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Abstract. In order to use Just-In-Time production methods in a small, Make-To-Order

environment it is necessary to achieve as balanced a workload as possible. This paper gives
an algorithm to determine a production schedule which balances the workload in a situation

with unpredictable demand.

1. Introduction

The past decade has seen western manufacturers increasingly adopt elements of the

Japanese Just-In-Time (JIT) system of production. A complete JIT system is made

up, according to Finch and Cox [1986], of eight points: a focused factory, reduced set-up

times, group technology, total preventative maintenance, cross-trained employees, uniform

work loads, just-in-time delivery of purchased parts, and the Kanban or pull system of

controlling production.

The benefits to large manufacturing companies are well documented, from the original

developer, Toyota [Monden 1981], to Westinghouse, Hewlett-Packard and Harley Davidson

[O’Grady 1988], to General Electric, RCA, the Pontiac division of GM, and IBM [Gravel

and Price 1988]. These benefits include substantial decreases in turnover time as well as in
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inventories of completed work and work-in-process, increased productivity and customer

satisfaction, and better quality control.

Traditionally, the JIT system has not been considered applicable to small manufac-

turers or to Make-To-Order (MTO) environments. In recent years, however, there has

been increased exploration of the possibilities of extending some elements at least of the

JIT system to smaller firms. Finch and Cox [1986] describe a small but repetitive manu-

facturing environment as suitable for some aspects of JIT operation. They also consider

that many elements of a JIT system are attainable by small manufacturing companies

which are not necessarily repetitive environments. They identify as one of the major dif-

ficulties in an MTO workplace the attainment of a stable work-load; once this has been

established, the manufacturer should be able to obtain a degree of success equal to that

of the Make-To-Stock (MTS) or repetitive manufacturer. This paper describes a model

to achieve as stable a workload as possible in such a workplace.

Achieving a stable workload is not only one of the major difficulties in a small shop, it

is also one of the most important of the eight points mentioned above. The benefits of a

Just-In-Time system are largely due to the accurate feedback possible in such a system.

Reducing inventory and requiring a uniform flow of work through the shop make is easier

to pinpoint inefficiencies. An under-utilized station which is ‘ahead of schedule’ is not as

obvious as one with no work to do, and a bottleneck with 12 units waiting to be processed

where there should be 10 is not as obvious as one with 3 units where there should be 1.

Once identified, management may move with confidence to correct bottlenecks, sources

of defects, under-utilized stations, and even poor shop layouts. The ability to make such

corrections easily is a requirement for JIT; hence the need for a focused factory, group
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technology, and cross-trained employees; but identifying the problems is the difficult first

step. This is especially true in a small shop where the responsibility for effective operations

will often rest with a single individual.

Clearly a job shop cannot hope to reduce its inventory if it must respond to the tra-

ditional single-date, large order demand, although as more firms convert to JIT systems

the job shop will be able to benefit from the consequent smoothing of demand. In the

current market more benefit is likely to accrue from having less work-in-process to clutter

the shop floor, from increased productivity, and from greater customer satisfaction due to

fewer due dates missed and improved quality control. Maruchek and McClelland [1986]

identify several problems faced by MTO firms, among them engineering changes and ma-

terial substitutions even up to final assembly, which contribute to the serious problem of

frequent changes in promise dates. The JIT system in general allows firms to achieve total

quality control; the method of assigning production described in this paper enables the

company to produce new items more slowly at first, which allows the manufacturer to get

feedback on the design early in the process. This reduces potential waste and is likely to

ensure that promise dates are adhered to much more closely.

Gravel and Price [1988] describe the operation of the Kanban method of production

in a small firm. In a Kanban system each work station issues a signal to the preceeding

station for a particular part as the need arises for that part. This ‘pulls’ work through

the shop, in contrast to the usual Western ‘push’ methods. Gravel and Price use both

simulation techniques and a pilot study to show that this method can be successful in the

job-shop environment. They identify the necessity of keeping production and the purchase

of materials tightly coordinated, as running out of purchased materials makes impossible
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the smooth functioning of the Kanban system. Small shops are, in the present market,

unlikely to be able to get deliveries ‘just in time’ from suppliers so it is clearly important

for management to be able to forecast the amounts of supplied materials required. The

schedules produced by the methods of this paper will enable management to so coordinate

the purchase of materials.

It should be noted that the schedule which evolves is not a schedule of factory produc-

tion but rather a schedule of the release of the signals which will pull through the shop the

production of each unit. This model provides a sequence of final assembly pull-signals.

Each unit so demanded then generates its own pull signals as it progresses through the

shop.

We assume here that a balanced schedule of final assembly pull signals will yield a

stable work load for the shop. This assumption will be valid if each final assembly is made

up of similar components. In particular, this includes fabrication shops where a single

piece of raw material undergoes several operations to produce the final product. In effect

each ‘assembly’ has only one component.

The paper addresses the problem of balancing the production schedule in an MTO

or job-shop environment which meets the JIT criteria of small set-up times and cross-

trained employees and satisfies the above assumption. It expands in part on the algorithm

introduced in Miltenburg [1989] which determines production schedules for a mixed-model

assembly line in a MTS setting. In that paper, ideal production levels arise naturally from

demand levels, and units are to be produced in ratios as close as possible to the ratios

in which they are demanded; the obvious problem in a job-shop or MTO environment is

that demand is often uneven and is generally not known far in advance. Our treatment
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includes the situation studied in Miltenburg[1989] as a special case—if all orders have

distant due dates the MTO model reduces to the MTS case. However, in Miltenburg and

Sinnamon([1989] and [1993]), the MTS problem was revisited with the above assumption

removed. The resulting multi-level problem was solved in those papers. We do not

attempt to solve the MTS multi-level problem here but recommend it as an area for

future research. Despite appearances, it will not be a simple synthesis of this paper

and the work of Miltenburg and Sinnamon. For instance, there seems to be no obvious

extension of our first pass to the multi-level case.

The mathematical model of the scheduling problem is divided into three passes. The

first pass provides a formula for determining ideal production levels in an environment of

uneven, unpredictable demand. It is necessary to be able to respond to new orders, to

keep the shop working evenly at full capacity, and to complete orders in time. The second

pass is concerned with the problem of deriving realistic production targets from the ideal

production levels, which generally involve fractions of models. The third pass offers an

algorithm for eliminating any infeasibilities which may arise in the construction of the

production targets. Eliminating these infeasibilities produces the ‘real-world’ sequence

which will best balance the production schedule of the plant. The mathematical model

is demonstrated throughout the exposition by the use of an example. A discussion of the

efficiency of the model then follows.

2. Description of the problem

In the traditional MTO operation, flow control is exercised in two ways: Strategic

release of jobs to the shop floor, and dispatching rules used in the shop itself. In order to
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regulate the flow of work through the shop, jobs can be held in the job pool or released

to take their place in the work in process on the shop floor. Strategic release can be an

important method of controlling production. Dealing with high priority jobs at the job

release stage is unfortunately simple—they must be released immediately and job control

is forfeited.

After release, work in process is moved from machine queue to machine queue, each

time subject to the dispatching rules for that machine. Job priority is broken down

into subassembly priorities and fed to the dispatching rules with results that are often

uncertain. Even if high priority jobs do move rapidly through the shop, the work they push

aside is left standing in the aisles (often literally) as work in process inventory. In a factory

organized for JIT production many of the problems are alleviated. Inventories do not

mount since only downstream need can authorize production. Machines are organized in

flow groups and this organization replaces dispatching rules either with the simple physical

flow of parts within a groups or with Kanban links between groups. High priority jobs

prompt immediate final assembly pull signals and the appropriate signals for subassemblies

and parts echo upstream rapidly, altering the focus of the factory without leaving any half-

finished work in process.

When this pull system of production replaces the traditional push system the job release

concept is lost. Instead of initiating work on the early stages of a job, management in the

JIT setting issues a pull signal for a certain finished product. The loss of strategic job

release means that one method of controlling the flow of work through the shop is lost.

The mechanism of control must now be the timing of pull signals, issued by management,

to the final assembly stages. It is the purpose of this paper to provide an algorithm to
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issue the sequence of final assembly pull signals which will yield the most balanced flow

of work through the shop.

We begin by describing what we mean by a balanced (or smooth or level or stable or

uniform) workload. Ideally, we want the proportion of shop capacity devoted to each final

assembly to be the same in every time interval. Practically, we want to be as close to this

ideal as is feasible. Scheduling such a typical mix of models provides the benefits of JIT

mentioned above: Since all the tasks of the shop are done each day (or some time unit

which is small in the context of the particular shop) there is no need to stockpile work-in-

progress against the time its completing step is scheduled. Also, each work station works

at close to its average rate so it is easy to check if a work station is over- or under-utilized

and no station will be idle one week and backlogged the next.

In a MTS shop the most typical mix of final assemblies is achieved when production

is kept proportional to total demand [Miltenberg, Miltenberg and Sinnamon]. In a MTO

operation, however, demand is unpredictable so keeping production proportional to total

demand is not an option—total demand is an unknown quantity. Other means of deter-

mining the most typical mix of final assemblies must be found. In addition, achieving a

balanced work flow is necessarily an ongoing process since a new balance must be struck

each time a new order is received. The algorithm presented here uses only the orders

currently on the books to produce the shop schedule. No attempt is made to predict

future orders. Therefore, each time a new order is received the entire schedule must be

recalculated to take into account the new information available. This is necessary in the

MTO environment where orders will routinely be placed for items never before produced

by the shop.
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In order to simplify the statement of the problem it will be assumed that all input data

has been preprocessed into convenient forms. This is done in three ways.

1. The shop is capable of producing n different final assemblies. These are called models

1, 2, . . . , n. Since new products may be engineered to each customer’s order the value of n

may increase each time a new order is received (and decrease each time an order is filled.)

For a single run of the scheduling algorithm, however, n may be regarded as fixed.

2. Each unit of each model takes the same length of time to produce, independent of

which model is produced. This length of time is called a stage and the shop operates

continuously at the rate of one unit per stage. All other time measurements (days, weeks,

shifts, etc) are converted into stages. In practice, assembly times may differ somewhat

and a stage may be taken as an average. This will not cause difficulties unless assembly

times are very long or vary quite widely.

3. Orders come to the shop in the following simple form: model number, quantity, due

date. Quantity is simply the number of units and due date is expressed in stages from

the present. Although a customer may order a mix of several models and specify several

different due dates, these complex orders may be readily broken down into several orders

of the simple type described above.

The due dates used here are determined by the shop management and are realistically

set—a problem in its own right. In determining realistic due dates management faces

two difficulties. The first must be addressed by any MTO shop whether or not a JIT

system is in place. Managers must promise delivery times and actually make deliveries so

as to attract new customers and satisfy existing customers. This will mean negotiating

and renegotiating delivery dates, incurring tardiness penalties and risking loss of future
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business when necessary and so on. A means of accomplishing this must be in place but

it is beyond the scope of this paper. The second difficulty is that the time between a final

assembly’s pull signal (which is what is scheduled) and its completion is always subject

to variation in practise. Thus when one counts backward from an actual delivery date

to get the due date for pull signals the result will not always be on-time delivery. It is

possible to leave extra time in counting back but the JIT approach would be to leave little

or no slack. Any problem that arose would then be traced to its source in the shop and

corrected. See Hopp, Spearman and Duenyas[1993] for a discussion of due date integrity

in a pull system.

The following notation will be used in the paper.

The Initial Data.

n the number of models.

q the number of orders.

mj model number for order j, 1 ≤ mj ≤ n.

sj quantity for order j in units.

Dj due date for order j in stages from the present.

The orders are arranged by due date so that 0 < D1 ≤ D2 ≤ · · · ≤ Dq. The number

of units required by due date Dj is
∑j
i=1 si. The due dates are not impossible to meet,

therefore
∑j
i=1 si ≤ Dj .

Derived Quantities.

S the total number of units ordered.

The quantities for orders 1, 2, . . . , q are s1, s2, . . . , sq respectively. The total number of
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units ordered is S =
∑q
i=1 si. Since the shop always works at the rate of one unit per

stage, all production will be finished after S stages. Thus all due dates greater than S

stages from the present are no restriction at all. We therefore define

dj the adjusted due date for order j.

For convenience set d0 = 0. For j > 0 set dj = min(Dj , S). Notice that we still have

0 = d0 ≤ d1 ≤ · · · ≤ dq ≤ S.

The following three quantities are defined in Section 3.

Ij the intensity index of order j.

Ri,j the rate of work on order i during the time interval (dj−1, dj).

pv,k the ideal production of model v during the first k stages.

Decision Variables.

xv,k the number of units of model v produced during the first k stages.

Example. We introduce a small shop with only five orders on the books. For simplicity

suppose that each item takes a day to make so that our stage is one day. The orders are

as follows.

Order A: 5 units of the item “Cover” due 13 days from now.

Order B: 8 units of the item “Grate” due 30 days from now.

Order C: 7 units of the item “Cover” due 27 days from now.

Order D: 2 units of the item “Panel” due 26 days from now.

Order E: 4 units of the item “Grate” due 20 days from now.

We have n = 3 models and q = 5 orders for a total of S = 26 units on order. The orders

are designated by letters here rather than numbers because we must sort by due date
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before numbering. After sorting (into the order A, E, D, C, B) the model numbers are

m1 = 1 (Cover), m2 = 2 (Grate), m3 = 3 (Panel), m4 = 1 (Cover), and m5 = 2 (Grate).

The quantities, sj , the due dates, Dj , and the adjusted due dates, dj , are easy to read

off. For example s3 = 2, D4 = 27, and d4 = 26.

The problem of determining which pull signals to issue at each stage, or equivalently,

which model to schedule at each stage is broken down into three passes. In Pass 1 ideal

production-to-date figures are generated which, if achieved, would ensure that production

was taking place in a precisely typical mix subject to meeting all due dates. In general it

is not possible to meet these production levels. Pass 2 begins the process of determining

production-to-date targets which approximate as closely as possible the ideal production-

to-date figures of Pass 1. Very often this pass will succeed in solving the problem making

Pass 3 unnecessary. In Pass 3 the production targets which best approximate the ideal

levels of Pass 1 are determined by making small adjustments to the Pass 2 targets where

required.

As we will see in Section 6, Passes 1 and 2 are very rapid and although Pass 3 may be

slow in pathological cases, it too is generally a rapid procedure.

Before embarking on a detailed discussion of the three passes we would like to point

out that more direct approaches to this scheduling problem have been tried and found

wanting. Indeed, the first author’s introduction to the problem (in the MTS case) was

being asked to show that a certain greedy algorithm always produced optimal schedules.

It did not. An example of this failure may be found in Miltenburg [1989] on page 198.

Since the MTO case includes the MTS case we do not expect a simple, greedy algorithm to

be successful here. If a simpler, faster alternative is desired, one can get reasonably good
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schedules by omitting pass three and patching infeasibilities with one of the heuristics

described in Miltenburg [1989] but Pass 3’s guarantee of a schedule that deviates as little

as possible from the ideal would be lost.

3. Pass One

In this section we define the variables Ij , Ri,j , and pv,k and show that the ideal pro-

duction to date figures pv,k represent the production of the most typical mix of final

assemblies possible subject to meeting all due dates.

The mix of models produced by the shop may be determined from the percentages of

the shop capacity devoted to work on the various orders. We call the percentage of the

shop capacity devoted to work on the order j the rate of work on order j. A typical mix

of models will result if these percentages are kept fixed at all times during production.

However, the due dates must be met. After an order’s due date, work on that order ceases

and its percentage of the shop capacity drops to zero. This is the restriction imposed by

the due dates. The production-to-date figures are calculated, therefore, according to the

following guiding principle: The rates of work on the various orders are kept in proportion

to one another, except that completed orders are allowed to drop out. From the rates of

work determined by this principle the ideal production-to-date figures may be calculated

which are as close to the typical mix as possible while meeting all due dates.

Consider work on order j. Orders 1, 2, . . . , j − 1 must be completed before the due

date for order j. Thus the uncommitted shop capacity (the number of stages) available

for work on order j is dj − (s1 + s2 + · · ·+ sj−1). Since sj units must be produced to fill
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order j, we define the intensity index of order j to be

Ij =
sj

dj − (s1 + s2 + · · ·+ sj−1)

Notice that the maximum intensity is 1 and that Iq = 1. The time interval consisting of

those stages following the due date for order j − 1 up to and including the due date for

order j will be denoted (dj−1, dj ]. During the interval (dj−1, dj ] work progresses on the

orders j, j + 1, . . . , q but work on orders 1, 2, . . . , j − 1 has been completed. Thus if i < j

the ideal rate of work on order i during the interval (dj−1, dj ] is

Ri,j = 0 units per stage.

If i ≥ j the ideal rate of work on order i during the interval (dj−1, dj ] is

Ri,j = Ii

i−1∏
a=j

(1− Ia) units per stage.

Since the shop operates at one unit per stage we should have

Rj,j +Rj+1,j +Rj+2,j + · · ·+Rq,j = 1, j = 1, 2, . . . , q.

The left hand side represents the combined work rate on all models during the time interval

(dj−1, dj ]. The values Ri,j defined above do satisfy this identity.

To meet the deadline for order i the equations

si =
i∑

j=1

Ri,j(dj − dj−1), i = 1, 2, . . . , q

must be valid. The right hand side represents the total work on order i. Again the work

rates Ri,j satisfy this requirement.
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According to the guiding principle above, the rate of work on order a and the rate of

work on order b should be in constant proportion until one of the orders is complete. That

is, the expression

Ra,j/Rb,j

should not depend on j as long as a ≥ j and b ≥ j. This is indeed the case. To

summarize, the work rates defined above do not exceed shop capacity, they meet due date

requirements, and they maintain a typical mix of final assemblies.

It is now a simple matter to calculate the ideal production-to-date at each stage. Given

a number of stages k the first step is to determine in which time interval k lies. If

dj is the due date immediately following k then k lies in the interval (dj−1, dj ] so that

dj−1 ≤ k ≤ dj . Once this j has been found then the ideal production-to-date of model v

during the first k stages is

pv,k =
∑(

Ri,j(k − dj−1) +
j−1∑
l=1

Ri,l(dl − dl−1)

)

where the outer sum is taken over all orders i such that mi = v (order i is an order for

model v.)

PASS ONE PASS TWO PASS THREE
Ideal Production Levels Production Targets Production Targets Final

Model 1 Model 2 Model 3 Mod 1 Mod 2 Mod 3 Mod 1 Mod 2 Mod 3 Schedule
STAGE Cover Grate Panel Cover Grate Panel Cover Grate Panel

1 0.570 0.376 0.053 1 0 0 1 0 0 1 Cover
2 1.141 0.753 0.106 1 1 0 1 1 0 2 Grate
3 1.711 1.129 0.159 2 1 0 2 1 0 1 Cover
4 2.282 1.506 0.212 2 2 0 2 2 0 2 Grate
5 2.852 1.882 0.265 3 2 0 3 2 0 1 Cover
6 3.423 2.259 0.319 4 2 0 4 2 0 1 Cover
7 3.993 2.635 0.372 4 3 0 4 3 0 2 Grate
8 4.563 3.012 0.425 5 3 0 5 3 0 1 Cover
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9 5.134 3.388 0.478 5 3 1 5 4 0 # 2 Grate
10 5.704 3.765 0.531 6 4 0 ! 6 4 0 # 1 Cover
11 6.275 4.141 0.584 6 4 1 6 4 1 3 Panel
12 6.845 4.518 0.637 7 4 1 7 4 1 1 Cover
13 7.416 4.894 0.690 7 5 1 7 5 1 2 Grate
14 7.718 5.506 0.776 8 5 1 8 5 1 1 Cover
15 8.020 6.118 0.863 8 6 1 8 6 1 2 Grate
16 8.322 6.729 0.949 8 7 1 8 7 1 2 Grate
17 8.624 7.341 1.035 9 7 1 9 7 1 1 Cover
18 8.925 7.953 1.122 9 8 1 9 8 1 2 Grate
19 9.227 8.565 1.208 9 9 1 9 9 1 2 Grate
20 9.529 9.176 1.294 10 9 1 10 9 1 1 Cover
21 9.941 9.647 1.412 10 10 1 10 10 1 2 Grate
22 10.353 10.118 1.529 10 10 2 11 10 1 # 1 Cover
23 10.765 10.588 1.647 11 11 1 ! 11 11 1 # 2 Grate
24 11.176 11.059 1.765 11 11 2 11 11 2 3 Panel
25 11.588 11.529 1.882 12 11 2 12 11 2 1 Cover
26 12.000 12.000 2.000 12 12 2 12 12 2 2 Grate

Table 1: Determination of the final schedule for the example
! – infeasibility, # – linked chain

Example (continued). The Pass 1 calculations conclude with the determination of the

ideal production levels of each model at each stage. For our example these are given in

the first section of Table 1. Notice that the total production of all models up to stage k

is k units even though fractions of units are allowed at this point in the process.

Deadlines are also being met, for instance, at stage k = 13 the ideal production levels

are p1,13 = 7.416, p2,13 = 4.894, and p3,13 = 0.690. That is, by the end of the 13’th stage

the 5 units of model 1 (the Cover) from order 1 will have been completed (for delivery at

k = 13), and 2.416 units will have been produced towards the 7 units of model 1 required

by stage k = 26 to meet order 4. The production of models 2 and 3 is building to meet

the due dates for the other three orders.

The advantage of allowing fractions of models at this stage is that rates of work can

be seen to remain fairly constant. 0.053 units per stage is the rate of work on model 3
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from stages 1 to 13, this increases to 0.086 from stages 14 to 20 and to 0.118 for the last

6 stages before its delivery date.

4. Pass Two

Ideal production-to-date figures have been calculated in Pass 1. The variable pv,k

represents the ideal production of model v during the first k stages. These figures are called

“ideal” because they have been determined without regard to an important restriction—

production of actual models can only occur in whole numbers of units. In the example the

ideal production-to-date of models 1, 2, and 3 in the first stage turned out to be 0.570,

0.376, and 0.053 units respectively. This does not resemble a useful production schedule.

Ideal production-to-date figures are useful nonetheless. They provide a standard against

which to measure actual schedules. The schedule which produces actual production-to-

date numbers as close as possible to the ideal figures will be the preferred schedule. In this

section the closest to ideal production-to-date using only integers is determined for each

model at each stage. These will be called production targets. The production targets are

found by solving the following problem for each stage k.

Closest Integer Problem. For a fixed integer k find integers x1,k, x2,k, . . . , xn,k which

minimize
n∑
v=1

αv,k(xv,k − pv,k)2

subject to
∑n
v=1 xv,k = k.

The constraint
∑n
v=1 xv,k = k expresses the fact that the total production of all models

during the first k stages is k units—as always the shop operates at one unit per stage. The

term (xv,k − pv,k)2 is the squared deviation of the integer xv,k (actual production-to-date
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of model v) from the number pv,k (ideal production-to-date of model v.) Summing this

over all models and minimizing will yield the closest integers to ideal production after k

stages.

The weights αv,k are positive constants which allow the relative importance of keeping

the production of the various models close to ideal production to be adjusted by manage-

ment. If it is highly desirable, for example, that the actual production of model 3 be kept

close to the ideal production level then the weights α3,k may be set higher that the other

weights α1,k, α2,k, α4,k . . . , αn,k. Of course more delicate adjustments than these may be

made. For example, it may be of value to have some simple scheme whereby the impor-

tance of the various orders (above and beyond due date priority) would be translated into

values for the weights α1,k, α2,k, . . . , αn,k.

The dependence of the weights on k is of no importance in Pass 2 since no interaction

is allowed between production levels at the various stages. In Pass 3 such interaction may

take place and the dependence of the weights on k may provide an additional measure of

management control. This will be discussed further in the next section.

Algorithm to solve the Closest Integers Problem.

Input data:

k a fixed integer. 1 ≤ k ≤ S.

αv,k a positive weight for each v = 1, 2, . . . , n.

pv,k from Pass 1, satisfing
∑n
v=1 pv,k = k.

(1) For each v = 1, 2, . . . , n set xv,k = (pv,k rounded to the nearest integer).

(2) Let sum =
∑n
v=1 xv,k. If sum < k go to (3). If sum > k go to (4). If sum = k go

to (5).
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(3) Find w such that αw,k(xw,k − pw,k + 1
2 ) is a minimum. Increase xw,k by 1. Go to

(2).

(4) Find w such that αw,k(xw,k − pw,k − 1
2 ) is a maximum. Decrease xw,k by 1. Go

to (2).

(5) Stop. x1,k, x2,k, . . . , xn,k are the required integers.

For a justification of this algorithm see Appendix I.

The Closest Integers Problem can now be solved for each stage k = 1, 2, . . . , S. The

result is a sequence of production targets from which may be read off the most desirable

level of production for each model at each stage. If a schedule for the shop results in actual

production equal to target production at each stage then the schedule cannot be improved.

Moreover, if such a schedule is possible it is easily determined from the production targets

themselves. Consider the targets at stage k; x1,k, . . . , xn,k; and the targets at stage k+ 1;

x1,k+1, . . . , xn,k+1. The sum of the stage k targets is k and the sum of the stage k + 1

targets is k + 1. Because of this, and because of the way that the xv,k are determined it

generally happens that xv,k = xv,k+1 for all but one model v and for the remaining model,

say model w, xw,k + 1 = xw,k+1. When this is the case it is clear that model w should be

scheduled in stage k.

Example (continued). The production targets for the example are given in the Pass 2

section of Table 1. Although the targets yield a production schedule for the first few

stages, a problem arises in passing from stage 9 to stage 10. The sequence of models for

stages 0 to 9 is easily seen to be 1, 2, 1, 2, 1, 1, 2, 1, 3 but in passing from the stage 9

target to the stage 10 target production of model 3 drops from 1 to 0—certainly actual
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production cannot follow this lead. Another such difficulty is encountered in passing from

stage 22 to stage 23. It will be the task of Pass 3 to eliminate these difficulties.

The step from one production target to the next is called feasible provided the target

production of each model does not drop. Otherwise the step is called infeasible. Notice

that if a step is feasible then the step is always simply the production of one unit of one

model with the production targets of all other models remaining constant.

The existence of infeasible steps in this type of scheduling problem was encountered

in [Miltenburg 1989] and examined further in [Miltenburg and Sinnamon 1989] and [Mil-

tenburg and Sinnamon 1992]. The solution there was to apply one of several heuristic

techniques to adjust the production targets locally and eliminate the infeasible steps. Un-

fortunately, once the heuristics were applied there was no longer any guarantee that the

resulting schedule was best possible. This difficulty is overcome in the next section. An

exact algorithm is given which eliminates any infeasible steps which may have arisen in

Pass 2 and guarantees that the resulting schedule has the smallest possible (weighted sum

of squares) variation from the ideal production levels of Pass 1.

5. Pass Three

In the previous section targets were produced which minimized variation from ideal pro-

duction levels and satisfied the constraint
∑n
v=1 xv,k = k for each stage k. The additional

constraint that production levels must never decrease was not imposed and occasionally

the production targets generated in Pass 2 will violate this constraint. It is important to

stress that if this constraint is not violated by the Pass 2 targets (ie there are no infeasible

steps) then the final schedule may be determined without going to Pass 3.
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It is the purpose of this section to give an algorithm which will adjust the production

targets of Pass 2 in order to eliminate infeasible steps and to make these adjustments in

such a way that the resulting production targets do yield a schedule and, subject to this

requirement, minimize variation from ideal levels.

The ideal production-to-date figures still provide the standard against which the actual

schedules are measured. If there are infeasible steps in the Pass 2 targets then it is not

sufficient to solve the CIP at each stage and place the solutions in sequence. It becomes

necessary to perform a single minimization step involving all the decision variables at the

same time. This is the

Just-in-time Sequencing Problem. Find integers xv,k, v = 1, 2, . . . , n; k = 0, 1, . . . , S,

which minimize

DEVIATION =
S∑
k=0

n∑
v=1

αv,k(xv,k − pv,k)2

subject to the constraints

n∑
v=1

xv,k = k, k = 0, 1, 2, . . . , S,

and

xv,k−1 ≤ xv,k, v = 1, 2, . . . , n; k = 1, 2, 3, . . . , S.

The approach to this problem begins with the Pass 2 targets. These have been com-

puted for each stage k in Pass 2. No sequence of production levels which satisfy the two

constraints of the JSP has a lower value of DEVIATION than the sequence of Pass 2

targets. The only reason that they may not be the solution to the JSP is that they may

have infeasible steps and therefore violate the second constraint of the JSP.
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To solve the JSP successive adjustments are made to the Pass 2 targets. Each time

an adjustment is made the resulting sequence is guaranteed to still have a lower value of

DEVIATION than any sequence of production levels which satisfy the two constraints of

the JSP. (The new value of DEVIATION will, however, be larger than for the unadjusted

Pass 2 targets.) It follows that if (after some number of adjustments) the resulting se-

quence satisfies the JSP constraints then it will necessarily minimize DEVIATION and

constitute a solution to the JSP. It remains to describe the adjustments and show that

eventually the constraints will be satisfied.

Some precise language will facilitate the description of the Pass 2 adjustments.

The stage k target refers to the production targets x1,k, x2,k, . . . , xn,k now considered

as a single entity.

The sequence of targets refers to the sequence: stage 1 target, stage 2 target, . . . ,

stage S target.

A chain of targets refers to a collection of consecutive targets in the sequence of targets.

A feasible chain is a chain which contains no infeasible step. Note that chains of length

1 are automatically feasible.

The main technique used in the adjustment procedure is the solution of the

Extended Closest Integers Problem. For fixed integers k and r find integers xv,l,

v = 1, 2, . . . , n; l = k, k + 1, . . . , k + r − 1; which minimize

k+r−1∑
l=k

n∑
v=1

αv,l(xv,l − pv,l)2

subject to
n∑
v=1

xv,l = l, l = k, k + 1, . . . , k + r − 1,
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and

xv,l−1 ≤ xv,l, v = 1, 2, . . . , n; l = k + 1, . . . , k + r − 1.

Note that for r = 1 this reduces to the CIP and for k = 0 and r = S + 1 this becomes

the JSP.

Solving the JSP as a special case of the ECIP is impractical since the algorithm for the

ECIP has efficiency on the order of nr. For small r, however, this is quite practical—and

this is where the solution to the ECIP is used.

The algorithm which solves the ECIP is similar to, but somewhat more technical than,

the algorithm presented in Pass 2 for the CIP. It is therefore relegated to Appendix II.

There is one more concept to introduce before describing the procedure for adjusting

the Pass 2 targets. That is the idea of linking a chain of targets. This notion is used

within the adjustment procedure to keep track of adjustments that have gone before. If a

chain of targets is linked by the procedure then the procedure will never adjust one target

in the linked chain without adjusting them all. When the procedure begins with the Pass

2 targets no chain is linked.

Procedure for adjusting targets.

(1) If there are no infeasible steps stop. The current sequence of targets is a solution

to the JSP.

(2) Find an infeasible step and identify the smallest chain which contains this infeasible

step and which does not begin or end inside any previously linked chain. Note

that if the identified chain contains a part of any previously linked chain then it

contains the entire linked chain.
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(3) Solve the ECIP using the initial stage k and the length r of the identified chain

for input. Replace the targets within the identified chain by the solution to the

ECIP.

(4) Link the identified chain and return to step (1).

Example (continued). In our example the step from stage 9 to stage 10 was seen to be

infeasible after Pass 2. When we identify the chain consisting of stages 9 and 10 and solve

the ECIP we obtain the new targets shown in the Pass 3 section of Table 1. To fix the

infeasible step from stage 22 to 23 the ECIP is solved for the chain consisting of those two

stages. All other targets remain unchanged. Since no infeasible steps remain it is possible

to read off the final schedule from the production targets (Table 1). This sequence of

models gives the order of final assembly pull signals to be issued to the shop. Notice that

all due dates will be met.

At first glance it appears that the adjustment procedure must be run through exactly

once for each infeasible step. This is not necessarily the case. It is possible that adjusting

the targets within the identified chain may introduce new infeasible steps—not within

the identified chain since the solution to the ECIP is always a feasible chain—but at the

endpoints of the identified chain. The question arises, therefore, whether the procedure

will ever succeed in eliminating all infeasible steps. To see that it will succeed note that

each time step 4 is performed there are, overall, more stages within linked, feasible chains

than previously. If the procedure has not stopped by the time all steps are linked into a

single feasible chain it will certainly do so then.

When the procedure does stop, as it must, the result will be a sequence of targets with
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no infeasible step. Thus it satisfies the constraints of the JSP. The remaining question

is: Does the resulting sequence indeed minimize DEVIATION subject to the constraints?

The answer, of course, is yes it does, and the reasoning relies on the notion of linkage.

The resulting sequence of targets may be thought of as a sequence of chains—either linked

chains or original Pass 2 targets (chains of length 1.) Each Pass 2 target is the solution

to the CIP for that stage. No other target for that stage contributes less to DEVIATION

than the Pass 2 target. Each linked chain is the solution to the ECIP for that range of

stages. No other feasible chain for that range of stages contributes less to DEVIATION

than the solution to the ECIP. Thus each chain in the sequence of chains contributes the

least amount possible to DEVIATION so DEVIATION is minimized.

6. The Efficiency of the Algorithm

The three passes which make up the algorithm are performed successively so their

efficiencies may be considered separately. Pass 1 is very rapid consisting as it does of

straightforward combinations of the initial data. On the order of q2 + S operations are

required. (Recall that q is the number of orders and S is the total quantity on order.) This

is a very modest requirement and, indeed, tests show the Pass 1 times to be negligible.

Pass 2 is also fast. The CIP is solved S times and each time on the order of n operations

are performed. Again, in tests the time for Pass 2 is small.

The problem of assessing the theoretical efficiency of Pass 3 is formidable. There seems

to be no simple way to predict how many infeasiblities will occur in the Pass 2 targets or

how long the linked sections will become during the resolution of those infeasibilities that

do occur. The latter question is the important one. The number of operations required



JUST-IN-TIME SCHEDULES FOR THE SMALL MAKE-TO-ORDER SHOP 25

(in the ECIP) to link a chain of length r is on the order of nr+1 so the length of the

longest chain which must be linked in Pass 3 will essentially determine the time taken.

In order to examine the efficiency of Pass 3 the algorithm (all three passes) was run 813

times with randomly generated data. There were between 2 and 20 orders for between 2

and 12 models with actual numbers independently uniformly distributed. The quantity for

each order was randomly selected so that the total number of units on order was between

2 and 400. Figure 1 is a histogram of the number of times that the longest linked chain

had length r for all values of r. (In our implementation of the algorithm only chains of

length 3 or more were linked.) It is clear even from this small number of trials that very

long linked chains are highly unlikely to occur. Moreover, in nearly one third of the trials

(258 of 813) no chains were linked, meaning that Pass 2 produced the final schedule and

Pass 3 was not required.

The close connection between the time taken by the algorithm and the length of the

longest linked chain is illustrated by the “cpu seconds” column in Figure 1. (Problems

were run on a single processor CDC 4680.) The column reports the average of the times

taken for all trials having each of the r values. Because of the small number of trials

having r values of 8, 9, 10, and 12, the averages may not be representative but it is clear

that very long times can occur. Depite the occasional occurrence of very long times the

algorithm is generally rapid: Over 90% of the trials finished in under one second and over

95% finished in under one minute.

CPU sec.
0.00 0 258
2.0× 10−3 3 199
4.5× 10−2 4 156
4.4× 10−1 5 88
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6.8× 100 6 42
7.7× 101 7 39
6.4× 102 8 14
8.1× 102 9 11
8.2× 103 10 4
— 11 0
5.7× 103 12 2

Figure 1: Frequency of longest linked chain
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Appendix I. The Closest Integers Problem

The object of this discussion is to demonstrate that the algorithm given by (1)-(5) of

Section 4 solves the CIP. To do this we use the following result.

Theorem 1. Suppose k is an integer, p1, p2, . . . , pn are real numbers, α1, α2, . . . , αn are

weights (non-negative real numbers,) and x1, x2, . . . , xn are integers satisfying x1 + x2 +

· · ·+ xn = k. The following two statements are equivalent.

(I.1)
n∑
ν=1

αν(xν − pν)2 ≤
n∑
ν=1

αν(yν − pν)2

whenever y1, y2, . . . , yn are integers such that y1 + y2 + · · ·+ yn = k.

(I.2) max
1≤ν≤n

αν(xν − pν − 1
2 ) ≤ min

1≤ν≤n
αν(xν − pν + 1

2 ).

Then proof of Theorem 1 will be given shortly, but first we indicate how the the-

orem may be used to justify the algorithm of Section 4. According to Theorem 1,
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x1,k, x2,k, . . . , xn,k solves the CIP at stage k provided

x1,k, x2,k, . . . , xn,k are integers,(I.3)

x1,k + x2,k + · · ·+ xn,k = k, and(I.4)

max
1≤ν≤n

αν(xν,k − pν,k − 1
2 ) ≤ min

1≤ν≤n
αν(xν,k − pν,k + 1

2 ).(I.5)

In the algorithm, x1,k, x2,k, . . . , xn,k are originally defined, in (1), to be integers and

are only adjusted, in (3) or (4), by adding or subtracting 1. Thus they always remain

integers and so (I.3) is satisfied. Since the variable sum gets closer to k by 1 with every

cycle, the algorithm will certainly stop since it does so exactly when sum = k. Thus (I.4)

holds.

To show that (I.5) holds for the result of the algorithm, we show that it holds for the

original definition, in (1), of x1,k, x2,k, . . . , xn,k and that it is preserved whenever there is

an adjustment, in (3) or (4). Originally, xν,k is chosen as close as possible to pν,k so that

we have − 1
2 ≤ xν,k − pν,k ≤ 1

2 for each ν. Looking at (I.5) we see that the left hand side

is not greater than 0 and the right hand side is not less than 0 so (I.5) is satisfied initially.

Suppose that we enter (3) with some x1,k, x2,k, . . . , xn,k satisfying (I.5). w is chosen

so that αw,k(xw,k − pw,k + 1
2 ) is a minimum. The action of (3) will be to replace xw,k

by xw,k + 1. To show that (I.5) will be preserved we note that the right hand side

will not decrease so if the left hand side does not increase then (I.5) is preserved. If

the left hand side does increase then it must increase to αw,k((xw,k + 1) − pw,k − 1
2 ) =

αw,k(xw,k − pw,k + 1
2 ). The choice of w ensures that this is still less than or equal to the

right hand side so (I.5) is preserved. The argument to show that (I.5) is preserved in (4)

is similar.
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We conclude that the algorithm does indeed solve the CIP.

Proof of Theorem 1. Suppose (I.1) holds. Choose i and j so that αi(xi − pi − 1
2 ) is a

maximum and αj(xj − pj + 1
2 ) is a minimum. (I.2) becomes

(I.6) αi(xi − pi − 1
2 ) ≤ αj(xj − pj + 1

2 ).

Since α1, α2, . . . , αn are non-negative this is immediate if i = j. If i 6= j define y1, y2, . . . , yn

by yi = xi + 1, yj = xj − 1 and yν = xν when ν is neither i nor j. By (I.1),

n∑
ν=1

αν(xν − pν)2 ≤
n∑
ν=1

αν(yν − pν)2.

Cancelling identical terms in the two sums leaves

αi(xi − pi)2 + αj(xj − pj)2 ≤ αi((xi − 1)− pi)2 + αj((xj + 1)− pj)2

which can be rearranged to yield (I.6). We have shown that (I.1) implies (I.2) so it remains

to establish the converse implication.

Suppose that (I.2) holds and let C = max1≤ν≤n αν(xν − pν − 1
2 ). For all ν we have

(I.7) αν(xν − pν − 1
2 ) ≤ C and C ≤ αν(xν − pν + 1

2 ).

We will deduce (I.1) by showing that

S =
n∑
ν=1

αν(yν − pν)2 −
n∑
ν=1

αν(xν − pν)2

is non-negative. We calculate as follows.

S =
n∑
ν=1

αν(yν − xν)(yν + xν − 2pν)

=
∑

yν≥xν+1

αν(yν − xν)(yν + xν − 2pν) +
∑

yν≤xν−1

αν(xν − yν)(2pν − yν − xν)
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since terms in which yν = xν drop out. In the left hand sum the first two factors, αν and

(yν − xν), are non-negative. Thus the sum will decrease if yν is decreased to xν + 1 in

the third factor. Similarly, in the right hand sum the first two factors, αν and (xν − yν),

are non-negative. Thus the sum will decrease if −yν is decreased to −xν + 1 in the third

factor. Therefore,

S ≥
∑

yν≥xν+1

αν(yν − xν)(xν + 1 + xν − 2pν) +
∑

yν≤xν−1

αν(xν − yν)(2pν − xν + 1− xν)

=
∑

yν≥xν+1

2(yν − xν)αν(xν − pν + 1
2 ) +

∑
yν≤xν−1

2(xν − yν)αν(pν − xν + 1
2 ).

To complete the proof we use the estimates (I.7) and add in the zero terms again.

S ≥
∑

yν≥xν+1

2(yν − xν)C +
∑

yν≤xν−1

2(xν − yν)(−C)

=
n∑
ν=1

2C(yν − xν) = 2C

(
n∑
ν=1

yν −
n∑
ν=1

xν

)
= 2C(k − k) = 0.

Appendix II. The Extended Closest Integers Problem

The purpose of this appendix is to solve the Extended Closest Integers problem stated

in Section 5. We begin by solving the following problem.

CIP+. Suppose the models to be produced in stages k, k + 1, . . . , k + r are fixed. Note

that in this case the production target for stage k immediately determines the production

targets for stages k, k + 1, . . . , k + r. What is the stage k production target for which

(II.1)
k+r−1∑
l=k

n∑
ν=1

αν,l(xν,l − pν,l)2

is a minimum?

We will show that the CIP+ reduces to the CIP which has been solved in Section 4 and

Appendix 1. The ECIP is then solved as follows: Enumerate all possible model sequences
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for stages k, k+ 1, . . . , k+ r. For each fixed model sequence solve the CIP+. The solution

to the ECIP is the model sequence, together with the associated stage k target produced

by the CIP+, for which (II.1) is a minimum.

To reduce the CIP+ to the CIP fix the models ek, ek+1, . . . , ek+r−1 which are to be

produced in stages k, k + 1, . . . , k + r − 1 respectively. With these fixed the following

relation between the stage k target and the stage l targets for k ≤ l ≤ k + r may be

deduced:

xi,l − xi,k is the number of times that model i appears among ek, ek+1, . . . , el−1.

For convenience we set yi,l = pi,l+xi,k−xi,l and note that the values of yi,l are determined

by the sequence ek, ek+1, . . . , ek+r−1 alone and so are fixed for this discussion. Using these

relations we can rewrite (II.1) as follows.

k+r∑
l=k

n∑
ν=1

αν,l(xν,l − pν,l)2 =
n∑
ν=1

k+r∑
l=k

αν,l(xν,k − yν,l)2

=
n∑
ν=1

[(
k+r∑
l=k

αν,l

)
x2
ν,k −

(
k+r∑
l=k

2αν,lyν,l

)
xν,k +

(
k+r∑
l=k

αν,ly
2
ν,l

)]

=
n∑
ν=1

Aν(xν,k − Yν)2 + C

where

Aν =
k+r∑
l=k

αν,l, Yν = (2Aν)−1
k+r∑
l=k

2αν,lyν,l, and C =
n∑
ν=1

(
−Y 2

ν +
k+r∑
l=k

αν,ly
2
ν,l

)
.

Since C is independent of x1,k, x2,k, . . . , xn,k we may minimize the expression (II.1) by

minimizing
∑n
ν=1Aν(xν,k − Yν)2 over all integers xν,k such that

∑n
ν=1 xν,k = k. This is

just the CIP with weights A1, A2, . . . , An and ideal production levels Y1, Y2, . . . , Yn.
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