s)| ds
)q

dx dt

)1/q

.

The result now follows from Theorem 3.3 with w(t, x) = x/v(x(1− t)).

Observe that this result extends to all weight functions v(x, y) satisfying v(x, y) =

v(y, x).
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We now derive from Corollary 3.5 the inequality (1.7) given in the introduction.

That is, we show that (3.9) holds with q = p, v(x) = x1+λp, and u(x) = x(1−λ)p for

λ ∈ (0, 1).

It follows from Corollary 3.5 that (1.7) is satisfied if

(3.11)∫ 1

0

sup
a<b<a/t

(∫ a/t

b

x−λp(1− t)−1−λp dx

)(∫ b

a

x(1−λ)p(1−p′) dx

)p−1

dt <∞.

Now(∫ a/t

b

x−λp dx

)(∫ b

a

x−p
′(1−λ) dx

)p−1

=

 (p−1)p−1

|1−λp|p
∣∣(a/bt)−λp+1 − 1

∣∣ ∣∣∣1− (a/b)−p
′(1−λ)+1

∣∣∣p−1

if λ 6= 1/p

log(a/bt)[log(b/a)]p−1 if λ = 1/p

Let s = a/b, then t < s < 1 and we must find the maximum of

g(s) =


(
1− (s/t)1−λp) (1− s(λp−1)/(p−1)

)p−1
if λ > 1/p(

(s/t)1−λp − 1
) (
s(λp−1)/(p−1) − 1

)p−1
if λ < 1/p

log(s/t)[log(1/s)]p−1 if λ = 1/p.

If λ > 1/p

d

ds
log(g(s)) =

−(1− λp)tλp−1s−λp

1− (t/s)λp−1
+

(1− p)λp−1
p−1 s

(λp−p)/(p−1)

1− s(λp−1)/(p−1)
,

and this is zero when s = t1/p
′
. Similarly, we see that the maximum of g(s) occurs

at s = t1/p
′

when λ ≤ 1/p. But

g(t1/p
′
) =

{ ∣∣1− tλ−1/p
∣∣p if λ 6= 1/p

1
p(p′)p−1 [log(1/t)]p if λ = 1/p.

If λ > 1/p, (3.11) takes the form

∫ 1

0

(1− t)−1−λp
(

1− tλ−1/p
)p

dt,
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and since limt→1(1 − tγ)/(1 − t) = γ, the integral converges if −λp + p > 0, ie.

λ < 1.

If λ < 1/p, (3.11) takes the form

∫ 1

0

(1− t)−1−λptλp−1
(

1− t1/p−λ
)p

dt,

and this integral converges if λ > 0 and λ < 1.

Finally, if λ = 1/p then (3.11) takes the form (t = e−y)

∫ 1

0

(1− t)−2[log(1/t)]p dt =
∫ ∞

0

ype−y

(1− e−y)2
dy.

This integral converges at ∞ and since limy→0 y/(1 − e−y) = 1, the integrand

behaves like yp−2 near 0 so the integral is finite.
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