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Abstract. The classical level function construction of Halperin and Lorentz is extended to

Lebesgue spaces with general measures. The construction is also carried farther. In particular,
the level function is considered as a monotone map on its natural domain, a superspace of

Lp. These domains are shown to be Banach spaces which, although closely tied to Lp spaces,

are not reflexive. A related construction is given which characterizes their dual spaces.

1. Introduction

The familiar Hölder inequality is (for a measure λ on R)∣∣∣∣∫
R

fg dλ

∣∣∣∣ ≤ ‖f‖p,λ‖g‖p′,λ
where 1 ≤ p ≤ ∞, 1/p+1/p′ = 1 and ‖h‖r,λ = (

∫
R
|h|r dλ)1/r is the norm on the Lebesgue

space Lrλ. The inequality is sharp, in the sense that

sup
∣∣∣∣∫

R

fg dλ

∣∣∣∣ = ‖f‖p,λ

where the supremum is taken over all functions g such that ‖g‖p′,λ ≤ 1. If g is not free
to range over the whole unit ball of Lp

′

λ , but is constrained in some way, the sharpness of
Hölder’s inequality may be lost. The problem which has motivated this work is that of
determining a sharp inequality to substitute for Hölder’s inequality when g is constrained
to be positive and decreasing. (Actually it will be more convenient to require that g be
non-negative and non-increasing.) The substitute inequality is easy enough to write down
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2 GORD SINNAMON

but some work is required to understand how to use the result profitably. The substitute
is this: If g is non-negative and non-increasing then

(1.1)
∣∣∣∣∫

R

fg dλ

∣∣∣∣ ≤ ‖f‖p↓λ‖g‖p′,λ
where

‖f‖p↓λ = sup
{∫

R

|f |g dλ : g non-negative and non-increasing, and ‖g‖p′,λ ≤ 1
}
.

The proof of this inequality is trivial but to use it effectively we must understand the
expression ‖ · ‖p↓λ. That is the purpose of this paper.

This approach to Hölder’s inequality has been considered before. In [3], Halperin intro-
duces what he calls “D-type Hölder inequalities” which are similar to (1.1) but in which
the measure λ is assumed to be just a weight function times Lebesgue measure. Lorentz,
in [4, §3.6], gives an account of Halperin’s work and provides a new approach to the basic
result, the construction of the level function. Our approach will be similar to Lorentz’.
Halperin’s results have been used recently to prove weighted Hardy inequalities [9]. Our
generalisation here enables us to prove Hardy inequalities with general norms. (See Section
7.) In particular, inequalities for series and integrals can be proved simultaneously.

In Section 3 we show that ‖ · ‖p↓λ is a norm and defines a space Lp↓λ containing Lpλ.
Sections 4 and 5 are devoted to the construction of the level function and its extension to all
of Lp↓λ . The dual space, Lp

′∗
λ , is constructed in Section 6 and in Section 7 some application

of these ideas are outlined. We complete this introduction by introducing some notation
and then proceed to Section 2 where we clarify what is meant by a non-increasing function
in Lebesgue space.

Most of the notation used here is either standard or defined within the paper. Hopefully,
the remainder is discussed here. A Borel measure on R is a non-negative measure defined
on the Borel sets (the σ-algebra generated by the open sets) which is finite on intervals.
Note that it is automatically σ-finite. If f and g are λ-measurable functions we say “f
majorises g” or “f is a majorant of g” provided f(x) ≥ g(x) for λ-almost every x. We adopt
the convention that integrals written with limits include the limit points in the range of
integration except when the limits are ±∞. Thus

∫ b
a

means
∫

[a,b]
but

∫ b
−∞ means

∫
(−∞,b].

The notation p′ for the conjugate index of p is used throughout so that 1/p + 1/p′ = 1
when 1 ≤ p ≤ ∞.

2. Non-increasing Functions and Concavity

The definition of a non-increasing function is straightforward.

Definition 2.1. Suppose S ⊂ R. A function g : S → [0,∞) is non-increasing on S
provided g(x) ≥ g(y) whenever x ≤ y.

In this paper, however, we will be concerned with Lebesgue spaces in which functions
are identified when they agree almost everywhere with respect to the measure λ. It is less
straightforward to identify non-increasing equivalence classes of functions. The object of
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this section is to formulate a suitable definition of a non-increasing function in Lebesgue
space. In addition we introduce the notion of λ-concavity and illustrate the principle
connections between the two concepts.

To begin we must carefully define the essential supremum and the essential infimum.

Definition 2.2. If (X,µ) is a measure space and g : X → [0,∞) is µ-measurable then

ess supµ(g,X) = sup{α : µ{x ∈ X : g(x) > α} > 0}, and

ess infµ(g,X) = inf{α : µ{x ∈ X : g(x) < α} > 0}.

If µX = 0 then ess supµ(g,X) = 0 and ess infµ(g,X) =∞.

It is immediate that if Y ⊆ X then ess supµ(g, Y ) ≤ ess supµ(g,X) and ess infµ(g, Y ) ≥
ess infµ(g,X).

The next lemma contains an obvious (but not trivial) property of the essential supremum
and essential infimum.

Lemma 2.3. Suppose µ is a Borel measure and g : R→ [0,∞) is Borel measurable. Then
g(x) ≤ ess supµ(g, [x,∞)) and g(x) ≥ ess infµ(g, (−∞, x]) for µ-almost every x ∈ R.

Proof. We prove the first statement only. Let ḡ(x) = ess supµ(g, [x,∞)). Since ḡ is non-
increasing, it is Borel measurable. Choose sets E1, E2, E3, . . . of finite µ-measure, whose
union is all of R. Fix ε > 0 and set

Sm,n = {x ∈ Em : g(x)− ḡ(x) > ε, εn ≤ g(x) < ε(n+ 1)}.

Certainly µSm,n <∞ and ∪∞m=1 ∪∞n=0 Sm,n = {x ∈ R : g(x)− ḡ(x) > ε}. To complete the
proof we show that µSm,n = 0 for each fixed m and n.

Suppose µSm,n > 0 for some m and n. If x ∈ Sm,n then g(x) > ε + ess supµ(g, [x,∞))
so x is not an atom for µ. Hence, if χ is the characteristic function of Sm,n,

∫ y
−∞ χdµ is

a continuous function of y. Thus there exists a y ∈ R such that
∫ y
−∞ χdµ = (µSm,n)/2.

Choose x ∈ Sm,n with x < y. Since µ([x,∞) ∩ Sm,n) > 0, we have

ḡ(x) = ess supµ(g, [x,∞)) ≥ ess supµ(g, [x,∞) ∩ Sm,n) ≥ εn.

But since x ∈ Sm,n, ḡ(x) < g(x) − ε < ε(n + 1) − ε = εn. This contradiction completes
the proof.

There are many ways to approach the notion of a function being non-increasing almost
everywhere. The next theorem shows that five of the most tempting are equivalent.

Theorem 2.4. If µ is a regular, Borel measure and g : R → [0,∞) is Borel measurable,
then the following are equivalent.

(1) For some non-increasing function ḡ on R, g = ḡ µ-almost everywhere.
(2) g is non-increasing on some subset S ⊂ R such that µ(R \ S) = 0.
(3) µ× µ{(x, y) : x ≤ y, g(x) < g(y)} = 0.
(4) Whenever a ≤ b ≤ c ≤ d,∫ d

c

dµ

∫ b

a

g dµ ≥
∫ d

c

g dµ

∫ b

a

dµ.

(5) ess supµ(g, [x,∞)) ≤ ess infµ(g, (−∞, x]) for all x ∈ R.
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Proof. (5)⇒(1). Let ḡ(x) = ess supµ(g, [x,∞)). ḡ is non-increasing and by the lemma

g(x) ≤ ḡ(x) = ess supµ(g, [x,∞)) ≤ ess infµ(g, (−∞, x]) ≤ g(x)

for µ-almost every x ∈ R. Thus g = ḡ µ-almost everywhere.
(1)⇒(2). Set S = {x : g(x) = ḡ(x)}.
(2)⇒(3). If x ≤ y and x, y ∈ S then g(x) ≥ g(y). Hence

µ× µ{(x, y) : x ≤ y, g(x) < g(y)} ≤ µ× µ(((R \ S)×R) ∪ (R× (R \ S))) = 0.

(3)⇒(4). If a ≤ b ≤ c ≤ d then for µ × µ-almost every pair (x, y) with a ≤ x ≤ b and
c ≤ y ≤ d we have g(x) ≥ g(y) so∫ d

c

dµ(y)
∫ b

a

g(x) dµ(x) =
∫
a≤x≤b,c≤y≤d

g(x) d(µ× µ)(x, y)

≥
∫
a≤x≤b,c≤y≤d

g(y) d(µ× µ)(x, y) =
∫ d

c

g(y) dµ(y)
∫ b

a

dµ(x).

(4)⇒(5). Fix x ∈ R. If U is any Borel subset of (−∞, x] and V is any Borel subset of
[x,∞) then the hypothesis of (4), together with the regularity of µ yields∫

V

dµ

∫
U

g dµ ≥
∫
V

g dµ

∫
U

dµ.

Set α = ess supµ(g, [x,∞)) and β = ess infµ(g, (−∞, x]) and fix ε > 0. Choose U ⊂ {y ≤
x : g(y) < β + ε} such that 0 < µU < ∞. Choose V ⊂ {y ≥ x : g(y) > α − ε} such that
0 < µV <∞. Now

(β + ε)µV µU ≥
∫
V

dµ

∫
U

g dµ ≥
∫
V

g dµ

∫
U

dµ ≥ (α− ε)µV µU

so α− ε ≤ β + ε. Since ε was arbitrary, α ≤ β as required.

Definition 2.5. Suppose µ is a regular, Borel measure. A Borel measurable function
g : R → [0,∞) is non-increasing µ-almost everywhere, or just µ-non-increasing, provided
one and hence all of the conditions (1)–(5) of Theorem 2.4 are satisfied.

Condition (1) shows that we may now speak of µ-non-increasing functions in Lpµ since
an equivalence class (modulo equality µ-almost everywhere) is µ-non-increasing precisely
when (at least) one representative of the class is non-increasing on R. Indeed, given a
µ-non-increasing function in some Lebesgue space we are free to suppose that we have
a non-increasing function which represents the same equivalence class. Conditions (4)
and (5) will prove to be the most useful in the sequel, not only as properties of known
µ-non-increasing functions but also as means of showing that a given function is itself
µ-non-increasing.

Integrating a non-increasing function with respect to Lebesgue measure gives a concave
function. We will make use of an analogue of concavity defined here. (See also [4].)
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Definition 2.6. Suppose λ is a regular, Borel measure such that Λ(x) = λ(−∞, x] < ∞
for all x ∈ R. A λ-measurable function G on R is said to be λ-concave provided

(2.1) (Λ(b)− Λ(x))(G(x)−G(a)) ≥ (G(b)−G(x))(Λ(x)− Λ(a))

whenever a ≤ x ≤ b.

It is occasionally convenient to use (2.1) in the form

(2.2) G(x)(Λ(b)− Λ(a)) ≥ G(a)(Λ(b)− Λ(x)) +G(b)(Λ(x)− Λ(a)).

It is not difficult to see that the definition of λ-concavity implies the following, seemingly
stronger statement. If a ≤ b ≤ d, and a ≤ c ≤ d then

(2.3) (Λ(d)− Λ(c))(G(b)−G(a)) ≥ (G(d)−G(c))(Λ(b)− Λ(a)).

The next theorem relates the notions of λ-non-increasing and λ-concave.

Theorem 2.7. Again let λ be a regular, Borel measure on R such that λ(−∞, x] < ∞
for all x ∈ R. Suppose that f is a non-negative, λ-measurable function on R such that
F (x) =

∫ x
−∞ f dλ < ∞ for all x ∈ R. Then F is λ-concave if and only if f is λ-non-

increasing.

Proof. Suppose that f is λ-non-increasing and that a ≤ x ≤ b. By part (4) of Theorem
2.4, for each ε > 0, ∫ b+ε

x+ε

dλ

∫ x+ε

a+ε

f dλ ≥
∫ b+ε

x+ε

f dλ

∫ x+ε

a+ε

dλ.

As ε→ 0 this becomes

(Λ(b)− Λ(x))(F (x)− F (a)) ≥ (F (b)− F (x))(Λ(x)− Λ(a))

so F is λ-concave.
Conversely, if F is λ-concave then suppose a ≤ b ≤ c ≤ d and ε > 0. We have

a− ε ≤ b ≤ d and a− ε ≤ c− ε ≤ d so by (2.3)

(Λ(d)− Λ(c− ε))(F (b)− F (a− ε)) ≥ (F (d)− F (c− ε))(Λ(b)− Λ(a− ε)).

As ε→ 0 this becomes ∫ d

c

dλ

∫ b

a

f dλ ≥
∫ d

c

f dλ

∫ b

a

dλ

so by part (4) of Theorem 2.4 f is λ-non-increasing.
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Theorem 2.8. Suppose λ is a regular, Borel measure on R such that Λ(x) = λ(−∞, x] <
∞ for all x ∈ R. If F is a non-negative, λ-measurable function on R which has a λ-concave
majorant then F has a unique least λ-concave majorant denoted by F [.

Proof. Let F [(x) = inf{G(x) : G is a λ-concave majorant of F}. By hypothesis the infi-
mum is not empty so F [(x) < ∞ for λ-almost every x. It remains to prove that F [ is
λ-concave since uniqueness follows from minimality. Fix a, x, b ∈ R with a ≤ x ≤ b. If
Λ(a) = Λ(b) then Λ(a) = Λ(x) = Λ(b) so (2.1) holds trivially for F [. If Λ(a) < Λ(b)
then for each ε > 0 there exists a λ-concave majorant G of F such that G(x) − F [(x) ≤
ε/(Λ(b)− Λ(a)). Using the λ-concavity of G in the form (2.2) we have

F [(x)(Λ(b)− Λ(a)) + ε ≥ G(x)(Λ(b)− Λ(a))

≥ G(a)(Λ(b)− Λ(x)) +G(b)(Λ(x)− Λ(a))

≥ F [(a)(Λ(b)− Λ(x)) + F [(b)(Λ(x)− Λ(a))

and since ε was arbitrary,

F [(x)(Λ(b)− Λ(a)) ≥ F [(a)(Λ(b)− Λ(x))− F [(b)(Λ(x)− Λ(a)).

Therefore F [ is λ-concave.

3. The Spaces Lp↓λ .

Suppose that λ is a regular, Borel measure on R which satisfies λ(−∞, x] < ∞ for all
x ∈ R. We make the definition

‖f‖p↓λ = sup
∫

R

|f |g dλ

where the supremum is taken over all non-negative, λ-non-increasing functions g satisfying
‖g‖p′,λ ≤ 1. Note that our assumption λ(−∞, x] < ∞ ensures that there are non-trivial,
non-negative, non-increasing functions in Lp

′

λ . For 1 ≤ p ≤ ∞ we have ‖f‖p↓λ ≤ ‖f‖p,λ
by Hölder’s inequality. We define Lp↓λ to be the collection of λ-measurable functions f for
which ‖f‖p↓λ <∞. It is easy to see that Lp↓λ is a vector space. Since ‖f‖p↓λ ≤ ‖f‖p,λ we
see that Lp↓λ contains the Lebesgue space Lpλ.

Proposition 3.1. ‖ · ‖p↓λ is a norm on Lp↓λ for 1 ≤ p ≤ ∞.

Proof. Suppose ‖f‖p↓λ < ∞. Certainly ‖f‖p↓λ ≥ 0 and if ‖f‖p↓λ = 0 then since the
characteristic function of (−∞, x] is in Lp

′

λ for all x ∈ R we have
∫ x
−∞ |f | dλ = 0 for all

x ∈ R. Hence f is zero λ-almost everywhere. It is immediate from the definition that
‖ · ‖p↓λ is homogeneous and satisfies the triangle inequality.

Theorem 3.2. If f ∈ Lpλ with 1 < p < ∞ then ‖f‖p↓λ = ‖f‖p,λ if and only if |f | is
λ-non-increasing.

Proof. If |f | is λ-non-increasing then (|f |/‖f‖p,λ)p−1 is also λ-non-increasing. (We may
clearly assume that f is not identically zero.) Moreover, (|f |/‖f‖p,λ)p−1 has unit Lp

′

λ -norm.
Hence

‖f‖p,λ ≥ ‖f‖p↓λ ≥
∫

R

|f |(|f |/‖f‖p,λ)p−1 dλ = ‖f‖p,λ
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so the two norms coincide.
Conversely, suppose that ‖f‖p,λ = ‖f‖p↓λ. For n = 1, 2, 3, . . . , choose non-negative,

λ-non-increasing functions gn such that ‖gn‖p′,λ ≤ 1, and
∫
|f |gn dλ ≥ ‖f‖p,λ − 1/n. By

the Banach-Alaoglu Theorem there is a subsequence gnk converging weak* to some non-
negative function g with ‖g‖p′,λ ≤ 1. Since each of the functions gnk is λ-non-increasing
we have, by Theorem 2.4, part (4),∫ d

c

dλ

∫ b

a

gnk dλ ≥
∫ d

c

gnk dλ

∫ b

a

dλ

whenever a ≤ b ≤ c ≤ d. Together with the fact that the characteristic functions of the
intervals [a, b] and [c, d] are in Lpλ this yields, as k →∞,∫ d

c

dλ

∫ b

a

g dλ ≥
∫ d

c

g dλ

∫ b

a

dλ

so g is also λ-non-increasing. Now for each k

‖f‖p,λ ≥
∫

R

|f |gnk dλ ≥ ‖f‖p,λ − 1/nk

so, as k →∞, we have equality in Hölder’s inequality

‖f‖p,λ =
∫

R

|f |g dλ ≤ ‖f‖p,λ‖g‖p′,λ ≤ ‖f‖p,λ

It follows that |f |p is a constant multiple of gp
′

and in particular |f | is λ-non-increasing.

Since g ≡ 1 is non-negative, λ-non-increasing and in L∞λ , ‖f‖1,λ = ‖f‖1↓λ for all f ∈ L1
λ.

Thus L1↓
λ = L1

λ. Consequently the above proposition does not hold for p = 1.
Although the spaces L∞↓λ and L∞λ are quite different, the above proposition does not

hold for p = ∞ either. Consider a bounded function f which takes the value ‖f‖∞,λ on
some interval (−∞, b). Whatever the function does on the rest of the line we would have
‖f‖∞↓λ = ‖f‖∞,λ.

Example 3.3. For 1 < p <∞, Lp↓λ 6⊂ L
p
λ.

Let λ(x) = x−2 dx on (1,∞) and let λ(−∞, 1] = 0. Set f(x) = x1/p and notice that
f /∈ Lpλ. We will show that f ∈ Lp↓λ . A calculation yields∫ (p′)p

1

(p′ − x1/p) dλ(x) =
∫ ∞

(p′)p
(x1/p − p′) dλ(x).

Suppose that g is non-negative and λ-non-increasing and that ‖g‖p′,λ ≤ 1. Using the above
calculation and Theorem 2.4, part (5) we obtain∫ (p′)p

1

(p′ − x1/p)g(x) dλ(x) ≥ ess infλ(g, (−∞, (p′)p])
∫ (p′)p

1

(p′ − x1/p) dλ(x)

≥ ess supλ(g, [(p′)p,∞))
∫ ∞

(p′)p
(x1/p − p′) dλ(x) ≥

∫ ∞
(p′)p

(x1/p − p′)g(x) dλ(x).
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Hence

∫ ∞
−∞

fg dλ =
∫ ∞

1

x1/pg(x) dλ(x) ≤ p′
∫ ∞

1

g(x) dλ(x) ≤ p′‖g‖p′,λ
(∫ ∞

1

dλ

)1/p

≤ p′.

Thus ‖f‖p↓λ ≤ p′ so f ∈ Lp↓λ .

In order to understand the norm ‖ · ‖p↓λ we will represent ‖f‖p↓λ as the Lpλ-norm of
a function associated with f . This associated function—the level function of f—will be
constructed in Sections 4 and 5. It will have the following properties.

Definition 3.4. Let 1 ≤ p ≤ ∞. Given f ∈ Lp↓λ we say that fo is a p-level function of f
provided ‖f‖p↓λ = ‖fo‖p,λ and

∫
|f |g dλ ≤

∫
fog dλ for all non-negative, λ-non-increasing

functions g ∈ Lp
′

λ .

To show the existence of p-level functions we will require the construction of Section 4.
Uniqueness, however, is straightforward.

Proposition 3.5. If 1 < p < ∞ and f ∈ Lp↓λ then there is at most one p-level function
of f .

Proof. Suppose that fo and f̄ are p-level functions of f . Using Minkowski’s inequality and
the definition above we estimate as follows

‖fo + f̄‖p,λ ≤ ‖fo‖p,λ + ‖f̄‖p,λ = 2‖f‖p↓λ

= 2 sup
∫

R

|f |g dλ ≤ sup
∫

R

fog + f̄g dλ ≤ ‖fo + f̄‖p,λ.

Here the suprema are over all non-negative, λ-non-increasing functions g with ‖g‖p′,λ ≤ 1.
Equality in Minkowski’s inequality above yields fo = cf̄ λ-almost everywhere for some
c ≥ 0. Since ‖fo‖p,λ = ‖f̄‖p,λ it follows that c = 1 and fo = f̄ λ-almost everywhere as
required.

Proposition 3.6. Let 1 < p <∞ and suppose that f ∈ Lp↓λ . If fo is a p-level function of
f then fo is non-negative and λ-non-increasing.

Proof. It is easy to see that if fo is a p-level function of f then |fo| is also. By the previous
proposition fo = |fo| so fo is non-negative. Now the definition of ‖ · ‖p↓λ together with
the properties of the p-level function yields

‖fo‖p,λ = ‖f‖p↓λ = sup
∫

R

|f |g dλ ≤ sup
∫

R

fog dλ = ‖fo‖p↓λ ≤ ‖fo‖p,λ

where the suprema are taken over all non-negative, λ-non-increasing functions g with
‖g‖p′,λ ≤ 1. It follows that ‖fo‖p↓λ = ‖fo‖p,λ. By Theorem 3.2 fo is λ-non-increasing.
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4. The Level Function of a Bounded Function

Let λ be our regular, Borel measure and fix a non-negative, essentially bounded, λ-
measurable function f . For convenience in stating results we make the following definitions:
M = ‖f‖∞,λ is the best essential bound for f ; F (x) =

∫ x
−∞ f dλ; and Λ(x) =

∫ x
−∞ dλ.

Recall that we have assumed that Λ(x) < ∞ for x ∈ R. Since 0 ≤ f ≤ M λ-almost
everywhere we also have F (x) ≤ MΛ(x) < ∞ λ-almost everywhere. Recall also our
convention that

∫ x
−∞ =

∫
(−∞,x]

which implies that the non-increasing functions Λ and F

are right continuous on R.
In order to construct fo we first construct F [(x) =

∫ x
−∞ fo dλ. Since fo is to be λ-non-

increasing the function F [ should be λ-concave .

Definition 4.1. F [ is the unique least concave majorant of F .

The existence of F [ is guaranteed by Theorem 2.8 once we note that F does have the
λ-concave majorant MΛ. Several useful properties of the function F [ follow immediately
from the definition.

Theorem 4.2. Suppose that

(4.1)


λ is a regular, Borel measure such that Λ(x) = λ(−∞, x] <∞ for all x ∈ R

f is a non-negative, λ-measurable function such that M ≡ ‖f‖∞,λ <∞

F (x) =
∫ x

−∞
f dλ and F [ is the least λ-concave majorant of F .

Then
(1) F [(b)− F [(a) ≤M(Λ(b)− Λ(a)) whenever a ≤ b.
(2) limx→−∞ F [(x) = 0.
(3) F [ is non-decreasing.
(4) F [ is right continuous.

Proof. We begin with (1). Fix a, b ∈ R with a ≤ b. If Λ(a) = 0 then 0 ≤ F [(b)− F [(a) ≤
F [(b) ≤ MΛ(b) = M(Λ(b) − Λ(a)) and (1) follows. If Λ(a) > 0 then take x < a and use
the λ-concavity of F [ in the form (2.1) to see that

(Λ(a)− Λ(x))(F [(b)− F [(a)) ≤ (F [(a)− F [(x))(Λ(b)− Λ(a))

≤ F [(a)(Λ(b)− Λ(a)) ≤MΛ(a)(Λ(b)− Λ(a))

Now allow x→ −∞ and divide by Λ(a) to conclude that F [(b)−F [(a) ≤M(Λ(b)−Λ(a))
completing the proof of (1).

Since 0 ≤ F [(x) ≤ MΛ(x) and limx→−∞ Λ(x) = 0 we have limx→−∞ F [(x) = 0, the
conclusion of (2).

We prove (3) by contradiction. Suppose that F [ is not non-decreasing. Then there
exist a, b ∈ R such that a < b and F [(a) > F [(b). Either F is bounded, in which case
the constant function with value limx→∞ F (x) is a λ-concave majorant of F , or else F
is unbounded, in which case limx→∞ F (x) = ∞. In either case we have limx→∞ F (x) ≥
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F [(a) > F [(b) so there exists some y > b such that F (y) > F [(b). Since F [ is concave and
a ≤ b ≤ y we have

(4.2) (Λ(y)− Λ(b))(F [(b)− F [(a)) ≥ (F [(y)− F [(b))(Λ(b)− Λ(a)).

Now F [(y)−F [(b) ≥ F (y)−F [(b) > 0 and Λ(b)−Λ(a) ≥ 0 so the right hand side of (4.2) is
non-negative. The left hand side is therefore non-negative as well. However F [(b)−F [(a)
is negative by assumption and Λ(y)−Λ(b) is non-negative. It follows that Λ(y)−Λ(b) = 0.
We have

0 = M(Λ(y)− Λ(b)) = M

∫
(b,y]

dλ ≥
∫

(b,y]

f dλ = F (y)− F (b) ≥ F (y)− F [(b).

This contradicts the choice of y and completes the proof of (3).
To prove (4) fix x ∈ R. By part (1) and the right continuity of Λ,

0 ≤ lim
y→x+

F [(y)− F [(x) ≤M lim
y→x+

Λ(y)− Λ(x) = 0.

Thus F [ is right continuous at x. This completes the proof of the theorem.

To determine the function fo from F [ we require the following differentiation lemma
together with the Radon-Nikodým theorem.

Lemma 4.3 ([7, p262]). If G is a non-decreasing function which is right continuous then
there is a unique Borel measure µ such that for all a, b ∈ R with a ≤ b we have

µ(a, b] = G(b)−G(a).

Theorem 4.4. There is a non-negative, λ-non-increasing, λ-measurable function fo sat-
isfying

F [(x) =
∫ x

−∞
fo dλ

for all x ∈ R. fo is called the level function of f with respect to λ.

Proof. Apply Lemma 4.3 to F [ producing a Borel measure µ satisfying F [(x) − F [(a) =∫
(a,x]

dµ whenever a ≤ x. In particular, allowing a → −∞ yields F [(x) =
∫ x
−∞ dµ.

The assumption of regularity on λ, together with part (1) of Theorem 4.2 shows that∫
E
dµ ≤ M

∫
E
dλ for all Borel sets E. Thus µ is absolutely continuous with respect to λ

and we may define fo to be the Radon-Nikodým derivative of µ with respect to λ. fo is
non-negative and λ-measurable and we have

F [(x) =
∫ x

−∞
dµ =

∫ x

−∞
fo dλ.

Since F [ is λ-concave we apply Theorem 2.7 to conclude that fo is λ-non-increasing.
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Although we now have a definition of the function fo the relationship between f and
its level function has not been fully examined. In the remainder of this section we will
first explore and then exploit the close connection between f and fo. We will show that
f and fo agree λ-almost everywhere except on a collection of disjoint intervals where fo

is constant. The corresponding intervals in Halperin’s construction were called the level
intervals for the function f and prompted the name “level function” for (a variant of) fo.

It will be convenient to use the notation G(x−) = limy→x,y≤xG(y). Since Λ, F , and F [

are all non-decreasing the limits Λ(x−), F (x−), and F [(x−) exist for all x ∈ R∪{∞}. The
corresponding limit from the right will not be needed since Λ, F , and F [ are all continuous
from the right. In keeping with this, G(−∞) will be taken to mean limx→−∞G(x).

Theorem 4.5. Suppose (4.1) holds and define the subset U of R by U = {x ∈ R : F [(x) >
F (x) and F [(x−) > F (x−)}. Then

(1) if F [(x) > F (x) for some x ∈ R then there exists some b > x such that (x, b) ⊂ U ,
(2) if F [(x−) > F (x−) for some x ∈ R then there exists some a < x such that

(a, x) ⊂ U , and
(3) U is open.

Proof. Suppose that F [(x) > F (x). Since F is right continuous we may choose b greater
than x such that F (b) < F [(x). If y ∈ (x, b) then F [(y) ≥ F [(y−) ≥ F [(x) > F (b) ≥
F (y) ≥ F (y−) so y ∈ U . This proves (1). Now suppose that F [(x−) > F (x−). Choose
a less than x such that F [(a) > F (x−). If y ∈ (a, x) then F [(y) ≥ F [(y−) ≥ F [(a) >
F (x−) ≥ F (y) ≥ F (y−) so y ∈ U and (2) is proved. (3) is immediate.

Definition 4.6. Suppose (4.1) holds. Define ai, bi, and Ii by

(4.3)



U = {x ∈ R : F [(x) > F (x) and F [(x−) > F (x−)},

U =
⋃
i

(ai, bi) (disjoint union),

(ai, bi) ⊂ Ii ⊂ [ai, bi],

ai ∈ Ii if and only if F [(ai) > F (ai), and

bi ∈ Ii if and only if F [(bi−) > F (bi−).

Since U is an open subset of R it is a (finite or countable) disjoint union of open intervals.
This defines the points ai, bi ∈ [−∞,∞]. Adding in one or both endpoints as specified to
the interval (ai, bi) gives the interval Ii.

The intervals Ii are subsets of R since if for some i, ai = −∞ then F [(−∞) = 0 =
F (−∞) so −∞ /∈ Ii. Also, if bi = ∞ for some i then either F (∞−) = ∞ or else the
constant function with value F (∞−) is a λ-concave majorant of F and hence of F [. In
either case F [(∞−) = F (∞−) so ∞ /∈ Ii.

The intervals Ii are disjoint since their interiors are the disjoint components of the open
set U and if bi = aj for some i and j with bi ∈ Ii and aj ∈ Ij then we would have
F [(aj) > F (aj) and F [(bi−) > F (bi−) so bi = aj ∈ U which is impossible.
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Theorem 4.7. Suppose that (4.1) and (4.3) hold. fo is constant λ-almost everywhere on
each interval Ii.

Proof. Fix i and drop the subscripts so that I = Ii, a = ai, and b = bi. It is sufficient to
prove the following three statements:

(1) fo is constant λ-almost everywhere on (c, d) whenever (c, d) ⊂ I and 0 < λ(c, d) <
∞;

(2) fo is constant λ-almost everywhere on [a, d) whenever [a, d) ⊂ I and 0 < λ[a, d) <
∞; and

(3) fo is constant λ-almost everywhere on (c, b] whenever (c, b] ⊂ I and 0 < λ(c, b] <∞.

We begin with (1). Letm = (F [(d−)−F [(c))/(Λ(d−)−Λ(c)), CI = F [(d−)−mΛ(d−) =
F [(c) − mΛ(c), and Cm = sup{F (x) − mΛ(x) : x ∈ R}. We will show that CI = Cm.
mΛ + Cm is λ-concave and majorises F so by the minimality of F [ we have

(4.4) F [ ≤ mΛ + Cm.

In particular CI = F [(c)−mΛ(c) ≤ Cm.
To show that CI ≥ Cm we take a sequence {yn} ⊂ R such that limn→∞ F (yn) −

mΛ(yn) = Cm. For each n either yn > d, yn < c, or c ≤ yn ≤ d and at least one of
these conditions must hold for infinitely many n. We distinguish three cases based on this
observation.

First suppose that yn > d for infinitely many n. Since F [ is λ-concave we have

(Λ(yn)− Λ(d−))(F [(d−)− F [(c)) ≥ (F [(yn)− F [(d−))(Λ(d−)− Λ(c)),

or equivalently, CI ≥ F [(yn)−mΛ(yn), for infinitely many n. This implies that CI ≥ Cm.
Next suppose that yn < c for infinitely many n. By the λ-concavity of F [,

(Λ(d−)− Λ(c))(F [(c)− F [(yn)) ≥ (F [(d−)− F [(c))(Λ(c)− Λ(yn)).

That is, CI ≥ F [(yn)−mΛ(yn), for infinitely many n so again CI ≥ Cm.
In the remaining case, c ≤ yn ≤ d for infinitely many n, let y be a limit point of {yn} in

[c, d]. If y is a right limit point then Cm = F (y)−mΛ(y) ≤ F [(y)−mΛ(y) ≤ Cm by (4.4).
Similarly, if y is a left limit point then Cm = F (y−)−mΛ(y−) ≤ F [(y−)−mΛ(y−) ≤ Cm.
Thus either F [(y) = F (y) or F [(y−) = F (y−) so y /∈ U . We are left with two possibilities,
either y = c or y = d. If y = c then y must be a right limit point so Cm = F (c)−mΛ(c) =
CI and if y = d then y is a left limit point and therefore Cm = F (d−)−mΛ(d−) = CI .

Now we use the fact that CI = Cm to show that fo is constant λ-almost everywhere on
(c, d). Let x ∈ (c, d). Using the form (2.2) of the λ-concavity of F [ we have

F [(x)(Λ(d−)− Λ(c)) ≥ F [(c)(Λ(d−)− Λ(x)) + F [(d−)(Λ(x)− Λ(c)),

which can be written in the form F [(x)−mΛ(x) ≥ CI . We now apply (4.4) to obtain Cm ≥
F [(x)−mΛ(x) ≥ CI for all x ∈ (c, d). This implies that

∫ x
−∞(fo−m) dλ = F [(x)−mΛ(x)

is constant on (c, d) and hence fo = m λ-almost everywhere on (c, d) as required.
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The proof of (2) is similar. This time let m = (F [(d−) − F [(a−))/(Λ(d−) − Λ(a−)),
CI = F [(d−) − mΛ(d−) = F [(a−) − mΛ(a−), and Cm = sup{F (x) − mΛ(x) : x ∈ R}.
Since Cm has not changed we still have (4.4). Thus CI ≤ Cm. To show that CI ≥ Cm we
again take a sequence {yn} ⊂ R such that limn→∞ F (yn) −mΛ(yn) = Cm and split the
argument into cases.

If yn > d for infinitely many n or yn < a for infinitely many n then the λ-concavity of
F [ implies that CI ≥ F [(yn) −mΛ(yn) for infinitely many n so CI ≥ Cm. If a ≤ yn ≤ d
for infinitely many n, let y be a limit point of the yn’s in [a, d]. As before y /∈ U so either
y = a or y = d. The case y = a cannot occur since if y = a then y is a right limit point
and by (4.4), F (a) −mΛ(a) = Cm ≥ F [(a) −mΛ(a). It follows that F (a) = F [(a) so by
the hypothesis (4.3) a /∈ I which is contrary to assumption. If y = d then y is a left limit
point and therefore Cm = F (d−)−mΛ(d−) = CI .

To show that fo is constant λ-almost everywhere on [a, d) take x ∈ [a, d). The λ-
concavity of F [ yields F [(x) − mΛ(x) ≥ CI which combines with (4.4) to give CI =
F [(x) −mΛ(x) for all x ∈ [a, d). This implies that

∫ x
−∞(fo −m) dλ = F [(x) −mΛ(x) is

constant on [a, d) and hence fo = m λ-almost everywhere on (a, d). Moreover,

(fo(a)−m)λ{a} = (F [(a)−mΛ(a))− (F [(a−)−mΛ(a−)) = CI − CI = 0

so either λ{a} = 0 or fo(a) = m. It follows that fo = m λ-almost everywhere on [a, d).
The proof of (3) will complete the theorem. Let m = (F [(b) − F [(c))/(Λ(b) − Λ(c)),

CI = F [(b)−mΛ(b) = F [(c)−mΛ(c), and Cm = sup{F (x)−mΛ(x) : x ∈ R}. Again we
have (4.4) so CI ≤ Cm. To show that CI ≥ Cm we take a sequence {yn} ⊂ R such that
limn→∞ F (yn)−mΛ(yn) = Cm and split the argument into cases.

If yn > b for infinitely many n or yn < c for infinitely many n then the λ-concavity of
F [ implies that CI ≥ F [(yn) −mΛ(yn) for infinitely many n so CI ≥ Cm. If c ≤ yn ≤ b
for infinitely many n, let y be a limit point of the yn’s in [c, b]. As before y /∈ U so either
y = b or y = c. The case y = b cannot occur since if y = b then y is a left limit point and
by (4.4), F (b−)−mΛ(b−) = Cm ≥ F [(b−)−mΛ(b−). It follows that F (b−) = F [(b−) so
by the hypothesis (4.3) b /∈ I which is contrary to assumption. If y = c then y is a right
limit point and therefore Cm = F (c)−mΛ(c) = CI .

To show that fo is constant λ-almost everywhere on (c, b] take x ∈ (c, b]. The λ-concavity
of F [ yields F [(x)−mΛ(x) ≥ CI which combines with (4.4) to give CI = F [(x)−mΛ(x)
for all x ∈ (c, b]. This implies that

∫ x
−∞(fo −m) dλ = F [(x)−mΛ(x) is constant on (c, b]

and hence fo = m λ-almost everywhere on (c, b].

Knowing that fo is constant on the intervals Ii allows us to compute its value on each
Ii.

Corollary 4.8. Suppose (4.1) and (4.3) hold. If λIi <∞ then

fo(t) = (1/λIi)
∫
Ii

f dλ

for λ-almost every t ∈ Ii. If λIi =∞ then

fo(t) = lim sup
x→∞

(1/λ(Ii ∩ (−∞, x]))
∫
Ii∩(−∞,x]

f dλ
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for λ-almost every t ∈ Ii.

Proof. Drop the subscript i as before and suppose without loss of generality that λI > 0.
First suppose that λI <∞. By the theorem,

fo(t) = (1/λI)
∫
I

fo dλ

for λ-almost every t ∈ I. The first statement of the theorem will follow if we show that∫
I
f dλ =

∫
I
fo dλ. Four simple consequences of Definition 4.6 will be useful: If a ∈ I then

F [(a−) = F (a−), if a /∈ I then F [(a) = F (a), if b /∈ I then F [(b−) = F (b−) and if b ∈ I
then F [(b) = F (b). There are four cases. If I = (a, b) then∫

I

f dλ = F (b−)− F (a) = F [(b−)− F [(a) =
∫
I

fo dλ.

If I = (a, b] then ∫
I

f dλ = F (b)− F (a) = F [(b)− F [(a) =
∫
I

fo dλ.

If I = [a, b) then∫
I

f dλ = F (b−)− F (a−) = F [(b−)− F [(a−) =
∫
I

fo dλ.

If I = [a, b] then ∫
I

f dλ = F (b)− F (a−) = F [(b)− F [(a−) =
∫
I

fo dλ.

Suppose now that λI =∞ and denote by m the value that fo takes λ-almost everywhere
on I. Since all intervals bounded on the right are λ-finite by assumption we must have
either I = (a,∞) or I = [a,∞). The arguments for the two cases are similar so we consider
only the case I = (a,∞). We have F [(a) = F (a) and

lim sup
x→∞

(1/λ(Ii ∩ (−∞, x]))
∫
Ii∩(−∞,x]

f dλ = lim sup
x→∞

F (x)− F (a)
Λ(x)− Λ(a)

≤ lim sup
x→∞

F [(x)− F [(a)
Λ(x)− Λ(a)

= m.

It remains to prove the inequality m ≤ lim supx→∞(F (x)− F (a))/(Λ(x)− Λ(a)).
For a fixed c > a let s = sup{(F (x)− F [(c))/(Λ(x)− Λ(c)) : x ∈ (c,∞), Λ(x) > Λ(c)}.

If y > c then F (y) ≤ s(Λ(y)− Λ(c)) + F [(c). If y ≤ c then by the λ-concavity of F [,

(Λ(x)−Λ(c))(F [(c)−F [(y)) ≥ (F [(x)−F [(c))(Λ(c)−Λ(y)) ≥ (F (x)−F [(c))(Λ(c)−Λ(y))
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for each x > c. It follows that F (y) ≤ F [(y) ≤ s(Λ(y) − Λ(c)) + F [(c). We have shown
that the λ-concave function s(Λ(y)−Λ(c))+F [(c) majorises F (y). Since F [ is the least λ-
concave majorant of F we have F [(y) ≤ s(Λ(y)−Λ(c))+F [(c) for all y ∈ R. In particular,
if y is chosen so that Λ(y) > Λ(c), we have s ≥ (F [(y)− F [(c))/(Λ(y)− Λ(c)) = m.

Now if x > c and Λ(c) > Λ(a), we have the trivial inequality m ≤ s(Λ(x)−Λ(c))/(Λ(x)−
Λ(a)) +m(Λ(c)− Λ(a))/(Λ(x)− Λ(a)) so

m ≤ lim
c→∞

sup
Λ(x)>Λ(c)

(
F (x)− F [(c)
Λ(x)− Λ(c)

Λ(x)− Λ(c)
Λ(x)− Λ(a)

+m
Λ(c)− Λ(a)
Λ(x)− Λ(a)

)
= lim
c→∞

sup
Λ(x)>Λ(c)

F (x)− F [(a)
Λ(x)− Λ(a)

= lim sup
x→∞

F (x)− F (a)
Λ(x)− Λ(a)

.

This completes the proof.

As mentioned f and fo coincide except on the intervals Ii.

Theorem 4.9. fo = f λ-almost everywhere off ∪iIi.
Proof. Let E = R \ ∪iIi, set

g(t) =

{
f(t), for t ∈ E
fo(t), for t /∈ E

}
and G(x) =

∫ x

−∞
g dλ.

It is enough to show that G = F [ for then g = fo λ-almost everywhere and hence f = fo

λ-almost everwhere on E. If x ∈ E then each interval Ii lies either entirely to the right or
entirely to the left of x. Let Jx be the collection of those indices i for which Ii lies entirely
to the left of x. Note that for each i ∈ Jx Ii ⊂ (−∞, x] so λIi <∞. By Corollary 4.8,

G(x) =
∑
i∈Jx

∫
Ii

fo dλ+
∫

(−∞,x]∩E
f dλ =

∑
i∈Jx

∫
Ii

f dλ+
∫

(−∞,x]∩E
f dλ = F (x).

For x ∈ E, however, we must have F (x) = F [(x) since if F (x) < F [(x) then by Theorem
4.5, (1), x is the left endpoint of some connected component (ai, bi) of U and according to
Definition 4.6 x ∈ Ii, contrary to assumption. Thus G(x) = F [(x).

If ai ∈ Ii for some i then F [(ai−) = F (ai−) and an argument similar to the above
shows that G(ai−) = F [(ai−).

If x /∈ E then x ∈ Ii for some i. If ai /∈ Ii then

G(x) = G(ai) +
∫

(ai,x]

g dλ = F [(ai) +
∫

(ai,x]

fo dλ = F [(x).

If ai ∈ Ii then

G(x) = G(ai−) +
∫

[ai,x]

g dλ = F [(ai−) +
∫

[ai,x]

fo dλ = F [(x).

This completes the proof.

The decomposition of fo now enables us to show that fo is indeed the p-level function
of f that we set out to construct. This fact is established in Theorems 4.11 and 4.12.
Theorem 4.10 is needed in the proof of 4.12 but is also an interesting and useful result in
its own right.
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Theorem 4.10. Suppose that (4.1) and (4.3) hold. For any α ≥ 0,∫ ∞
−∞

(fo)αf dλ =
∫ ∞
−∞

(fo)α+1 dλ.

Proof. By the previous theorem, fo = f λ-almost everywhere off ∪iIi so it is enough to
show that

(4.5)
∫
Ii

(fo)αf dλ =
∫
Ii

(fo)α+1 dλ

for each interval Ii. If λIi < ∞ then Corollary 4.8 shows that fo takes the value mi =
(1/λIi)

∫
Ii
f dλ λ-almost everywhere on Ii. Thus,∫

Ii

(fo)αf dλ = mα
i

∫
Ii

f dλ = mα+1
i

∫
Ii

dλ =
∫
Ii

(fo)α+1 dλ.

If λIi =∞ then

fo(t) = lim sup
x→∞

(1/λ(Ii ∩ (−∞, x]))
∫
Ii∩(−∞,x]

f dλ ≡ mi

λ-almost everywhere on Ii. If mi > 0 then
∫
Ii
f dλ = ∞ and both sides of (4.5) are

infinite. If mi = 0 then it is enough to show that f = 0 λ-almost everywhere on Ii since
then (4.5) holds trivially. Either Ii = (ai,∞) and F [(ai) = F (ai), or Ii = [ai,∞) and
F [(ai−) = F (ai−). Thus for t ∈ Ii we have either∫

(ai,t]

f dλ = F (t)− F (ai) ≤ F [(t)− F [(ai) =
∫

(ai,t]

fo dλ = 0, or∫
[ai,t]

f dλ = F (t)− F (ai−) ≤ F [(t)− F [(ai−) =
∫

[ai,t]

fo dλ = 0.

It follows that f = 0 λ-almost everywhere on Ii. This completes the proof.

Theorem 4.11. Suppose that (4.1) and (4.3) hold. If g is non-negative and λ-non-
increasing then

∫
R
fg dλ ≤

∫
R
fog dλ.

Proof. By Theorem 2.4 part (1) we may supose that g : R → [0,∞] is non-increasing.
Therefore, for each s ≥ 0, Es = {t ∈ R : g(t) ≥ s} is (either empty or) an interval of one
of the two forms (−∞, x), or (−∞, x]. Since for all x ∈ (−∞,∞],∫

(−∞,x)

f dλ = F (x−) ≤ F [(x−) =
∫

(−∞,x)

fo dλ

and for all x ∈ (−∞,∞),∫
(−∞,x]

f dλ = F (x) ≤ F [(x) =
∫

(−∞,x]

fo dλ

we see that
∫
Es
f dλ ≤

∫
Es
fo dλ for all s ≥ 0.

The theorem now follows by Fubini’s Theorem.∫
R

f(t)g(t) dλ(t) =
∫

R

∫ g(t)

0

ds f(t) dλ(t) =
∫ ∞

0

∫
Es

f(t) dλ(t) ds

≤
∫ ∞

0

∫
Es

fo(t) dλ(t) ds =
∫

R

fo(t)g(t) dλ(t).
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Theorem 4.12. Suppose that (4.1) and (4.3) hold. If 1 ≤ p ≤ ∞ and f ∈ L1
λ ∩ L∞λ then

‖f‖p↓λ = ‖fo‖p,λ.

Proof. It follows from Corollary 4.8 and Theorem 4.9 that ‖fo‖∞,λ ≤ ‖f‖∞,λ and Theorem
4.10, with α = 0, yields ‖fo‖1,λ = ‖f‖1,λ. Thus fo ∈ L1

λ ∩ L∞λ and hence fo ∈ Lpλ. Now
by Theorem 4.11

‖f‖p↓λ = sup
∫

R

fg dλ ≤ sup
∫

R

fog dλ = ‖fo‖p↓λ ≤ ‖fo‖p,λ

where the sup is taken over all non-negative, λ-non-increasing functions g with ‖g‖p′,λ ≤ 1.
To prove the opposite inequality note that since fo ∈ Lpλ, (fo/‖fo‖p,λ)p−1 is non-

negative, λ-non-increasing and has Lp
′

λ -norm 1. (If ‖fo‖p,λ = 0 then fo = 0 λ-almost
everywhere so f = 0 λ-almost everywhere and the result follows.) Thus, by Theorem 4.10,

‖f‖p↓λ ≥ ‖fo‖1−pp,λ

∫
R

f(fo)p−1 dλ = ‖fo‖1−pp,λ

∫
R

(fo)p dλ = ‖fo‖p,λ.

5. The Level Function Extended to Lp↓λ .

In this section we consider the construction of the level function as a mapping f → fo.
The first theorem of this section shows that the mapping preserves order which enables us
to extend the construction of the previous section to a map from Lp↓λ to Lpλ. The notation
introduced in Section 4 will be used freely throughout this section and since we must now
consider the level function construction applied to more than one function we will use g,
G, G[, and go to correspond to f , F , F [, and fo in the obvious way.

We begin with a simple exercise in measure theory.

Lemma 5.1. Suppose g ≥ 0 is an essentially bounded λ-measurable function and go is the
level function of g. Then

(5.1) lim
x→t−

G[(t)−G[(x)
Λ(t)− Λ(x)

makes sense, exists, and equals go(t) for λ-almost every t ∈ R. Here G[(x) =
∫ x
−∞ go dλ

and Λ(x) = λ(−∞, x].

Proof. To show that the limit makes sense we show that the denominator is non-zero
for all x < t for λ-almost every t ∈ R. That is, that the set T = {t ∈ R : Λ(t) =
Λ(x) for some x < t} has λ-measure zero. To each t ∈ T assign xt < t such that λ(xt, t] =
Λ(t) − Λ(xt) = 0. Let S be the open set ∪t∈T (xt, t). Certainly S ⊂ T . If t ∈ T \ S then
(xt, t) ⊂ S so t is an endpoint of a connected component (maximal open subinterval) of S.
It follows that T \ S is at most countable. Since T clearly contains no atoms of λ we see
that λ(T \ S) = 0.

Now S is a union of open intervals in R and hence is a countable subunion of those
intervals. Since each interval (xt, t) has λ-measure zero it follows that λS = 0. Therefore
λT = λS + λ(T \ S) = 0.
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To show that the limit exists we must consider the points of discontinuity of go. go is
λ-non-increasing so by Theorem 2.4 part (1) we may assume without loss of generality that
go is non-increasing. It follows that go has at most countably many points of discontinuity.
The set T together with the set of points of discontinuity of go which are not atoms for
λ has λ-measure zero. Suppose t is outside this set. If t is an atom for λ then the limit
clearly exists and equals go(t). If t is not an atom then go is continuous at t and since go

is non-increasing,

go(t) ≤ G[(t)−G[(x)
Λ(t)− Λ(x)

≤ go(x).

Allowing x→ t− we see that the limit (5.1) exists and equals go(t).

Theorem 5.2. Suppose f and g are non-negative, essentially bounded, λ-measurable func-
tions with f ≤ g λ-almost everywhere. Then fo ≤ go λ-almost everywhere. Here fo and
go are the level functions of f and g respectively.

Proof. By Theorem 2.4 part (1) we may assume without loss of generality that both fo

and go are non-increasing. Moreover, since fo is constant λ-almost everywhere on its
level intervals Ii (Definition 4.6) we may also assume without loss of generality that fo

is constant everywhere on each Ii. As usual let F (x) =
∫ x
−∞ f dλ, G(x) =

∫ x
−∞ g dλ,

F [(x) =
∫ x
−∞ fo dλ, G[(x) =

∫ x
−∞ go dλ, and Λ(x) = λ(−∞, x].

Choose t ∈ R such that the limit (5.1) equals go(t). Set m = fo(t), Cm = sup{F (x)−
mΛ(x) : x ∈ R}, and Dm = sup{G(x) −mΛ(x) : x ∈ R}. Our first task is to show that
both Cm and Dm are finite. Since mΛ +Cm is a λ-concave majorant of F the minimality
of F [ implies that F [ ≤ mΛ + Cm. Similarly G[ ≤ mΛ +Dm. Since fo is non-increasing
and m = fo(t) the function F [(x) −mΛ(x) =

∫ x
−∞ fo −mdλ is non-decreasing for x ≤ t

and non-increasing for x ≥ t. Hence

(5.2) Cm = sup{F [(x)−mΛ(x) : x ∈ R} = F [(t)−mΛ(t) <∞

where the first equality follows from

Cm = sup{F (x)−mΛ(x) : x ∈ R} ≤ sup{F [(x)−mΛ(x) : x ∈ R} ≤ Cm.

If the function G[(x)−mΛ(x) =
∫ x
−∞ go−mdλ is eventually non-increasing then Dm <∞

as for Cm. If the function is not eventually non-increasing then go(x) > m for all x and in
particular go(t) > m and the theorem is proved. We may assume therefore that Dm <∞.

The main step in the proof is the proof of

(5.3) there exist xn ≥ t such that lim
n→∞

G(xn)−mΛ(xn) = Dm.

Before we prove (5.3) we will show how (5.3) will complete the theorem. If x < t then the
proof of the Lemma 5.1 shows that Λ(t)−Λ(x) > 0 so Λ(xn)−Λ(x) > 0 for each n. Since
go is non-increasing and xn ≥ t,

G[(t)−G[(x)
Λ(t)− Λ(x)

≥ G[(xn)−G[(x)
Λ(xn)− Λ(x)

≥ G[(xn)−Dm −mΛ(x)
Λ(xn)− Λ(x)

= m− Dm − (G[(xn)−mΛ(xn))
Λ(xn)− Λ(x)

≥ m− Dm − (G[(xn)−mΛ(xn))
Λ(t)− Λ(x)
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As n→∞ this becomes (G[(t)−G[(x))/(Λ(t)−Λ(x)) ≥ m. As x→ t− we have go(t) ≥ m
by the choice of t. This completes the proof subject to (5.3).

En route to (5.3) we show

(5.4) there exist yn ≥ t such that lim
n→∞

F (xn)−mΛ(xn) = Cm.

If F [(t) = F (t) then (5.4) follows from (5.2) by setting yn = t for all n. Otherwise,
F [(t) > F (t) so by Lemma 4.5 there is some b′ such that (t, b′) ⊂ U (Definition 4.6).
Let I be the level interval of f which contains (t, b′). Note that t ∈ I since either t is
interior to I or else t is the left endpoint of I and F [(t) > F (t) so that t ∈ I by Definition
4.6. Now fo is constant on I so fo takes the value fo(t) = m on I. Let b be the right
endpoint of I. If b ∈ I then F [(b−) > F (b−) and since b /∈ U we have F [(b) = F (b).
Thus Cm = F [(t)−mΛ(t) = F [(b)−mΛ(b) = F (b)−mΛ(b) and (5.4) follows with yn = b
for all n. If b /∈ I then F [(b) > F (b) and since b /∈ U we have F [(b−) = F (b−). Thus
Cm = F [(t)−mΛ(t) = F [(b−)−mΛ(b−) = F (b−)−mΛ(b−) and (5.4) follows with {yn}
taken to be any sequence in (t, b) which converges to b.

We are now ready to prove (5.3). Let {xn} be any sequence of real numbers such
that Dm = limn→∞G(xn) − mλ(xn). If xn ≥ t for infinitely many n then (5.3) holds
on dropping to a subsequence. Otherwise we may assume (after dropping finitely many
terms) that xn < t for all n. In this case we show that Dm = limn→∞G(yn)−mΛ(yn) to
complete the proof. Since xn < t ≤ yn we have

G(yn)−G(xn) =
∫

(xn,yn]

g dλ ≥
∫

(xn,yn]

f dλ = F (yn)− F (xn).

Thus

0 ≥ −G(yn)− F (xn) +G(xn) + F (yn)

= Dm − (G(yn)−mΛ(yn)) + Cm − (F (xn)−mΛ(xn))

− (Dm − (G(xn)−mΛ(xn)))− (Cm − (F (yn)−mΛ(yn)))

and since limn→∞Dm − (G(xn) − mΛ(xn)) = limn→∞ Cm − (F (yn) − mΛ(yn)) = 0 we
have

lim
n→∞

Dm − (G(yn)−mΛ(yn)) + Cm − (F (xn)−mΛ(xn)) ≤ 0.

Both Dm − (G(yn)−mΛ(yn)) and Cm − (F (xn)−mΛ(xn)) are non-negative so we have
limn→∞G(yn)−mΛ(yn) = Dm as required.

The extension of the map f → fo from bounded functions to arbitrary functions in Lp↓λ
is not done by continuity but by monotonicity. We need the following lemma to show that
the properties of the p-level function carry over as well.

Lemma 5.3. Let 1 ≤ p ≤ ∞. Suppose that

(1) {fn} increases to f pointwise λ-almost everywhere and 0 ≤ fn ∈ Lp↓λ for each n.
(2) {hn} increases to h pointwise λ-almost everywhere and hn ∈ Lpλ for each n.
(3) hn is a p-level function of fn for each n.
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Then h is a p-level function of f whenever f ∈ Lp↓λ . Also, f ∈ Lp↓λ if and only if h ∈ Lpλ.

Proof. Fix g ∈ Lp
′

λ with g non-negative and λ-non-increasing. Since hn is a p-level func-
tion of fn we have

∫
R
fng dλ ≤

∫
R
hng dλ and ‖hn‖p,λ = ‖fn‖p↓λ. By the Monotone

Convergence Theorem (used twice),

(5.5)
∫

R

fg dλ = lim
n→∞

∫
R

fng dλ ≤ lim
n→∞

∫
R

hng dλ =
∫

R

hg dλ.

Also, by the Monotone Convergence Theorem for p <∞ and trivially for p =∞,

‖h‖p,λ = lim
n→∞

‖hn‖p,λ = lim
n→∞

‖fn‖p↓λ ≤ ‖f‖p↓λ.

To complete the proof we need ‖f‖p↓λ ≤ ‖h‖p,λ. This follows from (5.5) (allowing g to
vary) and Hölders inequality.

‖f‖p↓λ = sup
∫

R

fg dλ ≤ sup
∫

R

hg dλ ≤ ‖h‖p,λ

where the suprema are taken over all non-negative, λ-non-increasing functions g with
‖g‖p′,λ ≤ 1.

We are now ready to prove the existence of p-level functions.

Theorem 5.4. Suppose that 1 ≤ p ≤ ∞. If f ∈ Lp↓λ then f has a unique p-level function
fo. Moreover, fo is independent of p in the sense that if f ∈ Lpλ ∩ L

q
λ then fo is both the

p-level and the q-level function of f .

Proof. For n = 1, 2, . . . set fn(x) = min(n, |f(x)|) when x ≤ n and fn(x) = 0 when x > n.
Note that fn ∈ L1

λ ∩ L∞λ . Clearly, {fn} increases to |f | pointwise. Also, by Theorem 5.2,
the level functions fon form an increasing sequence. Finally, Theorems 4.11 and 4.12 show
that fon is a p-level function of fn for each n. The hypotheses of Lemma 5.3 are satisfied
and we have f ∈ Lp↓λ so we conclude that fo, the pointwise limit of {fon}, is a p-level
function of f . Uniqueness was already proved in Lemma 3.5. The p-independence of fo is
clear from the construction.

With this result the concept of a p-level function becomes superfluous. The level function
construction of Section 4 extends unambiguously to every function in ∪1≤p≤∞L

p↓
λ .

Definition 5.5. Suppose f ∈ Lp↓λ . The level function fo of f is the p-level function whose
existence is asserted above.

The next two results extend Theorems 5.2 and 4.10 to apply to this larger collection of
level functions.

Corollary 5.6. Suppose that f and g are in ∪1≤p≤∞L
p↓
λ and that |f | ≤ |g|. Then fo ≤ go.

Proof. For n = 1, 2, . . . set fn(x) = min(n, |f(x)|) when x ≤ n, fn(x) = 0 when x > n,
gn(x) = min(n, |g(x)|) when x ≤ n and gn(x) = 0 when x > n. Note that fn, gn ∈ L1

λ∩L∞λ .
Clearly 0 ≤ fn ≤ gn so, by Theorem 5.2, fon ≤ gon. The proof of Theorem 5.4 shows that
fo and go are the pointwise limits of {fon} and {gon} respectively. It follows that fo ≤ go

as required.
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Corollary 5.7. Suppose that 1 ≤ p ≤ ∞, f ∈ Lp↓λ and α ≥ 0. Then

(5.6)
∫
R

|f |(fo)α dλ =
∫
R

(fo)α+1 dλ.

Proof. As usual set fn(x) = min(n, |f(x)|) when x ≤ n and fn(x) = 0 when x > n. Note
that fn ∈ L1

λ ∩ L∞λ for each n. We can apply Theorem 4.10 to get∫
R

fn(fon)α dλ =
∫
R

(fon)α+1 dλ

for each n. Since {fn} and {fon} increase to |f | and fo respectively, we may apply the
Monotone Convergence Theorem to both sides of the integral above. This yields (5.6).

In order to prove that Lp↓λ is a Banach space it remains to show that it is complete.
The proof will follow along the same lines as the proof (in Royden [7]) that the Lp-
spaces are complete. Indeed we will use the usual characterisation of completeness—that
every absolutely summable series is summable. To proceed, we need analogues of some
Lp convergence results: The Monotone Convergence Theorem, Fatou’s Lemma, and the
Dominated Convergence Theorem.

Our substitute for the Monotone Convergence Theorem is

Theorem 5.8. Suppose 1 ≤ p ≤ ∞ and 0 ≤ f1 ≤ f2 ≤ . . . , fn ∈ Lp↓λ . Then the pointwise
limit, f , of {fn} satisfies

(5.7) ‖f‖p↓λ = lim
n→∞

‖fn‖p↓λ.

In particular f ∈ Lp↓λ whenever the limit in (5.7) is finite.

Proof. If the limit in (5.7) is infinite then the statement is trivial so suppose that the
limit is finite. We will apply Lemma 5.3. We have {fn} increasing pointwise to f and,
by Corollary 5.6, {fon} increasing to some function, say g. Since each fon ∈ L

p
λ, the usual

Monotone Convergence Theorem shows that ‖g‖p,λ = limn→∞ ‖fon‖p,λ and hence g ∈ Lpλ.
(Note that this statement is valid for p = ∞ as well although not by the Monotone
Convergence Theorem.) By Lemma 5.3 f ∈ Lp↓λ and by Definition 5.5 g = fo. Thus

‖f‖p↓λ = ‖g‖p,λ = lim
n→∞

‖fon‖p,λ = lim
n→∞

‖fn‖p↓λ

as required.

Just as the Monotone Convergence Theorem leads to Fatou’s Lemma we are led to

Corollary 5.9. Suppose that 1 ≤ p ≤ ∞ and that {fn} is a sequence of non-negative
functions in Lp↓λ . Let f(x) = lim infn→∞ fn(x). Then

(5.8) ‖f‖p↓λ ≤ lim inf
n→∞

‖fn‖p↓λ.
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In particular f ∈ Lp↓λ whenever the left hand side of (5.8) is finite.

Proof. Define hn by hn(x) = infk≥n fk(x). {hn} increases to f and since hn ≤ fn we have
hn ∈ Lp↓λ for each n. By Lemma 5.8 we have

‖f‖p↓λ = lim
n→∞

‖hn‖p↓λ = lim inf
n→∞

‖hn‖p↓λ ≤ lim inf
n→∞

‖fn‖p↓λ.

Passing from Fatou’s Lemma to the Dominated Convergence Theorem usually involves
the linearity of the integral. The Lp↓λ norms are not given as integrals and the map taking
f to fo is not linear (it is not even sublinear!) The proof below uses Corollary 5.7 as a
substitute for this lack.

Lemma 5.10. Let 1 ≤ p <∞. Suppose {fn} converges pointwise λ-almost everywhere to
zero, 0 ≤ fn ≤ g, and g ∈ Lp↓λ . Then {fn} converges to zero in Lp↓λ .

Proof. Consider the sequence {2g− fn} of non-negative functions in Lp↓λ . lim infn→∞ 2g−
fn = limn→∞ 2g− fn = 2g so using our analogue of Fatou’s Lemma (Lemma 5.9) we have

‖2g‖p↓λ ≤ lim inf
n→∞

‖2g − fn‖p↓λ ≤ lim sup
n→∞

‖2g − fn‖p↓λ ≤ ‖2g‖p↓λ

where the last inequality is from the hypothesis 0 ≤ fn ≤ g. Thus limn→∞ ‖2g− fn‖p↓λ =
‖2g‖p↓λ. To complete the proof we will show that ‖fn‖pp↓λ ≤ ‖2g‖

p
p↓λ − ‖2g− fn‖

p
p↓λ from

which it follows that limn→∞ ‖fn‖p↓λ = 0 as required.
By Corollary 5.7, with α = p− 1, we have

‖2g − fn‖pp↓λ =
∫
R

((2g − fn)o)p dλ =
∫
R

(2g − fn)((2g − fn)o)p−1 dλ

=
∫
R

2g((2g − fn)o)p−1 dλ−
∫
R

fn((2g − fn)o)p−1 dλ.(5.9)

To estimate the first integral in (5.9) we use the definition of the Lp↓λ norm. (Note that
((2g − fn)o)p−1 is non-negative and λ-non-increasing.)∫

R

2g((2g − fn)o)p−1 dλ ≤ ‖2g‖p↓λ‖((2g − fn)o)p−1‖p′,λ

= ‖2g‖p↓λ‖(2g − fn)o‖p−1
p,λ = ‖2g‖p↓λ‖2g − fn‖p−1

p↓λ ≤ ‖2g‖
p
p↓λ.

To estimate the second integral in (5.9) we note that 2g − fn ≥ 2g − g = g ≥ fn so
(2g − fn)o ≥ fon by Theorem 5.6. This observation, together with another application of
Corollary 5.7 yields∫

R

fn((2g − fn)o)p−1 dλ ≥
∫
R

fn(fon)p−1 dλ =
∫
R

(fon)p dλ = ‖fn‖pp↓λ.

Combining the above estimates we have

‖2g − fn‖pp↓λ ≤ ‖2g‖
p
p↓λ − ‖fn‖

p
p↓λ

which completes the proof.

Note that the last result does not include the case p = ∞. It is easy to see that the
result fails in that case.

Our analogue of the Dominated Convergence Theorem now follows easily.
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Corollary 5.11. Let 1 ≤ p < ∞ and suppose that {fn} converges pointwise λ-almost
everywhere to f . If there exists a g ∈ Lp↓λ such that |fn| ≤ g λ-almost everywhere then
{fn} converges to f in Lp↓λ .

Proof. Let hn = |f − fn|/2. Clearly |f | ≤ g λ-almost everywhere so 0 ≤ hn ≤ g and {hn}
converges pointwise to 0. By Lemma 5.10 {hn} converges to 0 in Lp↓λ . It follows that {fn}
converges to f in Lp↓λ .

Having established some control over convergence in Lp↓λ we are ready to prove

Theorem 5.12. Lp↓λ is complete for 1 ≤ p <∞.

Proof. It is enough to prove that every absolutely summable series in Lp↓λ is summable.
Suppose f1, f2, . . . are functions in Lp↓λ such that

∑∞
k=1 ‖fk‖p↓λ = M < ∞. Set gn =∑n

k=1 |fk|. Clearly {gn} is an increasing sequence of non-negative functions and ‖gn‖p↓λ ≤∑n
k=1 ‖fk‖p↓λ ≤M . Theorem 5.8 shows that the pointwise limit g of the sequence {gn} is

in Lp↓λ . In particular, g is finite λ-almost everywhere. Thus for λ-almost every x ∈ R the
series

∑∞
k=1 fk(x) is absolutely convergent and hence convergent. Set s(x) =

∑∞
k=1 fk(x).

Now sn =
∑n
k=1 fk is a sequence of Lp↓λ functions converging pointwise to s λ-almost

everywhere and satisfying |sn| ≤ g. Corollary 5.12 completes the proof, showing that {sn}
converges to s in Lp↓λ .

6. The Dual of Lp↓λ .

In this section we identify the dual space of Lp↓λ . At the centre of our construction is
the following definition.

Definition 6.1. Suppose that g is a λ-measurable function. Define ḡ by

ḡ(x) = ess supλ(|g|, [x,∞)).

Clearly ḡ is non-negative, non-increasing and λ-measurable. Lemma 2.3 shows that
ḡ ≥ g λ-almost everywhere. Indeed ḡ is the smallest non-increasing majorant of g.

Lemma 6.2. If 0 ≤ g1 ≤ g2 ≤ . . . and limn→∞ gn(x) = g(x) for λ-almost every x then
0 ≤ ḡ1 ≤ ḡ2 ≤ . . . and limn→∞ ḡn(x) = ḡ(x) for λ-almost every x.

Proof. It is immediate from the definition that 0 ≤ ḡn ≤ ḡn+1 ≤ ḡ for all n. Thus
g̃(x) = limn→∞ ḡn(x) exists and g̃ ≤ ḡ. Moreover g̃ is a non-increasing function. Since
g̃ ≥ ḡn ≥ gn λ-almost everywhere for each n we have g̃ ≥ g λ-almost everywhere. Thus

ḡ(x) = ess supλ(g, [x,∞)) ≤ ess supλ(g̃, [x,∞)) = g̃(x)

which completes the proof.

Now we define our candidate for the dual space of Lp↓λ .

Definition 6.3. ‖g‖p′∗λ = ‖ḡ‖p′,λ and Lp
′∗
λ is the collection of functions g for which

‖g‖p′∗λ <∞.

Lp
′∗
λ is a subspace of Lp

′

λ since we have ‖g‖p′,λ ≤ ‖g‖p′∗λ. It is easy to see that ‖ · ‖p′∗λ
is a norm.
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Theorem 6.4. Suppose f ∈ Lp↓λ , 1 ≤ p ≤ ∞. Then

(6.1) sup
{∣∣∣∣∫

R

fg dλ

∣∣∣∣ : ‖g‖p′∗λ ≤ 1
}

= ‖f‖p↓λ.

Proof. Since ḡ ≥ |g| λ-almost everywhere we have.∣∣∣∣∫
R

fg dλ

∣∣∣∣ ≤ ∫
R

|f ||g| dλ ≤
∫

R

|f |ḡ dλ.

Since ḡ is non-increasing, Definition 5.5 and Hölder’s inequality show that∫
R

|f |ḡ dλ ≤
∫

R

foḡ dλ ≤ ‖fo‖p,λ‖ḡ‖p′,λ.

By Definition 6.3 this is

(6.2)
∣∣∣∣∫

R

fg dλ

∣∣∣∣ ≤ ‖f‖p↓λ‖g‖p′∗λ.
Thus we have “≤”in (6.1). To prove “≥”note that for any non-negative, λ-non-increasing
function g with ‖g‖p′,λ ≤ 1 we have ‖ sgn(f)g‖p′∗λ ≤ 1 and

∣∣∫
R
f sgn(f)g dλ

∣∣ =
∫
R
|f |g dλ.

The definition of ‖ · ‖p↓λ completes the proof.

Lemma 6.5. Suppose 1 < p ≤ ∞. If f ∈ Lp↓λ and g ∈ Lp
′∗
λ then for each α ∈ (0, 1)

there exists a non-negative function h ∈ Lp↓λ such that ‖h‖p↓λ ≤ ‖f‖p↓λ and
∫
R
h|g| dλ ≥

α2
∫
R
|f |ḡ dλ.

Proof. Without loss of generality we may suppose that f and g are non-negative. Fix
α ∈ (0, 1), and for each n ∈ Z define Bn = {x ∈ R : αn+1 < ḡ(x) ≤ αn}. Note that since
ḡ is non-increasing the sets Bn are intervals such that if n < m then Bn lies entirely to
the left of Bm. (It may happen that Bn is empty for some n in which case this statement
is vacuously true.) Moreover, if we include the sets B−∞ = {x ∈ R : ḡ(x) = ∞} and
B∞ = {x ∈ R : ḡ(x) = 0} then we have R = ∪Z∪{±∞}Bn, a union of disjoint sets. We
will prove the lemma on each set Bn, n ∈ Z ∪ {±∞}. That is, for each n ∈ Z ∪ {±∞} we
will construct a function hn : Bn → [0,∞) such that∫

Bn

hng dλ ≥ α2

∫
Bn

fḡ dλ, and(6.3) ∫
Bn

hnφdλ ≤
∫
Bn

fφ dλ(6.4)

for all non-negative, non-increasing functions φ. Once each hn is constructed, the lemma
will follow on setting h(x) = hn(x) for x ∈ Bn, n ∈ Z ∪ {±∞}.

It remains to construct the functions hn. First set h∞ = 0 on B∞ and note that (6.3)
and (6.4) hold. Next, if λBn = 0 then any definition of hn will satisfy (6.3) and (6.4)
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trivially. In particular, this includes the case n = ∞ since g ∈ Lp
′∗
λ implies λB−∞ = 0.

We are left with n ∈ Z and λBn > 0. Note that λBn 6=∞ lest we violate the assumption
g ∈ Lp

′∗
λ . We let yn be the right endpoint of Bn and distinguish two cases, yn ∈ Bn and

yn /∈ Bn.
Case 1. yn ∈ Bn. The definition of the sets Bk implies that

ess supλ(g, (yn,∞)) = ess supλ(g,∪k>nBk) ≤ αn+1 < ḡ(yn) = ess supλ(g, [yn,∞)).

Hence λ{yn} > 0 and ḡ(yn) = g(yn). Set hn(yn) = (1/λ{yn})
∫
Bn

f dλ and hn(x) = 0 for
x ∈ Bn \ {yn}. To verify (6.3) we estimate as follows.

∫
Bn

hng dλ =
(

(1/λ{yn})
∫
Bn

f dλ

)
g(yn)λ{yn} =

(∫
Bn

f dλ

)
ḡ(yn)

≥ α
∫
Bn

fαn dλ ≥ α
∫
Bn

fḡ dλ ≥ α2

∫
Bn

fḡ dλ.

To prove (6.4) fix a non-negative, λ-non-increasing function φ and note that since λ{yn} >
0, Theorem 2.4 part (2) implies that φ(x) ≥ φ(yn) for λ-almost every x ∈ Bn. Thus

∫
Bn

hφ dλ =
(∫

Bn

f dλ

)
φ(yn) ≤

∫
Bn

fφ dλ.

Case 2. yn /∈ Bn. Let x ∈ Bn. yn ∈ ∪k>nBk so

ess supλ(g, [yn,∞)) = ḡ(yn) ≤ αn+1 < ḡ(x) = ess supλ(g, [x,∞)).

Thus λ[x, yn) > 0 and ḡ(x) = ess supλ(g, [x, yn)). If we define the set A by A = {x ∈ R :
αḡ(x) < g(x)}, we have

ess supλ(g, [x, yn) \A) ≤ ess supλ(αḡ, [x, yn) \A)

≤ ess supλ(αḡ, [x, yn)) = αḡ(x) < ḡ(x) = ess supλ(g, [x, yn))

so λ([x, yn) ∩ A) > 0 and ḡ(x) = ess supλ(g, [x, yn) ∩ A). Now choose x0, x1, x2, . . . in Bn
converging to yn such that λ([xk, xk+1) ∩A) > 0 for k = 0, 1, 2, . . . . Define hn by

hn(x) =


0, x ∈ Bn, x < x0

(1/λ([x0, x1) ∩A))
∫

(−∞,x0)∩Bn f dλ, x0 ≤ x < x1, x ∈ A

(1/λ([xk, xk+1) ∩A))
∫

[xk−1,xk)
f dλ, xk ≤ x < xk+1, x ∈ A

0, x ∈ Bn \A.
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To prove (6.3) note that for x ∈ Bn ∩A we have g(x) > αḡ(x) > αn+2.

∫
Bn

hng dλ =
∫

[x0,x1)∩A
hng dλ+

∞∑
k=1

∫
[xk,xk+1)

hng dλ

= (1/λ([x0, x1) ∩A))
∫

(−∞,x0)∩Bn
f dλ

∫
[x0,x1)∩A

g dλ

+
∞∑
k=1

(1/λ([xk, xk+1) ∩A))
∫

(xk−1,xk)

f dλ

∫
[xk,xk+1)∩A

g dλ

≥ αn+2

∫
(−∞,x0)∩Bn

f dλ+
∞∑
k=1

αn+2

∫
(xk−1,xk)∩Bn

f dλ

≥ α2

(∫
(−∞,x0)∩Bn

fg dλ+
∞∑
k=1

∫
[xk−1,xk)

fg dλ

)
= α2

∫
Bn

fg dλ.

The proof of (6.4) uses Theorem 2.4 part (5). Let φ be an arbitrary, non-negative, λ-non-
increasing function.∫

Bn

hnφdλ = (1/λ([x0, x1) ∩A))
∫

(−∞,x0)∩Bn
f dλ

∫
[x0,x1)∩A

φdλ

+
∞∑
k=1

(1/λ([xk, xk+1) ∩A))
∫

(xk−1,xk)

f dλ

∫
[xk,xk+1)∩A

φdλ

≤ ess supλ(φ, [x0,∞))
∫

(−∞,x0)∩Bn
f dλ+

∞∑
k=1

ess supλ(φ, [xk,∞))
∫

(xk−1,xk)

f dλ

≤ ess infλ(φ, (−∞, x0])
∫

(−∞,x0)∩Bn
f dλ+

∞∑
k=1

ess infλ(φ, (∞, xk])
∫

(xk−1,xk)

f dλ

≤
∫

(−∞,x0)∩Bn
fφ dλ+

∞∑
k=1

∫
(xk−1,xk)

fφ dλ =
∫
Bn

fφ dλ.

This completes the proof.

Theorem 6.6. Suppose g ∈ Lp
′∗
λ , 1 ≤ p ≤ ∞. Then

sup
{∣∣∣∣∫

R

fg dλ

∣∣∣∣ : ‖f‖p↓λ ≤ 1
}

= ‖g‖p′∗λ.

Proof. The theorem is well known in the case p = 1 since ‖ · ‖1↓λ = ‖ · ‖1,λ and ‖ · ‖∞∗λ =
‖·‖∞,λ. For 1 ≤ p ≤ ∞ “≤”follows by (6.2) above. The proof of “≥”in the case 1 < p ≤ ∞
uses Lemma 6.5. Without loss of generality assume that g is not λ-almost everywhere 0.
Set f = (ḡ/‖ḡ‖p′,λ)p

′−1 if p 6= ∞ and set f ≡ 1 if p = ∞. f is non-increasing so by
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Theorem 3.2 ‖f‖p↓λ = ‖f‖p,λ = 1. Fix α ∈ (0, 1) and let h be the function given by
Lemma 6.5. We have ‖h sgn(g)‖p↓λ ≤ 1 so

sup
{∣∣∣∣∫

R

fg dλ

∣∣∣∣ : ‖f‖p↓λ ≤ 1
}
≥
∣∣∣∣∫

R

h sgn(g)g dλ
∣∣∣∣ =

∫
R

h|g| dλ

≥ α2

∫
R

fḡ dλ = α2‖ḡ‖p′,λ = α2‖g‖p′∗λ.

Let α→ 1 to complete the theorem.

Theorem 6.7. Suppose 1 ≤ p < ∞. The dual space of Lp↓λ is Lp
′∗
λ . More precisely,

each function g ∈ Lp
′∗
λ gives rise to a continuous linear functional Lg on Lp↓λ given by

Lg(f) =
∫
R
fg dλ. The norm of Lg is ‖g‖p′∗λ and every continuous linear functional on

Lp↓λ is Lg for some g ∈ Lp
′∗
λ .

Proof. If g ∈ Lp
′∗
λ then Theorem 6.6 shows that Lg is defined on Lp↓λ and that it is con-

tinuous, having norm ‖g‖p′∗λ. (Lg is clearly linear.) Suppose now that L is a continuous,
linear functional on Lp↓λ . We wish to show that L = Lg for some g ∈ Lp

′∗
λ .

Since Lpλ is a subspace of Lp↓λ (with ‖ ·‖p↓λ ≤ ‖·‖p,λ) we may consider L as a continuous
linear functional on Lpλ. By the Riesz Representation Theorem there is a function g ∈ Lp

′

λ

such that L(f) =
∫
R
fg dλ for all f ∈ Lpλ. To complete the proof we show that L(f) =∫

R
fg dλ for all f ∈ Lp↓λ and that g ∈ Lp

′∗
λ .

To do the first we set fn(x) = min(n,max(−n, f(x))) for x ≤ n and fn(x) = 0 for
x > n. Consider the sequence {|fng|}. This increases pointwise to |fg|. The Monotone
Convergence Theorem yields∫

R

|fg| dλ = lim
n→∞

∫
R

|fng| dλ = lim
n→∞

L(|fn| sgn(g))

≤ ‖L‖ lim
n→∞

‖fn‖p↓λ ≤ ‖L‖‖f‖p↓λ <∞.

Thus fg ∈ L1
λ. Now consider {fn} as a sequence in Lp↓λ . |fn| ≤ |f | ∈ Lp↓λ for each n so by

Corollary 5.11 {fn} converges to f in Lp↓λ . Since L is continuous,

L(f) = lim
n→∞

L(fn) = lim
n→∞

∫
R

fng dλ =
∫

R

fg dλ

where the last inequality follows from the Dominated Convergence Theorem using our
observation that fg ∈ L1

λ.
The second task, to show that g ∈ Lp

′∗
λ , uses Lemma 6.2. Set gn(x) = min(n, |g(x)|)

when x ≤ n and set gn(x) = 0 when x > n. Note that gn ∈ Lp
′∗
λ and {gn} increases

pointwise to |g|. Thus {ḡn} increases pointwise to ḡ. The Monotone Convergence Theorem
implies that

lim
n→∞

‖gn‖p′∗λ = lim
n→∞

‖ḡn‖p′,λ = ‖ḡ‖p′,λ = ‖g‖p′∗λ.
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Also, by Theorem 6.6,

‖gn‖p′∗λ = sup
∣∣∣∣∫

R

fgn dλ

∣∣∣∣ ≤ sup
∫

R

|f ||g| dλ = supL(|f | sgn(g)) ≤ ‖L‖.

Here the suprema are taken over all functions f with ‖f‖p↓λ ≤ 1. The conclusion is that
‖g‖p′∗λ ≤ ‖L‖ so that g ∈ Lp

′∗
λ as required.

Corollary 6.8. Lp
′∗
λ is complete for 1 ≤ p <∞.

Proof. The dual space of any normed linear space is complete.

Example 6.9. Lp↓λ is not reflexive for 1 < p <∞.

Suppose λ satisfies the following mild conditions. There exist a, b ∈ R such that 0 <
λ(−∞, a] < ∞, 0 < λ(a, b] < ∞, and λ is not supported on a finite set in (a, b]. In this
case we will show that L∞λ (a, b] may be viewed as a subspace of Lp

′∗
λ (for any p ∈ (1,∞])

with equivalent norms.
If g ∈ L∞λ (a, b] with ‖g‖L∞λ (a,b] = M then extend g to be defined on all of R by setting

g(x) = 0 for x /∈ (a, b]. Clearly, ḡ(x) = M for x ∈ (−∞, a] and ḡ(x) = 0 for x ∈ (b,∞).
Thus

Mp′λ(−∞, a] =
∫ a

−∞
ḡp
′
dλ ≤ ‖ḡ‖p

′

p′,λ ≤
∫ b

−∞
ḡp
′
dλ ≤Mp′λ(−∞, b]

and so ‖g‖L∞λ (a,b] ∼ ‖g‖p′∗λ. By the Hahn-Banach Theorem every linear functional on

L∞λ (a, b] extends to a linear functional on Lp
′∗
λ . Since λ is not supported on a finite set,

there are linear functionals on L∞λ (a, b] which do not arise via integration against any
function on (a, b]. It follows that the dual space of Lp

′∗
λ is not Lp↓λ .

The characterisation of the dual space of Lp↓λ in terms of the function ḡ makes it possible
to explicitly calculate the Peetre K-functional for the pair (L1

λ, L
∞
λ ). The interpolation

results obtained in this way may be found in [10].

7. Hardy’s Inequality

For which indices p and q and which non-negative weight functions u and v does there
exist a constant C for which

(7.1)
(∫ ∞
−∞

∣∣∣∣∫ x

−∞
f(t)u(t) dt

∣∣∣∣q v(x) dx
)1/q

≤ C
(∫ ∞
−∞
|f(t)|pu(t) dt

)1/p

holds for all f? The answer to this question is the Hardy inequality with weights provided
by [6], [2], [5, §1.3.2], [9] and others.

For which indices p and q and which non-negative sequences {uk} and {vn} does there
exist a constant C for which( ∞∑

n=0

∣∣∣∣∣
n∑
k=0

fkuk

∣∣∣∣∣
q

vn

)1/q

≤ C

( ∞∑
k=0

|fk|puk

)1/p

for all {fk}? Unsurprisingly, this similar question has also been answered. (See [1].)
Hardy’s inequality with measures is more general than both of these answers.
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Theorem 7.1. Suppose 0 < q < ∞ and 1 < p < ∞. Let µ and ν be regular, Borel
measures on R and take C to be the smallest positive constant (possibly infinite) such that(∫

R

∣∣∣∣∫ x

−∞
f dµ

∣∣∣∣q dν(x)
)1/q

≤ C
(∫

R

|f |p dµ
)1/p

holds for all µ-measurable functions f . Then
(1) If p ≤ q then

C ∼ sup
y∈R

(∫ ∞
y

dν

)1/q (∫ y

−∞
dµ

)1/p′

.

(2) If 1 < q < p <∞ then

C ∼

(∫
R

(∫ ∞
y

dν

)r/q (∫ y

−∞
dµ

)r/q′
dµ(y)

)1/r

.

(3) If 0 < q < 1 < p <∞ then

C ∼

(∫
R

(∫ y

−∞
dµ

)r/p(∫ ∞
y

dν

)r/p′
dν(y)

)1/r

.

Here 1/p+ 1/p′ = 1, 1/q + 1/q′ = 1, 1/r = 1/q − 1/p, and A ∼ B means that there exist
positive constants c1 and c2 such that c1A ≤ B ≤ c2A.

The proofs of (1), (2), and (3) all appear in [8] but parts (1) and (2) are quite similar
to the analogous results for (7.1) found in [6], [2] and [5, §1.3.2]. Part (3) is proved for
weights in [9] but the result relies on Halperin’s level function with respect to weights.
The level function with respect to measures, as constructed here, enables us to extend the
Hardy inequality in [9] to the statement (3) above.

To avoid a tedious enumeration, no mention of endpoint cases (p = 1,∞; q = 0, 1,∞)
has been made in the statement of Theorem 7.1. Results are available in the references
cited which carry over to this more general setting.
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