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Abstract. Necessary and sufficient conditions on the weights w and w0 are given
for the higher order Hardy inequality

(∫ 1

0
|u|qw0

)1/q

≤ C
(∫ 1

0
|u(k+1)|pw

)1/p

to hold for all solutions u of certain overdetermined boundary value problems.

1. Introduction

A function whose derivative is not too large cannot grow fast enough to become
too large itself. This simple observation is of fundamental importance in many
areas of analysis and its appearance in various, more precise, forms has provided
basic tools in Harmonic Analysis, Differential Equations, Interpolation Theory and
others.

In this paper we apply this principle to solutions of certain overdetermined, two-
point boundary value problems in order to characterize weighted Lebesgue norm
inequalities involving higher order derivatives. We extend results of Gurka for
weighted inequalities involving solutions of the first-order overdetermined problem

u′ = f in (0, 1), u(0) = u(1) = 0, (1.1)

which can be found in [8, Chapter 1, Section 8], and improve results of Kufner and
Simader [6] for the higher-order overdetermined problem

u(k+1) = f in (0, 1), u(0) = u′(0) = · · · = u(k)(0) = u(k)(1) = 0. (1.2)
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2 ALOIS KUFNER AND GORDON SINNAMON

Our main result is to give a characterization of weighted inequalities for the more
general higher-order overdetermined problem

u(k+1) = f in (0, 1),

u(i)(0) = 0 for i ∈M0,

u(i)(1) = 0 for i ∈M1,

u(k)(0) = u(k)(1) = 0,

(1.3)

where M0 and M1 are appropriate subsets of {0, 1, . . . , k − 1}.
For each of these boundary value problems (1.1), (1.2), and (1.3), we give easily

verified necessary and sufficient conditions which answer the question: For which
weights w0 and w and indices p and q does there exist a constant C such that(∫ 1

0

|u|qw0

)1/q

≤ C
(∫ 1

0

|f |pw
)1/p

for all functions f and u satisfying (1.1) (or (1.2) or (1.3)).
Our approach draws on known Hardy-type inequalities, see [8], on recent results

which provide weighted inequalities for integral operators with fairly general pos-
itive kernels, [11], and on higher-order Hardy inequalities, [2, 3, 4, 5, 7, 9]. After
introducing some notation we begin with a simple lemma based on an idea of R.
Oinarov, mentioned in [6], which shows that boundedness of a positive operator on
a certain hyperplane in Lpw is equivalent to boundedness on the whole space.

A weight is a non-negative, measurable function. If w is a weight and 0 < p <∞
we denote the collection of functions f for which

‖f‖pw ≡
(∫ 1

0

|f |pw
)1/p

is finite by Lpw. If p ≥ 1 this is a Banach space. We define p′ by 1/p + 1/p′ = 1
even when p < 1. The notation A ≈ B means that there are positive constants c1
and c2 such that A ≤ c1B and B ≤ c2A. A non-negative operator on functions is
one that maps non-negative functions to non-negative functions. The characteristic
function of the set E, denoted χE , takes the value 1 on the set E and the value 0
otherwise.

Lemma 1.1. Let 1 < p < ∞, 0 < q < ∞ and let w and w0 be weights. Suppose
that z satisfies∫ z

0

w1−p′ ≈
∫ 1

z

w1−p′ <∞ or
∫ z

0

w1−p′ =
∫ 1

z

w1−p′ =∞ (1.4)

and set

H =
{
g :
∫ z

0

g =
∫ 1

z

g

}
.
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If T is a non-negative linear operator then T : H ∩ Lpw → Lqw0
if and only if

T : Lpw → Lqw0
.

Proof. The “if” part of the theorem is trivial. To prove the other direction, suppose
that T : H ∩ Lpw → Lqw0

. Since L1 ∩ Lpw is dense in Lpw it is enough to show that
T : L1 ∩Lpw → Lqw0

. Fix g in L1 ∩Lpw and suppose, without loss of generality, that∫ z
0
|g| ≤

∫ 1

z
|g|.

Case 1. Suppose that
∫ z

0
w1−p′ ≈

∫ 1

z
w1−p′ <∞. Set

h = αw1−p′
(∫ 1

z

|g| −
∫ z

0

|g|
)
χ(0,z)

where 1/α =
∫ z

0
w1−p′ . Clearly h ≥ 0 and a simple calculation shows that |g|+h ∈

H. Since g ≤ |g|+ h, we have

‖Tg‖q w0 ≤ ‖T (|g|+ h)‖q w0 ≤ C‖|g|+ h‖pw ≤ C‖g‖pw + C‖h‖pw

so to complete the first case we have only to show that ‖h‖pw ≤ C ′‖g‖pw for some
constant C ′. We estimate the norm of h using Hölder’s inequality and property
(1.4) of z.

‖h‖pw =α
(∫ z

0

w(1−p′)pw

)1/p(∫ 1

z

|g| −
∫ z

0

|g|
)
≤ α1/p′

∫ 1

z

|g|

≤α1/p′
(∫ 1

z

w1−p′
)1/p′ (∫ 1

0

|g|pw
)1/p

≤ C ′‖g‖pw

as required.
Case 2. Suppose that

∫ z
0
w1−p′ =

∫ 1

z
w1−p′ =∞. For each positive integer n set

hn = αnw
1−p′
n

(∫ 1

z

|g| −
∫ z

0

|g|
)
χ(0,z)

where w1−p′
n = w1−p′χ{w1−p′<n} and 1/αn =

∫ z
0
w1−p′
n . Again, hn ≥ 0, |g|+hn ∈ H,

and g ≤ |g|+ hn so for each n we have

‖Tg‖q w0 ≤ ‖T (|g|+ hn)‖q w0 ≤ C‖|g|+ hn‖pw ≤ C‖g‖pw + C‖hn‖pw.

Now w1−p′ is zero where w 6= wn so

‖hn‖pw = αn

(∫ z

0

w(1−p′)p
n w

)1/p(∫ 1

z

|g| −
∫ z

0

|g|
)
≤ α1/p′

n

∫ 1

z

|g|.

As n → ∞ we see that αn → 0 so we have ‖Tg‖q w0 ≤ C‖g‖pw which completes
the second case and the proof.

Remark. Although we may choose z so that there is equality in the first part of
(1.4), the weaker restriction is enough and the extra freedom may prove to be useful
when verifying the conditions of Theorems 2.3, 3.7 and 3.8.

We note that for some weights w it is not possible to find a z satisfying (1.4).



4 ALOIS KUFNER AND GORDON SINNAMON

2. The first-order, overdetermined problem.

In this section we characterize the weights w0 and w for which there exists a
constant C such that

‖u‖q w0 ≤ C‖f‖pw, for f and u satisfying (1.1). (2.1)

Gurka has solved this problem for indices p and q satisfying 1 < p ≤ q < ∞ but
our conditions, while still necessary and sufficient, are different in form than his.
Gurka’s work is presented in [8, Chapter 1, Section 8].

We also solve the problem in the case 0 < q < p, 1 < p <∞.

Definition 2.1. For fixed z ∈ (0, 1), let S = S1 + S2 where

S1g(x) =
(∫ x

0

g

)
χ(0,z)(x) and S2g(x) =

(∫ 1

x

g

)
χ(z,1)(x).

Note that S1 and S2, and hence S, are non-negative operators.

Lemma 2.2. Suppose that f and u satisfy (1.1) and set g = (χ(0,z) − χ(z,1))f .
Then u = Sg.

Proof. Since u(0) = u(1) = 0 we have

u(x) =
∫ x

0

f = −
∫ 1

x

f

and hence

u(x) =
(∫ x

0

f

)
χ(0,z)(x)−

(∫ 1

x

f

)
χ(z,1)(x) = Sg(x).

Theorem 2.3. Let 0 < q < ∞ and 1 < p < ∞. Suppose w0 and w are weights
and z satisfies (1.4). Then there exists a constant C such that (2.1) holds if and
only if I or II below holds.
I. 1 < p ≤ q <∞,

sup
0<x<z

(∫ z

x

w0

)1/q (∫ x

0

w1−p′
)1/p′

<∞, (2.2)

and

sup
z<x<1

(∫ x

z

w0

)1/q (∫ 1

x

w1−p′
)1/p′

<∞. (2.3)

II. 0 < q < p, 1 < p <∞, 1/r = 1/q − 1/p,(∫ z

0

(∫ z

x

w0

)r/p(∫ x

0

w1−p′
)r/p′

w0(x) dx

)1/r

<∞, (2.4)
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and (∫ 1

z

(∫ x

z

w0

)r/p(∫ 1

x

w1−p′
)r/p′

w0(x) dx

)1/r

<∞. (2.5)

Proof. We begin by showing that (2.1) holds if and only if S : Lpw → Lqw0
. Suppose

first that S : Lpw → Lqw0
and that f and u satisfy (1.1). Now, with g = (χ(0,z) −

χ(z,1))f , we use Lemma 2.2 and the boundedness of S to get

‖u‖q w0 = ‖Sg‖q w0 ≤ C‖g‖pw = C‖f‖p,w.

Conversely, suppose that (2.1) holds. According to Lemma 1.1, it is enough to
prove that ‖Sg‖q w0 ≤ C‖g‖pw for functions g ∈ Lpw satisfying

∫ z
0
g =

∫ 1

z
g in order

to conclude that S : Lpw → Lqw0
. Fix such a g and define f and u by

f = (χ(0,z) − χ(z,1))g, u(x) =
∫ x

0

f.

Since u(1) =
∫ 1

0
f =

∫ z
0
g −

∫ 1

z
g = 0 it is clear that f and u satisfy (1.1). Thus,

using Lemma 2.2 again,

‖Sg‖q w0 = ‖u‖q w0 ≤ C‖f‖p,w = C‖g‖pw.

To complete the proof, we show that the boundedness of S is equivalent to the
conditions in I and II.

Since S is the sum of the two non-negative operators S1 and S2, it is bounded
if and only if both S1 and S2 are bounded. The boundedness of S1 : Lpw → Lqw0

means that there exists a constant C such that(∫ 1

0

∣∣∣∣(∫ x

0

g

)
χ(0,z)(x)

∣∣∣∣q w0(x) dx
)1/q

≤ C
(∫ 1

0

|g|pw
)1/p

for all functions g on [0, 1]. Since the left hand side does not depend on the values
of g on [z, 1], the above inequality is clearly equivalent to the inequality(∫ z

0

∣∣∣∣∫ x

0

g

∣∣∣∣q w0(x) dx
)1/q

≤ C
(∫ z

0

|g|pw
)1/p

(2.6)

for all functions g on [0, z]. The weights for which this type of Hardy inequality
holds have been completely characterized. See [8, Theorems 1.14, 1.15, and 9.3].
The inequality (2.6) holds if and only if 1 < p ≤ q <∞ and (2.2) holds or 0 < q < p,
1 < p <∞, 1/r = 1/q − 1/p, and (2.4) holds.

A similar analysis shows that the boundedness of S2 reduces to a conjugate
Hardy inequality which yields the conditions (2.3), (2.5). This completes the proof.

Remark. Techniques are available for dealing with the endpoint cases 0 < q <
p = ∞, 1 < p ≤ q = ∞, p = 1 ≤ q ≤ ∞, and 0 < q < p = 1. In particular,
weighted Hardy inequalities have been characterized in these cases. See [8, Chapter
1, Section 5] and [10]. Our methods produce results in these cases with only minor
modifications.
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3. Higher-order, overdetermined problems

We begin this section with a discussion of boundary value problems which have
the “right” number of boundary conditions, that is, the number of boundary con-
ditions is the same as the order of the problem.

LetNi = {0, 1, . . . , i−1} and fix subsetsM0 andM1 ofNk such that |M0|+|M1| =
k. We consider the boundary value problem

u(k) = f ; u(i)(0) = 0 for i ∈M0, u(i)(1) = 0 for i ∈M1 (3.1)

for some locally integrable function f . Drábek and Kufner [2] have shown that it
has a unique solution for every locally integrable function f if and only if (M0,M1)
satisfies the Pólya condition:

|M0 ∩Ni|+ |M1 ∩Ni| ≥ i, i = 1, 2, . . . , k. (3.2)

To better understand this condition we introduce the 2 × k incidence matrix E =
(eα i) of (M0,M1) by setting eα i = 1 if i − 1 ∈ Mα and eα i = 0 otherwise. The
condition (3.2) states that there are at least i 1’s in the first i columns of E for
i = 1, 2, . . . , k.

For a pair (M0,M1) satisfying the Pólya condition there is a Green’s function
G(x, s) for the boundary value problem (3.1) (see, for example, [1, p162ff]) so that
for any locally integrable function f , the solution of (3.1) is given by

u(x) =
∫ 1

0

G(x, s)f(s) ds.

These Green’s functions are well understood. If M0 = Nk and M1 is empty, then

G(x, s) =
(x− s)k−1

(k − 1)!
χ(0,x)(s). (3.3)

If M1 = Nk and M0 is empty then

G(x, s) = − (x− s)k−1

(k − 1)!
χ(x,1)(s).

For any other pair, (M0,M1), Sinnamon, in [9], has verified a conjecture of Kufner
showing that the associated Green’s functions are equivalent to functions of a par-
ticularly simple form. This result is reproduced in Proposition 3.2 below.

Definition 3.1. For a pair (M0,M1) we define non-negative integers a, b, c, and
d, as follows: Let a be the number of consecutive 1’s beginning the top row of E;
b be the number of consecutive 1’s beginning the bottom row of E; c be the number
of consecutive 0’s ending the top row of E; and d be the number of consecutive 0’s
ending the bottom row of E. Also define A, B, C, and D by

A =
{
a− 1, if a+ c = k

a, if a+ c < k
, C =

{
c− 1, if a+ c = k

c, if a+ c < k
,
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B =
{
b− 1, if b+ d = k

b, if b+ d < k
, D =

{
d− 1, if b+ d = k

d, if b+ d < k
.

To illustrate the definition we offer an example. Take k = 6, M0 = {0, 1, 2}, and
M1 = {1, 3, 4}. Then we have

E =
(

1 1 1 0 0 0
0 1 0 1 1 0

)
,

a = 3, b = 0, c = 3, d = 1, A = 2, B = 0, C = 2, and D = 1. Notice that (M0,M1)
satisfies the Pólya condition.

Proposition 3.2. Suppose that (M0,M1) satisfies |M0|+ |M1| = k and the Pólya
condition (3.2) and that neither M0 nor M1 is empty. Then the Green’s function,
G(x, s), of the boundary value problem (3.1) satisfies

|G(x, s)| ≈ xa(1− x)BsC(1− s)d, for 0 < x < s < 1, (3.4)

and
|G(x, s)| ≈ xA(1− x)bsc(1− s)D, for 0 < s < x < 1. (3.5)

Note that since the Green’s function G(x, s) is continuous on (0, 1) × (0, 1) it
follows that G does not change sign on (0, 1)× (0, 1), a remark which includes the
function G from (3.3) as well.

Before we turn to the overdetermined case, we pause to introduce the weight
conditions that arise.

Definition 3.3. Suppose that 1 < p <∞, 0 < q <∞, λ > 0, v0 and v are weights
on [a, b], and φ is a non-negative, continuous function on [a, b]. Set r = pq/(p− q).

Define B([a, b], v0(t), v(t)) to be

sup
a<x<b

(∫ b

x

v0(t) dt

)1/q (∫ x

a

v(t)1−p′ dt

)1/p′

if p ≤ q, and

∫ b

a

(∫ b

x

v0(t) dt

)r/p(∫ x

a

v(t)1−p′ dt

)r/p′
v0(x) dx

1/r

if q < p,

and B′([a, b], v0(t), v(t)) to be

sup
a<x<b

(∫ x

a

v0(t) dt
)1/q

(∫ b

x

v(t)1−p′ dt

)1/p′

if p ≤ q, and

∫ b

a

(∫ x

a

v0(t) dt
)r/p(∫ b

x

v(t)1−p′ dt

)r/p′
v0(x) dx

1/r

if q < p.
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Define B1([a, b], φ(s), λ, v0(t), v(t)) to be

sup
a<x<b

(∫ b

x

(∫ t

x

φ

)λq
v0(t) dt

)1/q (∫ x

a

v(t)1−p′ dt

)1/p′

if p ≤ q, and

∫ b

a

(∫ b

x

(∫ t

x

φ

)λq
v0(t) dt

)r/q (∫ x

a

v(t)1−p′ dt

)r/q′
v(x)1−p′ dx

1/r

if q < p,

and B′1([a, b], φ(s), λ, v0(t), v(t)) to be

sup
a<x<b

(∫ x

a

(∫ x

t

φ

)λq
v0(t) dt

)1/q (∫ b

x

v(t)1−p′ dt

)1/p′

if p ≤ q, and

∫ b

a

(∫ x

a

(∫ x

t

φ

)λq
v0(t) dt

)r/q (∫ b

x

v(t)1−p′ dt

)r/q′
v(x)1−p′ dx

1/r

if q < p.

Define B2([a, b], φ(s), λ, v0(t), v(t)) to be

sup
a<x<b

(∫ b

x

v0(t) dt

)1/q (∫ x

a

(∫ x

t

φ

)λp′
v(t)1−p′ dt

)1/p′

if p ≤ q, and

∫ b

a

(∫ b

x

v0(t) dt

)r/p(∫ x

a

(∫ x

t

φ

)λp′
v(t)1−p′ dt

)r/p′
v0(x) dx

1/r

if q < p,

and B′2([a, b], φ(s), λ, v0(t), v(t)) to be

sup
a<x<b

(∫ x

a

v0(t) dt
)1/q

(∫ b

x

(∫ t

x

φ

)λp′
v(t)1−p′ dt

)1/p′

if p ≤ q, and

∫ b

a

(∫ x

a

v0(t) dt
)r/p(∫ b

x

(∫ t

x

φ

)λp′
v(t)1−p′ dt

)r/p′
v0(x) dx

1/r

if q < p.

We remark that B([a, b], v0(t), v(t)) is finite if and only if the Hardy inequality(∫ b

a

∣∣∣∣∫ x

a

f(t) dt
∣∣∣∣q v0(x) dx

)1/q

≤ C

(∫ b

a

|f(x)|pv(x) dx

)1/p

holds for all f . A history of this problem may be found in [8] and a simple proof
of the case 0 < q < p, 1 < p < ∞ was given recently in [10]. A change of variable
shows that B′([a, b], v0(t), v(t)) is finite if and only if the conjugate Hardy inequality(∫ b

a

∣∣∣∣∣
∫ b

x

f(t) dt

∣∣∣∣∣
q

v0(x) dx

)1/q

≤ C

(∫ b

a

|f(x)|pv(x) dx

)1/p
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holds for all f .
Both B1([a, b], φ(s), λ, v0(t), v(t)) and B2([a, b], φ(s), λ, v0(t), v(t)) are finite if

and only if, by Theorem 1.1 in [11], the inequality(∫ b

a

∣∣∣∣∣
∫ x

a

(∫ x

t

φ(s) ds
)λ

f(t) dt

∣∣∣∣∣
q

v0(x) dx

)1/q

≤ C

(∫ b

a

|f(x)|pv(x) dx

)1/p

.

holds. Also, B′1([a, b], φ(s), λ, v0(t), v(t)) and B′2([a, b], φ(s), λ, v0(t), v(t)) are both
finite if and only if the inequality(∫ b

a

∣∣∣∣∣
∫ b

x

(∫ t

x

φ(s) ds
)λ

f(t) dt

∣∣∣∣∣
q

v0(x) dx

)1/q

≤ C

(∫ b

a

|f(x)|pv(x) dx

)1/p

holds.
Now we return to the boundary value problems (1.2) and (1.3). We solve these

overdetermined problems by successively solving (1.1) and then (3.1).

Definition 3.4. Suppose M0 and M1 are subsets of Nk, with |M0|+ |M1| = k, that
satisfy the Pólya condition and let G(x, s) be the Green’s function of the problem
(3.1). Define T by

Tg(x) =
∫ z

0

g(t)
[∫ z

t

|G(x, s)| ds
]
dt+

∫ 1

z

g(t)
[∫ t

z

|G(x, s)| ds
]
dt.

Lemma 3.5. Let 0 < q < ∞ and 1 < p < ∞, let w0 and w be weights and let z
satisfy (1.4). Suppose M0 and M1 are subsets of Nk, with |M0| + |M1| = k, that
satisfy the Pólya condition. Then there exists a constant C such that

‖u‖q w0 ≤ C‖f‖pw, for f and u satisfying (1.3) (3.6)

if and only if T : Lpw → Lqw0
.

Proof. Suppose T : Lpw → Lqw0
and f and u satisfy (1.3). Set g = (χ(0,z)−χ(z,1))f .

Since f and u(k) satisfy (1.1) we may apply Lemma 2.2 to get u(k) = Sg, where S
is the operator of Definition 2.1. Since u(k) and u satisfy (3.1) we also get

u(x) =
∫ 1

0

G(x, s)u(k)(s) ds.

Combining these, and using the fact that G does not change sign on (0, 1)× (0, 1),
we have

±u(x) =
∫ 1

0

|G(x, s)|Sg(s) ds

=
∫ z

0

|G(x, s)|
∫ s

0

g(t) dt ds+
∫ 1

z

|G(x, s)|
∫ 1

s

g(t) dt ds

=
∫ z

0

g(t)
[∫ z

t

|G(x, s)| ds
]
dt+

∫ 1

z

g(t)
[∫ t

z

|G(x, s)| ds
]
dt = Tg(x).
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Thus,
‖u‖q w0 = ‖Tg‖q w0 ≤ C‖g‖pw = C‖f‖p,w.

Conversely, suppose that (3.6) holds. Since T is a non-negative operator, Lemma
1.1 shows that it is enough to prove that ‖Tg‖q w0 ≤ C‖g‖pw for functions g ∈ Lpw
satisfying

∫ z
0
g =

∫ 1

z
g in order to conclude that S : Lpw → Lqw0

. Fix such a g and
define f and u by

f = (χ(0,z) − χ(z,1))g, u =
∫ 1

0

G(x, s)Sg(s) ds.

Calculating as above we see that ±u(x) = Tg(x). The definition of u shows that
Sg and u satisfy (3.1) so we have the endpoint conditions

u(i)(0) = 0 for i ∈M0 and u(i)(1) = 0 for i ∈M1.

We also have u(k)(x) = Sg so, using Definition 2.1,

u(k)(0) = Sg(0) = 0 and u(k)(1) = Sg(1) = 0.

Finally, differentiation yields u(k+1) = f and we have shown that f and u satisfy
(1.3). Thus

‖Tg‖q w0 = ‖u‖q w0 ≤ C‖f‖p,w = C‖g‖pw

which completes the proof.

Theorem 3.6. Suppose that p, q ∈ (1,∞), w0 and w are weights and z satisfies
(1.4). Then there exists a constant C such that

‖u‖q w0 ≤ C‖f‖pw, for f and u satisfying (1.2) (3.7)

if and only if

B1([0, z], 1, k, w0(t), w(t)) <∞, (3.8)

B2([0, z], 1, k, w0(t), w(t)) <∞, (3.9)

B([z, 1], (t− z)(k−1)qw0(t), (t− z)−pw(t)) <∞, (3.10)

B′([z, 1], (t− z)kqw0(t), w(t)) <∞, and (3.11)

sup
j=1,...,k

(∫ 1

z

(t− z)(k−j)qw0(t) dt
)1/q (∫ z

0

(z − t)jp
′
w(t)1−p′ dt

)1/p′

<∞.
(3.12)

Proof. Note that the boundary value problem (1.2) is a special case of the problem
(1.3), we just take M0 = Nk and let M1 be empty. By Lemma 3.5 it is enough
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the prove the equivalence of the conditions (3.8)–(3.12) and the boundedness of
T : Lpw → Lqw0

. Using the expression (3.3) for G(x, s), Definition 3.4 reduces to

Tg(x) =
∫ z

0

g(t)
[∫ z

t

(x− s)k−1

(k − 1)!
χ(0,x)(s) ds

]
dt

+
∫ 1

z

g(t)
[∫ t

z

(x− s)k−1

(k − 1)!
χ(0,x)(s) ds

]
dt.

If x < z the second term drops out and, performing the inner integration in the
first term we have

Tg(x) =
∫ x

0

(x− t)k

k!
g(t) dt.

If x > z some careful simplification yields

Tg(x) =
∫ z

0

(x− t)k − (x− z)k

k!
g(t) dt

+
∫ x

z

(x− z)k − (x− t)k

k!
g(t) dt+

(x− z)k

k!

∫ 1

x

g(t) dt.

Thus k!Tg(x) = T1g(x) + T2g(x) + T3g(x) + T4g(x), where

T1g(x) =
∫ x

0

(x− t)kg(t) dtχ(0,z)(x),

a Riemann-Liouville operator on (0, z);

T2g(x) =
∫ z

0

[(x− t)k − (x− z)k]g(t) dtχ(z,1)(x)

=
k∑
j=1

(
k

j

)
(x− z)k−j

∫ z

0

(z − t)jg(t) dtχ(z,1)(x),

a sum of rank one operators;

T3g(x) =
∫ x

z

[(x− z)k − (x− t)k]g(t) dtχ(z,1)(x)

≈ (x− z)k−1

∫ x

z

(t− z)g(t) dtχ(z,1)(x),

which is equivalent to a Hardy operator on (z, 1); and

T4g(x) = (x− z)k
∫ 1

x

g(t) dtχ(z,1)(x),

a conjugate Hardy operator on (z, 1).
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Note that the Binomial Theorem gives the equation

(x− t)k − (x− z)k = [(x− z) + (z − t)]k − (x− z)k =
k∑
j=1

(
k

j

)
(x− z)k−j(z − t)j

used to simplify T2 and the straightforward estimate

(t− z)(x− z)k−1 ≤ (x− z)k − (x− t)k ≤ k(t− z)(x− z)k−1, 0 < z < t < x < 1,

was used to simplify T3.
Since T1, T2, T3, and T4 are non-negative operators their separate boundedness

is necessary and sufficient for the boundedness of their sum. T1 is bounded if and
only if (3.8) and (3.9) hold. The Hardy operators T3 and T4 are bounded if and
only if (3.10) and (3.11) hold repectively. The sharpness of Hölder’s inequality can
be used to show that T2 is bounded if and only if (3.12) holds.

If M1 = Nk and M0 is empty it is easy to formulate and prove a similar theorem.
We omit the details.

Theorem 3.7. Suppose p, q ∈ (1,∞), w0 and w are weights, z satisfies (1.4), and
M0 and M1 are non-empty subsets of {0, 1, . . . , k − 1} such that |M0| + |M1| = k
which satisfy the Pólya condition. Then there exists a constant C such that

‖u‖q w0 ≤ C‖f‖pw, for f and u satisfying (1.3) (3.13)

if and only if

B′([0, z], taq(1− t)Bqw0(t),
(∫ z

t

sC(1− s)d ds
)−p

w(t)) <∞,

B1([0, z], sc(1− s)D, 1, tAq(1− t)bqw0(t), w(t)) <∞,
B2([0, z], sc(1− s)D, 1, tAq(1− t)bqw0(t), w(t)) <∞,

B([0, z], taq(1− t)Bq
(∫ z

t

sC(1− s)d ds
)q

w0(t), w(t)) <∞,

(∫ z

0

taq(1− t)Bqw0(t) dt
)1/q

(∫ 1

z

(∫ t

z

sC(1− s)d ds
)p′

w(t)1−p′ dt

)1/p′

<∞,

B([z, 1], tAq(1− t)bqw0(t),
(∫ t

z

sc(1− s)D ds
)−p

w(t)) <∞,

B′1([z, 1], sC(1− s)d, 1, taq(1− t)Bqw0(t), w(t)) <∞,
B′2([z, 1], sC(1− s)d, 1, taq(1− t)Bqw0(t), w(t)) <∞,

B′([z, 1], tAq(1− t)bq
(∫ t

z

sc(1− s)D ds
)q

w0(t), w(t)) <∞, and

(∫ 1

z

tAq(1− t)bqw0(t) dt
)1/q

(∫ z

0

(∫ z

t

sc(1− s)D ds
)p′

w(t)1−p′ dt

)1/p′

<∞.
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Proof. Again we begin by applying Lemma 3.5 to establish the equivalence of (3.13)
with the boundedness of T : Lpw → Lqw0

. Since neither M0 nor M1 is empty we can
use the estimates (3.4) and (3.5) for G(x, s) provided by Proposition 3.2 to get∫ z

t

G(x, s) ds ≈xa(1− x)B
∫ z

t

sC(1− s)d ds, if x ≤ t;∫ z

t

G(x, s) dt ≈xA(1− x)b
∫ x

t

sc(1− s)D ds

+ xa(1− x)B
∫ z

x

sC(1− s)d ds, if t < x ≤ z;∫ z

t

G(x, s) ds ≈xA(1− x)b
∫ z

t

sc(1− s)D ds, if z < x;∫ t

z

G(x, s) ds ≈xa(1− x)B
∫ t

z

sC(1− s)d ds, if x ≤ z;∫ t

z

G(x, s) dt ≈xA(1− x)b
∫ x

z

sc(1− s)D ds

+ xa(1− x)B
∫ t

x

sC(1− s)d ds, if z < x ≤ t; and∫ t

z

G(x, s) ds ≈xA(1− x)b
∫ t

z

sc(1− s)D ds, if t < x.

Making these substitutions in the expression for T from Definition 3.4 we obtain
Tg(x) ≈ T1g(x) + · · ·+ T8g(x) where

T1g(x) = xa(1− x)B
∫ z

x

[∫ z

t

sC(1− s)d ds
]
g(t) dtχ(0,z)(x),

T2g(x) = xA(1− x)b
∫ x

0

[∫ x

t

sc(1− s)D ds
]
g(t) dtχ(0,z)(x),

T3g(x) = xa(1− x)B
∫ x

0

[∫ z

x

sC(1− s)d ds
]
g(t) dtχ(0,z)(x),

T4g(x) = xa(1− x)B
∫ 1

z

[∫ t

z

sC(1− s)d ds
]
g(t) dtχ(0,z)(x),

T5g(x) = xA(1− x)b
∫ x

z

[∫ t

z

sc(1− s)D ds
]
g(t) dtχ(z,1)(x),

T6g(x) = xa(1− x)B
∫ 1

x

[∫ t

x

sC(1− s)d ds
]
g(t) dtχ(z,1)(x),

T7g(x) = xA(1− x)b
∫ 1

x

[∫ x

z

sc(1− s)D ds
]
g(t) dtχ(z,1)(x),

T8g(x) = xA(1− x)b
∫ z

0

[∫ z

t

sc(1− s)D ds
]
g(t) dtχ(z,1)(x).
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Once again, the boundedness of these positive operators is equivalent to the
boundedness of their sum so we may examine each one individually. T1 is a conju-
gate Hardy operator on [0, z], bounded if and only if

B′([0, z], taq(1− t)Bqw0(t),
(∫ z

t

sC(1− s)d ds
)−p

w(t)) <∞.

T2 is bounded if and only if

B1([0, z], sc(1− s)D, 1, tAq(1− t)bqw0(t), w(t))

and
B2([0, z], sc(1− s)D, 1, tAq(1− t)bqw0(t), w(t))

are finite.
T3 is a Hardy operator on [0, z], bounded if and only if

B([0, z], taq(1− t)Bq
(∫ z

t

sC(1− s)d ds
)q

w0(t), w(t)) <∞.

The operator T4 is of rank one so the sharpness of Hölder’s inequality gives
necessary and sufficient conditions for its boundedness:

(∫ z

0

taq(1− t)Bqw0(t) dt
)1/q

(∫ 1

z

(∫ t

z

sC(1− s)d ds
)p′

w(t)1−p′ dt

)1/p′

<∞.

In the same way as T1 . . . T4 give rise to the first five conditions, T5 . . . T8 give
rise to the last five. This completes the proof.

Example 3.8. Suppose p, q, M0, and M1 are as in Theorem 3.7 and set

w(t)1−p′ = tα(1− t)β and w0(t) = tγ(1− t)δ. (3.14)

Then there exists a constant C such that (3.13) holds provided α+1, β+1, γ+1+aq
and δ + 1 + bq are positive. Here a and b depend on M0 and M1 as in Definition
3.1.

Proof. Set z = 1/2. With w(t) as above, it is immediate that (1.4) holds so it
remains to verify the ten weight conditions of Theorem 3.7.

From Definition 3.1 we see that either A = a or A = a− 1 and either B = b or
B = b − 1. Suppose for the moment that A = a and B = b. To verify the weight
conditions in this case we follow these three steps: 1. Each condition involves
integrals over subintervals of (0, z) or subintervals of (z, 1) or both so extend the
range of integration in each case to either (0, z) or (z, 1) as appropriate. 2. Use the
fact that (positive or negative) powers of 1− x, 1− t, and 1− s are bounded above
on the interval (0, z) and powers of x, t and s are bounded above on the interval
(z, 1). 3. Use the restrictions on α, β, γ, and δ to evaluate the remaining integrals.
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We illustrate this procedure by showing that the third weight condition is satis-
fied when p ≤ q.

B2([0, z], sc(1− s)D, 1, tAq(1− t)bqw0(t), w(t))

= sup
0<x<z

(∫ z

x

tAq+γ(1− t)bq+δ dt
)1/q

(∫ x

0

(∫ x

t

sc(1− s)D ds
)p′

tα(1− t)β dt

)1/p′

≤ K sup
0<x<z

(∫ z

0

tAq+γ dt

)1/q
(∫ z

0

(∫ z

0

sc ds

)p′
tα dt

)1/p′

which is finite because c ≥ 0, α + 1 > 0, and Aq + γ + 1 = aq + γ + 1 > 0. (K is
the constant arising from Step 2. It depends on bq + δ and β.)

The case 1 < q < p of the third weight condition, as well as all the other weight
conditions may be verified in this way. If A = a − 1 or B = b − 1 the result still
holds but a bit more care must be taken in the estimates. We omit the details.

Remark. If the weights w and w0 are of the form (3.14) and satisfy (1.4) then the
restrictions on α, β, γ, and δ are also necessary for the inequality (3.13).
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