
HARDY-TYPE INEQUALITIES FOR A

NEW CLASS OF INTEGRAL OPERATORS

Gord Sinnamon

The University of Western Ontario

June 10, 1997

Abstract. Mapping properties between weighted Lebesgue spaces of the operator

that integrates a function over a difference of two dilations of a starshaped set in Rn

are completely characterized. This includes integrals over annuli whose inner and

outer radii are arbitrary increasing functions. The general result is applied to give

sufficient conditions for boundedness between weighted Lebegue spaces for operators
with a large class of non-negative kernels.

1.1 Introduction

The weight conditions which characterize the weighted Hardy inequality(∫ ∞
0

(∫ s

0

f

)q
v(s) ds

)1/q

≤ C
(∫ ∞

0

fpu

)1/p

have set a standard for weight conditions because they are easy to estimate and
to verify in particular cases, they relate well to the size of the constant C in the
inequality, and they are themselves essentially just weighted norms. See [2], [5] and
[7].

The problem of finding comparably simple weight conditions for weighted norm
inequalities involving other operators, for example, replacing

∫ s
0
f in the above

inequality by
∫∞

0
k(s, t)f(t) dt for some kernel k(s, t), is a difficult one even for

non-negative k. Some results for particular kernels are available and certain classes
of kernels have been investigated with success. One of the general results in this
direction, begun by Martin-Reyes and Sawyer [4] and by Bloom and Kerman [1]
and improved by Stepanov [8], solves the weight characterization problem for Gen-
eralized Hardy Operators: The operator f →

∫ s
0
k(s, t)f(t) dt is a GHO provided
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that k(s, t) is non-negative, non-decreasing in s or non-increasing in t, and for some
D > 0 satisfies the growth condition

D−1(k(s, ξ) + k(ξ, t) ≤ k(s, t) ≤ D(k(s, ξ) + k(ξ, t))

whenever 0 < t < ξ < s. These are strong assumptions which, in particular, exclude
kernels with sharp jumps or with zeros. The results are general enough, however,
to include weighted norm inequalities for the Riemann-Liouville fractional integral
operators.

Recently, in [3], weight characterizations were given for operators of the form
f →

∫ b(s)
a(s)

f where a and b are increasing functions. In these results the kernel is
the characteristic function of a set and does have sharp jumps and zeros. In this
paper we extend the results of [3] to higher dimensions using arguments introduced
in [6]. Necessary and sufficient weight conditions which live up to the standard of
simplicity set for the Hardy operator are given for operators which integrate over
differences of general starshaped regions in Rn. The weight conditions simplify
futher in the case of integration over annuli.

The higher dimensional results are then applied to give sufficient conditions for
one-dimensional inequalities for operator with a large class of kernels, namely those
that can be expressed in the form

k(s, t) = ϕ(t/b(s))− ϕ(t/a(s))

for some non-increasing function ϕ and some increasing functions a and b with
a < b. No growth condition is assumed.

1.2 Starshaped regions

We will call a region S ∈ Rn smoothly starshaped provided there exists a non-
negative, piecewise-C1 function ψ defined on the unit sphere in Rn with S = {x ∈
Rn \ {0} : |x| ≤ ψ(x/|x|)}.

If S is smoothly starshaped, let B = {x ∈ Rn \ {0} : |x| = ψ(x/|x|)} and note
that B is contained in the boundary of S. Since ψ is not assumed to be continuous,
B may not be the whole boundary of S. The family of regions we integrate over is
the collection of dilations of S.

Let E be the union of all dilations of S, E = ∪α>0αS, and note that E = Rn

whenever 0 is in the interior of S. For non-zero x ∈ E, since S is starshaped, there
is a least positive dilation αxS which contains x. We write Sx = αxS and note that
x/αx ∈ B so that x is on the boundary of S.

Throughout, a and b are taken to be increasing differentiable functions on R+,
satisfying a(0) = b(0) = 0, a(x) < b(x) for x > 0, and a(∞) = b(∞) =∞.

The n-dimensional weighted inequality that we characterise in this section in-
volves integrals over differences of the form b(αx)S \ a(αx)S.

Our first result reduces the problem to a one-dimensional one of the type studied
in [3].
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Theorem 1.1. Let S be a smoothly starshaped region in Rn and let B, E and αx
be defined as above. Suppose 0 < q <∞, 1 < p <∞, and u and v are non-negative
weight functions on E. Then the inequality

(1.1)

(∫
E

∣∣∣∣∣
∫
b(αx)S\a(αx)S

f(y) dy

∣∣∣∣∣
q

v(x) dx

)1/q

≤ C
(∫

E

|f(y)|pu(y) dy
)1/p

holds for all locally integrable functions f on E if and only if

(1.2)

(∫ ∞
0

∣∣∣∣∣
∫ b(s)

a(s)

F (t) dt

∣∣∣∣∣
q

V (s) ds

)1/q

≤ C
(∫ ∞

0

|F (t)|pU(t) dt
)1/p

holds for all locally integrable functions F : (0,∞)→ R. Here

(1.3) V (s) =
∫
B

v(sη)sn−1 dη, and U(t) =
(∫

B

u(tτ)1−p′tn−1 dτ

)1−p

.

In particular, the best constants in inequalities (1.1) and (1.2) coincide.

Proof. Suppose (1.2) holds and fix a locally integrable function f : E → R. Set

(1.4) F (t) =
∫
B

f(tτ)tn−1 dτ.

Make the changes of variable x = sη and y = tτ in the left hand side of (1.1) and
notice that for η ∈ B, αsη = s.

(∫
E

∣∣∣∣∣
∫
b(αx)S\a(αx)S

f(y) dy

∣∣∣∣∣
q

v(x) dx

)1/q

=

(∫
E

∣∣∣∣∣
∫ b(αx)

a(αx)

∫
B

f(tτ)tn−1 dτ dt

∣∣∣∣∣
q

v(x) dx

)1/q

=

(∫ ∞
0

∫
B

∣∣∣∣∣
∫ b(s)

a(s)

∫
B

f(tτ)tn−1 dτ dt

∣∣∣∣∣
q

v(sη)sn−1 dη ds

)1/q

=

(∫ ∞
0

∣∣∣∣∣
∫ b(s)

a(s)

F (t) dt

∣∣∣∣∣
q

V (s) ds

)1/q

≤C
(∫ ∞

0

|F (t)|pU(t) dt
)1/p

.
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The last inequality is the hypothesis (1.2). Use Hölder’s inequality in the integral
defining F to estimate the last line above as follows.

C

(∫ ∞
0

|F (t)|pU(t) dt
)1/p

=C
(∫ ∞

0

∣∣∣∣∫
B

f(tτ)tn−1 dτ

∣∣∣∣p U(t) dt
)1/p

≤C
(∫ ∞

0

(∫
B

|f(tτ)|pu(tτ)tn−1 dτ

)
×

(∫
B

u(tτ)1−p′tn−1 dτ

)p/p′
U(t) dt

)1/p

=C
(∫ ∞

0

∫
B

|f(tτ)|pu(tτ)tn−1 dτ dt

)1/p

=C
(∫

E

|f(y)|pu(y) dy
)1/p

.

Thus (1.1) holds.
To prove the converse, suppose that (1.1) holds and fix a locally integrable

function F : (0,∞)→ R. Define f : E → R by

f(tτ) = F (t)U(t)p
′−1u(tτ)1−p′

and use the definition of U to see that the relationship (1.4) is still valid. As in the
first part of the proof we have(∫ ∞

0

∣∣∣∣∣
∫ b(s)

a(s)

F (t) dt

∣∣∣∣∣
q

V (s) ds

)1/q

=

(∫
E

∣∣∣∣∣
∫
b(αx)S\a(αx)S

f(y) dy

∣∣∣∣∣
q

v(x) dx

)1/q

.

Now the inequality (1.1) becomes(∫ ∞
0

∣∣∣∣∣
∫ b(s)

a(s)

F (t) dt

∣∣∣∣∣
q

V (s) ds

)1/q

≤ C
(∫

E

|f(y)|pu(y) dy
)1/p

.

Using the definitions of f and U we recognize the right hand side above as the right
hand side of (1.2).

C

(∫
E

|f(y)|pu(y) dy
)1/p

=C
(∫ ∞

0

∫
B

|f(tτ)|pu(tτ)tn−1 dτ dt

)1/p

=C
(∫ ∞

0

|F (t)|pU(t)p
′
∫
B

u(tτ)(1−p′)p+1tn−1 dτ dt

)1/p

=C
(∫ ∞

0

|F (t)|pU(t) dt
)1/p

.
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This establishes (1.2) and completes the proof.

To complete the characterization we apply the results of [3] to give the following
two theorems.

Theorem 1.2. Let S be a smoothly starshaped region in Rn and let B, E and αx
be defined as above. Suppose 1 < p ≤ q <∞, and u and v are non-negative weight
functions on E. Then (1.1) holds for all locally integrable f on E if and only if

(1.5) sup
t≤s

a(s)≤b(t)

(∫
b(t)S\a(s)S

u1−p′
)1/p′ (∫

sS\tS
v

)1/q

<∞.

Proof. Theorem 2.2 of [3] shows that (1.2) holds for all locally integrable F if and
only if

sup
t≤s

a(s)≤b(t)

(∫ b(t)

a(s)

U1−p′
)1/p′ (∫ s

t

V

)1/q

<∞.

Here U and V are defined by (1.3) as before. Since Theorem 1.1 shows that (1.1)
holds for all f if and only if (1.2) holds for all F , it only remains to show that the
last expression is equivalent to (1.5). Using the definitions of U and V the last
expression becomes

sup
t≤s

a(s)≤b(t)

(∫ b(t)

a(s)

∫
B

u(ξτ)1−p′ξn−1 dτ dξ

)1/p′ (∫ s

t

∫
B

v(ξη)ξn−1 dη dξ

)1/q

<∞,

which reduces easily to (1.5).

To give an analogue of the above corollary in the case q < p we need to define the
normalizing function introduced in [3]. Since a−1 and b−1 exist and are increasing
we may define the sequence {Mk}k∈Z recursively as follows: Fix M0 = b−1(1) and
define

Mk+1 = a−1(b(Mk)), if k ≥ 0 and Mk = b−1(a(Mk+1)), if k < 0.

Clearly a(Mk+1) = b(Mk) for all k ∈ Z. The normalizing function σ is defined by

σ(t) =
∑
k∈Z

χ
(Mk,Mk+1)(t)

d

dt
(b−1 ◦ a)k(t)

where (b−1 ◦ a)k denotes k times repeated composition.

Theorem 1.3. Let S be a smoothly starshaped region in Rn and let B, E and αx
be defined as above. Suppose 0 < q < p, 1 < p <∞, and u and v are non-negative
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weight functions on E. Then (1.1) holds for all locally integrable f on E if and only
if both
(1.6)∫ ∞

0

∫
tS\b−1(a(t))S

(∫
b(αx)S\a(t)S

u1−p′
)r/p′ (∫

tS\αxS
v

)r/p
v(x) dxσ(t)dt

1/r

and
(1.7)∫ ∞

0

∫
a−1(b(t))S\tS

(∫
b(t)S\a(αx)S

u1−p′
)r/p′ (∫

αxS\tS
v

)r/p
v(x) dxσ(t)dt

1/r

are finite

Proof. Proceed as in the previous proof applying Theorem 2.5 of [3] instead of
Theorem .2 of [3].

As mentioned, these results include operators which integrate over annuli. If we
take the starshaped region S to be the unit ball in Rn we see that E = Rn and
αx = |x|. The operator becomes

f →
∫
b(|x|)≤|y|≤a(|x|)

f(y) dy,

an integral over annuli whose inner and outer radii are given by the increasing
functions a and b. In the next two corollaries we record this result in the special
case that a and b are lines through the origin.

Corollary 1.4. Suppose 1 < p ≤ q <∞ and u and v are weights on Rn. Fix real
numbers A and B with 0 < A < B. Then the inequality

(1.8)

(∫
Rn

(∫
A|x|≤|y|≤B|x|

f(y) dy

)q
v(x) dx

)1/q

≤ C
(∫

Rn

fpu

)1/p

holds for all non-negative f if and only if

sup
|y|≤|x|≤(B/A)|y|

(∫
A|x|≤|z|≤B|y|

u(z)1−p′ dz

)1/p′ (∫
|y|≤|z|≤|x|

v(z) dz

)1/q

<∞.

Proof. This is Theorem 1.2, taking S to be the unit ball in Rn, a(t) = At and
b(t) = Bt.
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Corollary 1.5. Suppose 0 < q < p, 1 < p <∞, 1/r = 1/q − 1/p and u and v are
weights on Rn. Fix real numbers A and B with 0 < A < B. Then the inequality
(1.8) holds for all non-negative f if and only if both∫ ∞

0

∫
At/B≤|x|≤t

(∫
At≤|y|≤B|x|

u(y)1−p′ dy

)r/p′(∫
|x|≤|y|≤t

v(y) dy

)r/p
v(x) dx

dt

t

1/r

and∫ ∞
0

∫
t≤|x|≤Bt/A

(∫
A|x|≤|y|≤Bt

u(y)1−p′ dy

)r/p′(∫
t≤|y|≤|x|

v(y) dy

)r/p
v(x) dx

dt

t

1/r

are finite.

Proof. We apply Theorem 1.3, taking S to be the unit ball in Rn, a(t) = At and
b(t) = Bt. It was shown in the proof of Corollary 2.6 of [3] that the normalizing
function σ(t) satisfies 1/B ≤ tσ(t) ≤ 1/A in this case. This estimate completes the
proof.

1.3 From regions to kernels

In this section we define particular starshaped regions and use the results of
the previous section to prove one-dimensional inequalities for operators with more
general kernels.

Definition 1.1. Suppose ϕ : (0,∞)→ (0,∞) is a decreasing, continuously differ-
entiable function with ϕ(0) = 1 and ϕ(∞) = 0. Define

S = {(x1, x2) : 0 ≤ x1, 0 ≤ x2 ≤ x1ϕ(x1)}

Lemma 1.6. S is smoothly starshaped and the union of all dilations of S is

E = {(x1, x2) : 0 ≤ x1, 0 ≤ x2 < x1}.

For x = (x1, x2) ∈ E, Sx, the least dilation of S that contains x, is αxS, where αx
satisfies x2 = x1ϕ(x1/αx).

Proof. If (x1, x2) ∈ S and 0 ≤ r ≤ 1 then we have 0 ≤ rx2 ≤ rx1ϕ(x1) ≤ rx1ϕ(rx1)
so (rx1, rx2) ∈ S. Thus S is starshaped. It is clear that S is smoothly starshaped.

If (x1, x2) ∈ αS with α > 0 then 0 ≤ x1/α and hence 0 ≤ x1. Also 0 ≤
x2/α ≤ (x1/α)ϕ(x1/α) so 0 ≤ x2 ≤ x1ϕ(x1/α) ≤ x1ϕ(0). Thus (x1, x2) ∈ E.
Conversely, if (x1, x2) ∈ E then for sufficiently large α we have both 0 ≤ x1/α ≤ 1
and 0 ≤ x2/α ≤ (x1/α)ϕ(x1/α) so (x1, x2) is in some dilation of S.

The least dilation of S that contains the point (x1, x2) is the unique α for which
(x1/α, x2/α) is on the graph of x1ϕ(x1). Thus x2 = x1ϕ(x1/αx). This completes
the proof.
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Theorem 1.7. Suppose 1 < p ≤ q < ∞ and u and v are weights. Let a and b be
as above and ϕ and S be as in Definition 1.1. Then the inequality

(1.9)
(∫ ∞

0

(∫ ∞
0

[ϕ(t/b(s))− ϕ(t/a(s))]g(t) dt
)q

v(s) ds
)1/q

≤ C
(∫ ∞

0

gpu

)1/p

holds for all non-negative g provided

(1.10) sup
t≤s

a(s)≤b(t)

(∫ ∞
0

[ϕ(ξ/b(t))− ϕ(ξ/a(s))]u(ξ)1−p′ dξ

)1/p′ (∫ s

t

v

)1/q

<∞.

Proof. We apply Theorem 1.2 with S defined in terms of ϕ as in Definition 1.1
and with v(x1, x2) replaced by δ1(x1)v(1/ϕ−1(x2)) d

dx2
(1/ϕ−1(x2)) and u(y1, y2)

replaced by yp−1
1 u(y1). Here δ1 is the measure consisting of a single atom of weight

1 at 1. It is straightforward to extend Theorem 1.2 to such measures.
We begin by verifying the weight condition (1.5). Using the definition of S in

terms of ϕ we have

b(t)S \ a(s)S = {(y1, y2) : 0 ≤ y1, y1ϕ(y1/a(s)) ≤ y2 ≤ y1ϕ(y1/b(t))},
sS \ tS = {(x1, x2) : 0 ≤ x1, x1ϕ(x1/t) ≤ x2 ≤ x1ϕ(x1/s)}, and

(sS \ tS) ∩ {(x1, x2) : x1 = 1} = {(1, x2) : ϕ(1/t) ≤ x2 ≤ ϕ(1/s)}

The weight condition (1.5) becomes

sup
t≤s

a(s)≤b(t)

(∫ ∞
0

∫ y1ϕ(y1/b(t))

y1ϕ(y1/a(s))

y−1
1 u(y1)1−p′ dy2 dy1

)1/p′

×

(∫ ϕ(1/s)

ϕ(1/t)

v(1/ϕ−1(x2)) d(1/ϕ−1(x2))

)1/q

<∞

which, replacing the variable y1 by ξ in the first factor and making the substitution
ξ = 1/ϕ−1(x2) in the second factor, reduces to the hypothesis (1.10).

We have verified the weight condition of Theorem 1.2 so we may conclude that
the inequality (1.1) holds for all f(y1, y2). In particular, it holds with f(y1, y2)
replaced by y−1

1 g(y1) for any non-negative function g. To simplify the left hand
side of (1.1) we observe that the choice of v means that we may take x1 = 1. Lemma
1.6 shows that α(1,x2) = 1/ϕ−1(x2) and applying Definition 1.1 we see that

b(α(1,x2))S \ a(α(1,x2))S

= {(y1, y2) : y1ϕ(y1/a(1/ϕ−1(x2))) ≤ y2 ≤ y1ϕ(y1/b(1/ϕ−1(x2)))}.

The left hand side of (1.1) becomes(∫ 1

0

(∫ ∞
0

∫ y1φ(y1/b(1/ϕ
−1(x2)))

y1φ(y1/a(1/ϕ−1(x2)))

y−1
1 g(y1) dy2 dy1

)q
v(1/ϕ−1(x2)) d(1/ϕ−1(x2))

)1/q
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which, replacing y1 by t and making the substitution s = 1/ϕ−1(x2), becomes the
left hand side of (1.9).

The description of E in Lemma 1.6 shows that the right hand side of (1.1) is just(∫ ∞
0

∫ y1

0

(y−1
1 g(y1))pyp−1

1 u(y1) dy2 dy1

)1/p

=
(∫ ∞

0

gpu

)1/p

.

This completes the proof.

Theorem 1.8. Suppose 0 < q < p, 1 < p < ∞, 1/r = 1/q − 1/p and u and v are
weights. Let a and b be as above and ϕ and S be as in Definition 1.1. Then the
inequality (1.9) holds for all non-negative g provided both(∫ ∞

0

∫ t

b−1(a(t))

(∫ ∞
0

[ϕ(ξ/b(s))− ϕ(ξ/a(t))]u(ξ)1−p′ dξ

)r/p′

×
(∫ t

s

v

)r/p
v(s) dsσ(t) dt

)1/r

and(∫ ∞
0

∫ a−1(b(t))

t

(∫ ∞
0

[ϕ(ξ/b(t))− ϕ(ξ/a(s))]u(ξ)1−p′ dξ

)r/p′

×
(∫ s

t

v

)r/p
v(s) dsσ(t) dt

)1/r

are finite.

Proof. Proceed as in the previous proof applying Theorem 1.3 instead of Theorem
1.2.
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