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ABSTRACT. Refinements to the usual Holder and Minkowski inequalities in the Lebe-
gue spaces Lﬁ are proved. Both are inequalities for non-negative functions and both
reduce to equality in Li.

1. INTRODUCTION AND MAIN RESULTS

The Holder and Minkowski inequalities are fundamental to the theory of Lebegue
spaces. If 1 <p < oo and 1/p+ 1/p’ =1 the first,

[ soav < ( [1srav) v (/1o dv)w ,

expresses the fact that functions in L2 give rise to bounded linear functionals on
LP. Tt is a sharp inequality in the sense that for any f € LP there is a function
g € Lﬁl such that the inequality becomes equality. For this reason, improvements
to Holder’s inequality must necessarily be quite delicate.

Theorem 1.1. Let p > 2 and define p' by 1/p+ 1/p" = 1. Then for any two
non-negative v-measurable functions f and g

[rsve ([ [lr-s s s ) " (o)

In the case 1 < p < 2 our refinement takes the form of a lower bound.
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Theorem 1.2. Let p < 2 and define p' by 1/p+ 1/p" = 1. Then for any two
non-negative v-measurable functions f and g

(/fpdy_/‘f—gp/_lffng/fg”/dv)p du)l/p (/gp/dy)l/p/ g/fgdy.

The Minkowski inequality is the triangle inequality in LP: If 1 < p < oo and
1/p+1/p’ =1 then

(/!f+g!pdv)1/p < (/!f\pdu)l/er (/ ]g\pdu)l/p.

There can only be improvement in this inequality when f and g are not multiples
of one another.

Theorem 1.3. Let p > 2 and define p' by 1/p+ 1/p" = 1. Then for any two
non-negative v-measurable functions f and g

(Jureors)"s(fra fira) ([ ra-fira)"

where h = ‘ffg(f+g)p’1dy—gff(f+g)p*1dv|/f(f+g)pdV-

Notice that the function h vanishes when f is a multiple of g. Again we get a
lower bound in the case 1 < p < 2.

Theorem 1.4. Let 1 < p < 2 and define p’ by 1/p+1/p’ = 1. Then for any two
non-negative v-measurable functions f and g

(/fpdy_/hpdy)”ﬁ(/gpdy_/hpd,,)”pg (/<f+g>pd,,)”p

where h = ‘ffg(f+g)p’1dy—gff(f+g)p71dV|/f(f‘i‘g)pd’/-

It is easy to verify directly that the inequalities given above reduce to equalities
when p = 2.

The proofs of Theorems 1.1-1.4 will be given in the next section. They depend
on a special case of the key inequality established in Theorem 2.3. Also in the next
section we give examples to show that the inequalities may fail if the hypothesis of
non-negativity is dropped.

We assume throughout that 1 < p < oo and 1/p+1/p’ = 1. Also, v will denote
an arbitrary o-finite measure while p will denote a probability measure, that is,
a measure with total measure one. The function sgn(x) is defined to be 1 when
x> 0,0 when z =0, and —1 when x < 0.
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2. THE KEY INEQUALITY

The power function z — x%, x > 0, is convex when o > 1 and concave when
0 < a < 1. We will use this fact in the following form. If a and b are non-negative
real numbers then

(2.1) (a+b)*>a*+b* when o > 1 and (a +b)* < a® +b* when 0 < a < 1.

Equality holds only if « =1, a =0, or b= 0.
Lemma 2.1. Suppose 1 <p#2andt>0. Ifx >0,y >t and

Pt — |z =t sgn(z —t) = yP — |y — t|P sgn(y — t)

then x = y.

Proof. Let ¢(z) = 2P71 — |o — t|P"Lsgn(z — t). Since y > t we have p(y) =
yP~! — (y — t)P7L. Inequality (2.1) shows that (y) > tP~! when p > 2 and
o(y) < P71 when p < 2.

If # <t then p(x) = 2P~ + (t — 2)P~! so (2.1) yields p(z) < t*~! when p > 2
and ¢(r) > t?P~! when p < 2. This contradicts the hypothesis o(x) = p(y) so we
must have x > t. Notice that for z > ¢, ¢'(z) = (p — 1)aP™2 — (p — 1)(z — )P~ 2
does not change sign. Hence ¢ is monotone and therefore one-to-one on (t,00). We
conclude that x = y as required.

We begin by proving a discrete version of our key inequality.
Theorem 2.2. Suppose p > 2, n is a positive integer, T1,Ta,...,T, are NoN-

negative, and 0 <t < + > j—1%;. Then

n

1 & 2 — 1
Lya zw(azxj_l) Py ol
j=1 j=1

j=1

The reverse inequality holds when 1 < p < 2.
Proof. Let

n n n
2
ang x?—t”(gg xj—n)—g |z —t|P.
=1 j=1 j=1

We will show by induction that M, is non-negative when p > 2. If n = 1, and
0 <t<ax=umx then My = 2P —tP(2z/t — 1) — (x — t)P. Fix t and consider M;
as a function of z. At x = t, the function vanishes and for x > ¢ its derivative is
prP~1 —2tP~1 — p(x — t)P~1 which is not less than pzP~! — ptP~1 —p(z —t)P~1 >0
by (2.1). It follows that M; is non-negative for z > ¢.

Suppose now that for some n > 1, M,,_1 > 0. To show that M, > 0 we fix ¢
and show that for all x > ¢, M,, is non-negative on the compact set

Kl‘ = {(a:l?xQ?- . 7xn) S [07 Oo)n : z;bzlfli'j = nac}
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First we show that M, is non-negative on the boundary of K, considered as a
subset of the hyperplane defined by Z?Zl x; = nx. That is, that M, > 0 when at
least one of x1,xs,...,x, is zero. By symmetry we may assume that x,, = 0. We

have
ln—l 1 n—1
0<t§x:ﬁ;xj§n_1;mj

and so, by the inductive hypothesis,

n—1 9 n—1 n—1
M, = ng_tp(gzxj_n) B T VR )
j=1 j=1 j=1

To complete the proof we use a Lagrange Multiplier argument to show that if
the minimum value of M,, occurs in the interior of K, (considered as a subset of
the hyperplane) then it is non-negative. Note that since p > 1, M,, has continuous
first partial derivatives with respect to each of x1, x5, ..., x,. Thus it will suffice to
show that the value of M, is non-negative at critical points of

Mn—)\(ixj —nx),
j=1

considered as a function of x1,xs,...,2,, A with = and t still fixed. At critical
points we have 7, x; = nz and for each j

pal ™t = 2P — pla; — 1P sgn(a; — 1) — A = 0.

It follows that xé.’_l —|z; —t|P~ sgn(x; —t) takes the same value for each j. Since ¢

is no greater than the average of x1,zs,...,2,, either x1 =20 =--- =2, =x =1
or at least one x; is greater than ¢. In the latter case, Lemma 2.1 applies and we
conclude that 1 = 290 = --- = z,, = x. In either case we have

Mo = nla? — 920/t~ 1) — (1)

which is non-negative as we have seen in the case n = 1. This completes the proof
in the case p > 2.
The proof that M, <0 in the case 1 < p < 2 proceeds similarly.

The key inequality is presented next. It is more general than Theorem 2.2 and
will readily imply Theorems 1.1-1.4.

Theorem 2.3. Suppose p > 2 and p is a probability measure. If f > 0 is a
w-measurable function then

(2.2) /fpd,uztp (%/fdu—1)+/|f—t|pdu
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whenever 0 < t < [ fdu. The reverse inequality holds when 1 < p < 2.

Proof. 1t is a simple matter to show that (2) holds with equality when p = 2. When
p > 2 we argue as follows.

If f is not in L% then both sides of (2.2) are infinite so there is nothing to
prove. Fix f € L, and t with 0 < ¢ < [ fdp. Let f* denote the non-increasing
rearrangement of f with respect to u. We view f* as a Lebesgue measurable
function on [0,1]. Since f is non-negative, f and f* are equimeasurable, fP and
f*P are equimeasurable, and |f — ¢|P and |f* — t|P are equimeasurable. Thus (2.2)
becomes

(2.3) /f*p>tp( /f —1) /|f

For each positive integer n define the function f, on [0,1] by

=Y G/MXG-1)/nim ()

J=1

and note that since f* is non-increasing, f*(s + 1/n) < f,(s) < f*(s) for 0 <
s < 1. Clearly, the sequence { f,,} converges to f* in LP[0, 1]. It follows that fol fn

converges to fol f* so for sufficiently large n we have 0 < t < fol fn. By the Lebesgue
Dominated Convergence Theorem, (2.3) will follow provided we establish

(2.4) /fp>tp< /fn—l)+/01\fn—t]p.

for sufficiently large n. If we set x; = f*(j/n) then (2.4) becomes

_metp( ij—l) IR

=1

which holds by Theorem 2.2 when 7 is large enough that t < fol fn-

This proves the theorem for p > 2 in the case 0 <t < [ fdu. Thecaset = [ fdu
follows by an easy limiting argument.

The same argument yields the reverse inequality when 1 < p < 2.

Corollary 2.4. Supposep > 2, p is a probability measure, and f is a non-negative,
w-measurable function. Then

/fdué (/fpdu—/!f—ffdu!pdu)l/p

The reverse inequality holds when 1 < p < 2.
Proof. Take t = [ fdu in Theorem 2.3, rearrange the result and take p-th roots.
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Proofs of Theorems 1.1-1.4. To prove Theorems 1.1 and 1.2 we fix non-negative
v-measurable functions f and g and apply Corollary 2.4 with f gl_p/ in place of f
and dp = g? dv/ fgp/ dv.

Theorems 1.3 follows from Theorems 1.1 in the same way that Minkowski’s
inequality follows from Holder’s. Fix non-negative v-measurable functions f and g

and define h by
h='f/g<f+g>p—1du—g/f<f+g>P—1du //(f+g)pdV-

Let p > 2 and apply Theorem 1.1 with g replaced by (f + ¢g)?~! to get

Jrseortas([ra[re)"(fueara)"

Interchanging the roles of f and g yields

[oresras ([ fira)” (fuara)”

Adding the last two inequalities gives Theorem 1.3.
Theorem 1.4 follows from Theorem 1.2 by a similar argument.

Example 2.5. The hypothesis that f be non-negative cannot be dropped in Corol-
lary 2.4. That is, it is not necessarily true that

[ ran] < (/|f|pdu—/|f—ffdu|pdu)l/p

when p > 2. The reverse inequality may also fail when p < 2 if f takes negative
values.

Proof. Take p = 3 and let f = xjo,7/8) — X(7/8,1)- Here p is Lebesgue measure on
[0,1]. The left hand side is 3/4 while the right hand side evaluates to (3/4)(*/3).

To show that the reverse inequality may fail it suffices to take p = 15/8 and
J = X[0,1/32) — X(1/32,1]- We omit the calculations.

Example 2.5 also shows that Theorems 1.1 and 1.2 may fail if f is allowed to
take negative values. Just take g = 1.

Theorems 1.3 and 1.4 may fail for simpler reasons. They may fail to make sense.
When f and g are non-negative the function h is always less than each of them in
LP-norm. This may not be true if f and g take negative values.

Example 2.6. Let v be Lebesgue measure on [0, 1] and suppose p > 2. Set f =1/2
and g = (1/2)(X[0,1/2) — X(1/2,1]). The function h of Theorems 1.3 and 1.4 satisfies

/hpdl/>/\f]pdy and /hpdz/>/|g\pdy.

Proof. f+ g = Xj0,1/2) 0 h = X(1/2,1]- Thus [ AP dv = 1/2 while both [ |f[?dv
and [ |g|P dv are (1/2)?.
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