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Abstract. Refinements to the usual Hölder and Minkowski inequalities in the Lebe-

gue spaces Lpµ are proved. Both are inequalities for non-negative functions and both

reduce to equality in L2
µ.

1. Introduction and Main Results

The Hölder and Minkowski inequalities are fundamental to the theory of Lebegue
spaces. If 1 < p <∞ and 1/p+ 1/p′ = 1 the first,

∫
fg dν ≤

(∫
|f |p dν

)1/p(∫
|g|p

′
dν

)1/p′

,

expresses the fact that functions in Lp
′

ν give rise to bounded linear functionals on
Lpν . It is a sharp inequality in the sense that for any f ∈ Lpν there is a function
g ∈ Lp′ν such that the inequality becomes equality. For this reason, improvements
to Hölder’s inequality must necessarily be quite delicate.

Theorem 1.1. Let p ≥ 2 and define p′ by 1/p + 1/p′ = 1. Then for any two
non-negative ν-measurable functions f and g

∫
fg dν ≤

(∫
fp dν −

∫ ∣∣∣f − gp′−1
∫
fg dν

/∫
gp
′
dν
∣∣∣p dν)1/p(∫

gp
′
dν

)1/p′

.

In the case 1 < p ≤ 2 our refinement takes the form of a lower bound.
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Theorem 1.2. Let p ≤ 2 and define p′ by 1/p + 1/p′ = 1. Then for any two
non-negative ν-measurable functions f and g

(∫
fp dν −

∫ ∣∣∣f − gp′−1
∫
fg dν

/∫
gp
′
dν
∣∣∣p dν)1/p(∫

gp
′
dν

)1/p′

≤
∫
fg dν.

The Minkowski inequality is the triangle inequality in Lpν : If 1 < p < ∞ and
1/p+ 1/p′ = 1 then

(∫
|f + g|p dν

)1/p

≤
(∫
|f |p dν

)1/p

+
(∫
|g|p dν

)1/p

.

There can only be improvement in this inequality when f and g are not multiples
of one another.

Theorem 1.3. Let p ≥ 2 and define p′ by 1/p + 1/p′ = 1. Then for any two
non-negative ν-measurable functions f and g

(∫
(f + g)p dν

)1/p

≤
(∫

fp dν −
∫
hp dν

)1/p

+
(∫

gp dν −
∫
hp dν

)1/p

where h =
∣∣f ∫ g(f + g)p−1 dν − g

∫
f(f + g)p−1 dν

∣∣ / ∫ (f + g)p dν.

Notice that the function h vanishes when f is a multiple of g. Again we get a
lower bound in the case 1 < p ≤ 2.

Theorem 1.4. Let 1 < p ≤ 2 and define p′ by 1/p + 1/p′ = 1. Then for any two
non-negative ν-measurable functions f and g

(∫
fp dν −

∫
hp dν

)1/p

+
(∫

gp dν −
∫
hp dν

)1/p

≤
(∫

(f + g)p dν
)1/p

where h =
∣∣f ∫ g(f + g)p−1 dν − g

∫
f(f + g)p−1 dν

∣∣ / ∫ (f + g)p dν.

It is easy to verify directly that the inequalities given above reduce to equalities
when p = 2.

The proofs of Theorems 1.1–1.4 will be given in the next section. They depend
on a special case of the key inequality established in Theorem 2.3. Also in the next
section we give examples to show that the inequalities may fail if the hypothesis of
non-negativity is dropped.

We assume throughout that 1 < p <∞ and 1/p+ 1/p′ = 1. Also, ν will denote
an arbitrary σ-finite measure while µ will denote a probability measure, that is,
a measure with total measure one. The function sgn(x) is defined to be 1 when
x > 0, 0 when x = 0, and −1 when x < 0.
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2. The Key Inequality

The power function x 7→ xα, x > 0, is convex when α > 1 and concave when
0 < α < 1. We will use this fact in the following form. If a and b are non-negative
real numbers then

(2.1) (a+ b)α ≥ aα + bα when α > 1 and (a+ b)α ≤ aα + bα when 0 < α < 1.

Equality holds only if α = 1, a = 0, or b = 0.

Lemma 2.1. Suppose 1 < p 6= 2 and t > 0. If x > 0, y > t and

xp−1 − |x− t|p−1 sgn(x− t) = yp−1 − |y − t|p−1 sgn(y − t)

then x = y.

Proof. Let ϕ(x) = xp−1 − |x − t|p−1 sgn(x − t). Since y > t we have ϕ(y) =
yp−1 − (y − t)p−1. Inequality (2.1) shows that ϕ(y) > tp−1 when p > 2 and
ϕ(y) < tp−1 when p < 2.

If x ≤ t then ϕ(x) = xp−1 + (t − x)p−1 so (2.1) yields ϕ(x) ≤ tp−1 when p > 2
and ϕ(x) ≥ tp−1 when p < 2. This contradicts the hypothesis ϕ(x) = ϕ(y) so we
must have x > t. Notice that for x > t, ϕ′(x) = (p − 1)xp−2 − (p − 1)(x − t)p−2

does not change sign. Hence ϕ is monotone and therefore one-to-one on (t,∞). We
conclude that x = y as required.

We begin by proving a discrete version of our key inequality.

Theorem 2.2. Suppose p > 2, n is a positive integer, x1, x2, . . . , xn are non-
negative, and 0 < t ≤ 1

n

∑n
j=1 xj. Then

1
n

n∑
j=1

xpj ≥ t
p

(
2
nt

n∑
j=1

xj − 1
)

+
1
n

n∑
j=1

|xj − t|p.

The reverse inequality holds when 1 < p < 2.

Proof. Let

Mn =
n∑
j=1

xpj − t
p

(
2
t

n∑
j=1

xj − n
)
−

n∑
j=1

|xj − t|p.

We will show by induction that Mn is non-negative when p > 2. If n = 1, and
0 < t ≤ x = x1 then M1 = xp − tp(2x/t − 1) − (x − t)p. Fix t and consider M1

as a function of x. At x = t, the function vanishes and for x ≥ t its derivative is
pxp−1 − 2tp−1 − p(x− t)p−1 which is not less than pxp−1 − ptp−1 − p(x− t)p−1 ≥ 0
by (2.1). It follows that M1 is non-negative for x ≥ t.

Suppose now that for some n > 1, Mn−1 ≥ 0. To show that Mn ≥ 0 we fix t
and show that for all x ≥ t, Mn is non-negative on the compact set

Kx ≡ {(x1, x2, . . . , xn) ∈ [0,∞)n :
∑n
j=1xj = nx}.
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First we show that Mn is non-negative on the boundary of Kx considered as a
subset of the hyperplane defined by

∑n
j=1 xj = nx. That is, that Mn ≥ 0 when at

least one of x1, x2, . . . , xn is zero. By symmetry we may assume that xn = 0. We
have

0 < t ≤ x =
1
n

n−1∑
j=1

xj ≤
1

n− 1

n−1∑
j=1

xj

and so, by the inductive hypothesis,

Mn =
n−1∑
j=1

xpj − t
p

(
2
t

n−1∑
j=1

xj − n
)
−
n−1∑
j=1

|xj − t|p − tp = Mn−1 ≥ 0.

To complete the proof we use a Lagrange Multiplier argument to show that if
the minimum value of Mn occurs in the interior of Kx (considered as a subset of
the hyperplane) then it is non-negative. Note that since p > 1, Mn has continuous
first partial derivatives with respect to each of x1, x2, . . . , xn. Thus it will suffice to
show that the value of Mn is non-negative at critical points of

Mn − λ
( n∑
j=1

xj − nx
)
,

considered as a function of x1, x2, . . . , xn, λ with x and t still fixed. At critical
points we have

∑n
j=1 xj = nx and for each j

pxp−1
j − 2tp−1 − p|xj − t|p−1 sgn(xj − t)− λ = 0.

It follows that xp−1
j −|xj− t|p−1 sgn(xj− t) takes the same value for each j. Since t

is no greater than the average of x1, x2, . . . , xn, either x1 = x2 = · · · = xn = x = t
or at least one xj is greater than t. In the latter case, Lemma 2.1 applies and we
conclude that x1 = x2 = · · · = xn = x. In either case we have

Mn = n(xp − tp(2x/t− 1)− (x− t)p)

which is non-negative as we have seen in the case n = 1. This completes the proof
in the case p > 2.

The proof that Mn ≤ 0 in the case 1 < p < 2 proceeds similarly.

The key inequality is presented next. It is more general than Theorem 2.2 and
will readily imply Theorems 1.1–1.4.

Theorem 2.3. Suppose p ≥ 2 and µ is a probability measure. If f ≥ 0 is a
µ-measurable function then

(2.2)
∫
fp dµ ≥ tp

(
2
t

∫
f dµ− 1

)
+
∫
|f − t|p dµ
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whenever 0 < t ≤
∫
f dµ. The reverse inequality holds when 1 < p ≤ 2.

Proof. It is a simple matter to show that (2) holds with equality when p = 2. When
p > 2 we argue as follows.

If f is not in Lpµ then both sides of (2.2) are infinite so there is nothing to
prove. Fix f ∈ Lpµ, and t with 0 < t <

∫
f dµ. Let f∗ denote the non-increasing

rearrangement of f with respect to µ. We view f∗ as a Lebesgue measurable
function on [0, 1]. Since f is non-negative, f and f∗ are equimeasurable, fp and
f∗p are equimeasurable, and |f − t|p and |f∗ − t|p are equimeasurable. Thus (2.2)
becomes

(2.3)
∫ 1

0

f∗p ≥ tp
(

2
t

∫ 1

0

f∗ − 1
)

+
∫ 1

0

|f∗ − t|p.

For each positive integer n define the function fn on [0, 1] by

fn(s) =
n∑
j=1

f∗(j/n)χ((j−1)/n,j/n)(s)

and note that since f∗ is non-increasing, f∗(s + 1/n) ≤ fn(s) ≤ f∗(s) for 0 <

s ≤ 1. Clearly, the sequence {fn} converges to f∗ in Lp[0, 1]. It follows that
∫ 1

0
fn

converges to
∫ 1

0
f∗ so for sufficiently large n we have 0 < t <

∫ 1

0
fn. By the Lebesgue

Dominated Convergence Theorem, (2.3) will follow provided we establish

(2.4)
∫ 1

0

fpn ≥ tp
(

2
t

∫ 1

0

fn − 1
)

+
∫ 1

0

|fn − t|p.

for sufficiently large n. If we set xj = f∗(j/n) then (2.4) becomes

1
n

n∑
j=1

xpj ≥ t
p

(
2
nt

n∑
j=1

xj − 1
)

+
1
n

n∑
j=1

|xj − t|p

which holds by Theorem 2.2 when n is large enough that t ≤
∫ 1

0
fn.

This proves the theorem for p > 2 in the case 0 ≤ t <
∫
f dµ. The case t =

∫
f dµ

follows by an easy limiting argument.
The same argument yields the reverse inequality when 1 < p < 2.

Corollary 2.4. Suppose p ≥ 2, µ is a probability measure, and f is a non-negative,
µ-measurable function. Then∫

f dµ ≤
(∫

fp dµ−
∫
|f −

∫
f dµ|p dµ

)1/p

The reverse inequality holds when 1 < p < 2.

Proof. Take t =
∫
f dµ in Theorem 2.3, rearrange the result and take p-th roots.
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Proofs of Theorems 1.1–1.4. To prove Theorems 1.1 and 1.2 we fix non-negative
ν-measurable functions f and g and apply Corollary 2.4 with fg1−p′ in place of f
and dµ = gp

′
dν/

∫
gp
′
dν.

Theorems 1.3 follows from Theorems 1.1 in the same way that Minkowski’s
inequality follows from Hölder’s. Fix non-negative ν-measurable functions f and g
and define h by

h =
∣∣∣∣f ∫ g(f + g)p−1 dν − g

∫
f(f + g)p−1 dν

∣∣∣∣/∫ (f + g)p dν .

Let p ≥ 2 and apply Theorem 1.1 with g replaced by (f + g)p−1 to get∫
f(f + g)p−1 dν ≤

(∫
fp dν −

∫
hp dν

)1/p(∫
(f + g)p dν

)1/p′

.

Interchanging the roles of f and g yields∫
g(f + g)p−1 dν ≤

(∫
gp dν −

∫
hp dν

)1/p(∫
(f + g)p dν

)1/p′

.

Adding the last two inequalities gives Theorem 1.3.
Theorem 1.4 follows from Theorem 1.2 by a similar argument.

Example 2.5. The hypothesis that f be non-negative cannot be dropped in Corol-
lary 2.4. That is, it is not necessarily true that∣∣∣∣∫ f dµ

∣∣∣∣ ≤ (∫ |f |p dµ− ∫ |f − ∫ f dµ|p dµ)1/p

when p > 2. The reverse inequality may also fail when p < 2 if f takes negative
values.

Proof. Take p = 3 and let f = χ[0,7/8) − χ(7/8,1]. Here µ is Lebesgue measure on
[0, 1]. The left hand side is 3/4 while the right hand side evaluates to (3/4)(4/3).

To show that the reverse inequality may fail it suffices to take p = 15/8 and
f = χ[0,1/32) − χ(1/32,1]. We omit the calculations.

Example 2.5 also shows that Theorems 1.1 and 1.2 may fail if f is allowed to
take negative values. Just take g ≡ 1.

Theorems 1.3 and 1.4 may fail for simpler reasons. They may fail to make sense.
When f and g are non-negative the function h is always less than each of them in
Lpν-norm. This may not be true if f and g take negative values.

Example 2.6. Let ν be Lebesgue measure on [0, 1] and suppose p > 2. Set f ≡ 1/2
and g = (1/2)(χ[0,1/2)−χ(1/2,1]). The function h of Theorems 1.3 and 1.4 satisfies∫

hp dν >

∫
|f |p dν and

∫
hp dν >

∫
|g|p dν.

Proof. f + g = χ[0,1/2) so h = χ(1/2,1]. Thus
∫
hp dν = 1/2 while both

∫
|f |p dν

and
∫
|g|p dν are (1/2)p.

Department of Mathematics, University of Western Ontario, London, Ontario,

N6A 5B7, CANADA

E-mail address: sinnamon@uwo.ca


