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Abstract. A new family of norms is defined on the Cartesian product of n
copies of a given normed space. The new norms are related to the hypergeo-

metric means but are not restricted to the positive real numbers. Quantitative

comparisons with the usual p-norms are given. The reflexivity, convexity and
smoothness of the norms are shown to be closely related to the corresponding

property of the underlying space. Using a limit of isometric embeddings, the

norms are extended to spaces of bounded sequences that include all summable
sequences. Examples are given to show that the new sequence spaces have

very different properties than the usual spaces of p-summable sequences.

1. Introduction

Let (X, ‖·‖) be a normed linear space, and consider the Cartesian product space
Xn for a fixed positive integer n. Under the usual addition and scalar multiplication,
it becomes a normed space when equipped with any of the following norms (the
so-called p-norms):

‖x‖p =

{
(‖x1‖p + · · ·+ ‖xn‖p)1/p, 1 ≤ p < ∞;
max{‖x1‖, . . . , ‖xn‖}, p = ∞,

for all x = (x1, . . . , xn) ∈ Xn. All p-norms are equivalent in Xn, as

‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞
for 1 ≤ p < ∞. Each of these norms extends in a natural way to a norm on a space
of sequences in X, giving the familiar `p(X) spaces. Despite their equivalence on
Xn the norms on the `p(X) spaces are all inequivalent, and the `p(X) spaces are
all different for different values of p.

In this paper, another family of norms on Xn is defined and studied. They are
based on the p − HH norms introduced by Kikianty and Dragomir in [11]. The
study of these norms is motivated by the Hermite-Hadamard inequality and the
close connection they have to the hypergeometric R-function of [2] and [3].

The classical means, exemplified by `p above, extend from means on [0,∞) to
means in a normed vector space X in an unfortunately simple fashion; one evaluates
the norms of n vectors in X and then calculates the mean of the resulting n real
numbers. Consequently, these means depend on the original vectors only through
their norms. This process does give a norm on Xn, but one that is relatively
insensitive to the geometry of Xn. The weighted arithmetic means (as distinct
from weighted `1 norms) are exceptional in this regard because one first computes,
within X, a fixed linear combination of the original vectors, and then evaluates the
X-norm of the result. This preserves more of the structure of Xn. However, a

Date: January 3, 2008.
2000 Mathematics Subject Classification. 26D15, 46B20.
Key words and phrases. Hermite-Hadamard inequality, hypergeometric mean, sequence space,

Cartesian power, normed space.

1



2 E. KIKIANTY AND G. SINNAMON

weighted arithmetic mean of non-zero vectors can be zero so it does not give us a
norm on Xn.

To calculate the hypergeometric mean of n vectors in X one evaluates a number
of different weighted arithmetic means, indexed by the points of an (n−1)-simplex,
and then finds the Lp norm of this collection of means by integrating over the
simplex. Theorem 1 shows that for each p ≥ 1 this procedure does give a norm
on Xn, called the p−HH norm. The p−HH norms retain the sensitivity of the
arithmetic means to the geometry of Xn; they depend on the relative positions of
the n original vectors in the space X, not just on the size of each vector. Example
1 shows one concrete way that a change in the “shape” of the space X affects the
p−HH norms.

Spaces of sequences with entries in a normed space X can be normed using
classical means in much the same way as the space Xn can be, provided one is
willing to restrict the sequence space to ensure finiteness of the norm. Here again,
the norm of the sequence depends only on the norms of the entries. Extending the
p−HH norms, and hence the hypergeometric means, to sequence spaces hp[X] is
done in Section 4. The sensitivity of these norms to the geometry of X is markedly
different than, for instance, the spaces `p(X). A simple example of this is provided
by Remark 4 and Example 3. These prove that although (1,− 1

2 , 1
3 ,− 1

4 , . . . ) and
(1, 1

2 , 1
3 , 1

4 , . . . ) are both in `2, the first is in h2[R] but the second is not. The reason
for this is that, even though the entries of the two sequences are the same size, the
first sequence is spread out around zero and so has significantly smaller weighted
arithmetic means than the second, which is concentrated on one side of zero. A
more persuasive example comes from Harmonic Analysis. Consider the sequence of
terms of the trigonometric polynomial

f(x) =
N∑

n=−N

aneinx.

Its `2 norm does not depend on x. Indeed, for any x,

‖(aneinx)N
n=−N‖`2(C) = ‖f‖L2(−π,π).

However, Theorem 5 shows that its 2−HH norm does depend on x. The formula
is quite straightforward;

‖(aneinx)N
n=−N‖2−HH =

(‖f‖L2(−π,π) + |f(x)|2

(2N + 1)(2N + 2)

)1/2

.

Letting N → ∞ we can, at least formally, apply Theorem 11 (for two-sided se-
quences) to get

‖(aneinx)∞n=−∞‖h2[C] = 1√
2

(
‖f‖L2(−π,π) + |f(x)|2

)1/2
.

This norm may be different, may be finite or infinite, for different x depending on
the pointwise convergence of the trigonometric polynomials as N →∞. This is not
the case with the `2(C) norm.

It would be interesting to investigate in what precise sense the series for f(x)
must converge for the above formula to hold, and to explore the differences between
the spaces `2(C) and h2[C] but our task in this paper is to introduce the p −HH
norms and the spaces hp[X], and to establish some basic properties.

After the p − HH norms on Xn are defined in the next section, quantitative
comparisons are made between the p−HH norms and the p-norms. In particular,
these prove Conjecture 1 of [11], establishing the best constant in an inequality
relating the p-norms and the p−HH norms in X2. The strict analogue of Conjecture
1 fails when n > 2 but a substitute is given that is also sharp. Together with an
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n-dimensional Hermite-Hadamard inequality, these results prove the equivalence of
the p−HH norms and the p-norms.

A brief examination of the smoothness and convexity properties of the p−HH
norms on Xn follows. In keeping with the methods of [11], an isometric embedding
of Xn into a Lebesgue-Bochner space is given. This embedding facilitates the
proofs of several of the geometrical results. A formula for the semi-inner products
is also presented and is used to prove that (Gâteaux) smoothness of the space Xn

is inherited from X.
Extending the p − HH norm from Xn to a suitable space of sequences reveals

fundamental differences between the p − HH norms and the p-norms. Although
the resulting sequence spaces all lie between `1(X) and `∞(X), it seems that the
resemblance to `p(X) ends there. Examples are given, in the case X = R, to show
that the 2 −HH norm extends to a sequence space that strictly contains `1, that
these sequence spaces need not be lattices, they need not be complete spaces, and
they need not even be closed under a permutation of the terms of the sequence.

2. The p−HH norm on Xn

Let (X, ‖ · ‖) be a normed space. In [11], Kikianty and Dragomir introduced the
p−HH norm on the vector space X2 by defining

‖x‖p−HH =
(∫ 1

0

‖(1− t)x1 + tx2‖p dt

)1/p

for all x = (x1, x2) ∈ X2. Here 1 ≤ p < ∞. In this section we extend the definition
of the p −HH norm to Xn for n > 2 and investigate upper and lower bounds for
this new norm, in terms of p-norm.

For the upper bound, we apply the unweighted case of the n-dimensional Hermite-
Hadamard inequality. The general case is Theorem 5.20 of [15] but we provide an
elementary proof of the special case that we use.

In Theorem 3 below we verify Conjecture 1 of [11] by proving a sharp lower
bound for the p−HH norm in terms of the p-norm on X2. We observe, moreover,
that the best constant in this lower bound is the same for every normed space X.
This is not the case when n > 2. Example 1 shows that when n > 2 the sharp
lower bound for the p − HH norm in terms of the p-norm on Xn may genuinely
depend on the norm of the underlying space X. As a substitute for sharp lower
bound obtained when n = 2, we provide a sharp lower bound for the p−HH norm
in terms of the ∞-norm,

‖x‖∞ = max{‖x1‖, . . . , ‖xn‖}.

In this result the best constant does not depend on the space X.

Definition 1. Let (X, ‖·‖) be a normed space, n ≥ 2 be an integer, and 1 ≤ p < ∞.
Set

En = {(u1, . . . , un−1) ∈ (0, 1)n−1 : u1 + · · ·+ un−1 < 1}.
When (u1, . . . , un−1) ∈ En set un = 1− u1 − · · · − un−1, and du′ = dun−1 . . . du1.
For x = (x1, . . . , xn) ∈ Xn,

‖x‖p−HH =
(

1
|En|

∫
En

‖u1x1 + · · ·+ unxn‖p du′
)1/p

.

Here |En| =
∫

En
du′ is the measure of the set En.

Note that when n = 2 this definition agrees with the one given in [11]. When
n = 1 it is convenient to set ‖x‖p−HH = ‖x1‖ for x = (x1) ∈ X1.
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There is a natural definition of the p −HH norm when p = ∞ but it does not
give a new norm. Indeed, for x = (x1, . . . , xn) ∈ Xn,

‖x‖∞−HH = sup
(u1,...,un−1)∈En

‖u1x1 + · · ·+ unxn‖ = max{‖x1‖, . . . , ‖xn‖} = ‖x‖∞.

Theorem 1. Suppose (X, ‖ · ‖) is a normed space, n is a positive integer, and
1 ≤ p < ∞. Then ‖ · ‖p−HH is a norm on Xn.

Proof. The triangle inequality in X shows that

(u1, . . . , un−1) 7→ ‖u1x1 + · · ·+ unxn‖p

defines a continuous function on the closure of En, a compact set of finite measure.
It follows that integral defining the p−HH norm is finite. The norm is clearly non-
negative and homogeneous. The triangle inequality follows readily from the triangle
inequality in X and the Minkowski inequality. Now suppose that ‖x‖p−HH = 0.
Then, ‖u1x1 + · · · + unxn‖p = 0 for almost every (u1, · · · , un−1) ∈ En. By
continuity it is identically zero on En. In particular, it vanishes at the points
(1, 0, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, 0, · · · , 0, 1), and (0, 0, · · · , 0). This shows
that x1 = x2 = · · · = xn = 0, and completes the proof. �

When X = R and x = (x1, . . . , xn) is a vector of positive real numbers, the p−
HH norm of x is the pth-hypergeometric mean of (x1, . . . , xn), which is constructed
from the unweighted hypergeometric R-function evaluated at (x1, . . . , xn). See [1,
p. 366-367] and [3, 32-33].

The p − HH norms enjoy a simple relationship with each other and with the
p-norms on Xn. Since the integral defining the p−HH norm is an average, Hölder’s
inequality shows that the p−HH norm is increasing as a function of p on [1,∞).
So for 1 < p ≤ q < ∞ we have

‖x‖1−HH ≤ ‖x‖p−HH ≤ ‖x‖q−HH ≤ ‖x‖∞ ≤ ‖x‖q ≤ ‖x‖p ≤ ‖x‖1.

It is interesting to compare this observation with Theorem 10 in Section 4.
To work effectively with the p−HH norms we often need to make calculations

involving integration over the simplex En. To assist with such calculations we
offer the following useful changes of variable. Their proofs are left as exercises in
multivariable Calculus.

Lemma 1. Let n be a positive integer and f : (0, 1)n → R be integrable. For
(u1, . . . , un−1) ∈ En, set un = 1− u1 − · · · − un−1 and du′ = dun−1 . . . du1. If σ is
a permutation of {1, 2, . . . , n}, then

(2.1)
∫

En

f(u1, . . . , un) du′ =
∫

En

f(uσ(1), . . . , uσ(n)) du′.

Lemma 2. Let m ≥ 2 and n ≥ 2 be integers and f : (0, 1)m+n → R be integrable.
For (u1, . . . , un−1) ∈ En, (v1, . . . , vm−1) ∈ Em, and (w1, . . . , wm+n−1) ∈ Em+n set

un = 1− u1 − · · · − un−1, du′ = dun−1 . . . du1,

vm = 1− v1 − · · · − vm−1, dv′ = dvm−1 . . . dv1,

wm+n = 1− w1 − · · · − wm+n−1, dw′ = dwm+n−1 . . . dw1.

Then, ∫
Em+n

f(w1, . . . , wm+n) dw′(2.2)

=
∫ 1

0

∫
Em

∫
En

f(tv1, . . . , tvm, (1− t)u1, . . . , (1− t)un) du′ dv′tm−1(1− t)n−1 dt,
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(2.3)∫
En+1

f(w1, . . . , wn+1) dw′ =
∫ 1

0

∫
En

f(t, (1− t)u1, . . . , (1− t)un) du′(1− t)n−1 dt

and

(2.4)
∫

Em+1

f(w1, . . . , wm+1) dw′ =
∫ 1

0

∫
Em

f(tv1, . . . , tvm, 1− t) dv′tm−1 dt.

With f ≡ 1 equation (2.3) becomes

|En+1| =
∫

En+1

dw′ =
∫ 1

0

∫
En

du′(1− t)n−1 dt =
1
n
|En|

and by induction we find that |En| = 1/(n− 1)!.
With these in hand we can easily prove the following (unweighted) n-dimensional

Hermite-Hadamard inequality.

Theorem 2. Suppose X is a vector space, n ≥ 2 is an integer, and f : X → R is
convex. If x = (x1, . . . , xn) ∈ X, then

f

(
x1 + · · ·+ xn

n

)
≤ 1
|En|

∫
En

f(u1x1 + · · ·+ unxn) du′ ≤ f(x1) + · · ·+ f(xn)
n

.

Proof. Let Sn denote the collection of all permutations of {1, . . . , n} and note that
Sn has n! elements. Let (u1, . . . , un−1) ∈ En and set un = 1− u1 − · · · − un−1. For
each i, ∑

σ∈Sn

uσ(i) = (n− 1)!

because each of u1, . . . , un occurs exactly (n−1)! times in the sum and u1+· · ·+un =
1.

By Lemma 1,

1
|En|

∫
En

f(u1x1 + · · ·+ unxn) du′

=
1
n!

∑
σ∈Sn

1
|En|

∫
En

f(uσ(1)x1 + · · ·+ uσ(n)xn) du′

=
1

|En|

∫
En

1
n!

∑
σ∈Sn

f(uσ(1)x1 + · · ·+ uσ(n)xn) du′.(2.5)

Since f is convex and uσ(1) + · · ·+ uσ(n) = 1 for all σ ∈ Sn,

1
n!

∑
σ∈Sn

f(uσ(1)x1 + · · ·+ uσ(n)xn)

≤ 1
n!

∑
σ∈Sn

(
uσ(1)f(x1) + · · ·+ uσ(n)f(xn)

)
=

(
1
n!

∑
σ∈Sn

uσ(1)

)
f(x1) + · · ·+

(
1
n!

∑
σ∈Sn

uσ(n)

)
f(xn)

=
f(x1) + · · ·+ f(xn)

n
.
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On the other hand, the convexity of f also yields

1
n!

∑
σ∈Sn

f(uσ(1)x1 + · · ·+ uσ(n)xn)

≥ f

(
1
n!

∑
σ∈Sn

(uσ(1)x1 + · · ·+ uσ(n)xn)

)

= f

((
1
n!

∑
σ∈Sn

uσ(1)

)
x1 + · · ·+

(
1
n!

∑
σ∈Sn

uσ(n)

)
xn

)

= f

(
x1 + · · ·+ xn

n

)
.

Using these upper and lower bounds for the integrand in (2.5) completes the
proof. �

The following corollary gives a sharp upper bound for the p−HH norm in terms
of the p-norm on Xn.

Corollary 1. Let (X, ‖·‖) be a normed space, n a positive integer, and 1 ≤ p < ∞.
For x = (x1, . . . , xn) ∈ Xn,

(2.6)
∥∥∥∥x1 + · · ·+ xn

n

∥∥∥∥ ≤ ‖x‖p−HH ≤ n−1/p‖x‖p.

The inequalities reduce to equality when x1 = · · · = xn.

Proof. If n = 1 the statement holds trivially. If n ≥ 2, note that f(x) = ‖x‖p is a
convex function on X. With this f , the conclusion of the previous theorem easily
implies (2.6); just take pth roots.

When x = (x, . . . , x) for some x ∈ X,∥∥∥∥x1 + · · ·+ xn

n

∥∥∥∥ = ‖x‖,

‖x‖p−HH =
(

1
|En|

∫
En

‖x‖p du′
)1/p

= ‖x‖, and

n−1/p‖x‖p = n−1/p (‖x‖p + · · ·+ ‖x‖p)1/p = ‖x‖. �

Obtaining a lower bound for the p −HH norm in terms of the p-norm is more
delicate. We begin with the case n = 2, giving the best constant conjectured in [11]
as the lower bound.

Theorem 3. Let (X, ‖ · ‖) be a normed space and 1 ≤ p < ∞. For any x ∈ X2

(2.7) (2p + 2)−1/p‖x‖p ≤ ‖x‖p−HH .

Equality holds if and only if x = (x,−x) for some x ∈ X.

Proof. Let x = (x1, x2) ∈ X2. For any t ∈ (0, 1),

(1− 2t)x1 = (1− t)((1− t)x1 + tx2) + t(−(1− t)x2 − tx1).

Since the the map x → ‖x‖p is convex on X,

|1− 2t|p‖x1‖p ≤ (1− t)‖(1− t)x1 + tx2‖p + t‖(1− t)x2 + tx1‖p.

Adding this inequality to the one obtained by interchanging x1 and x2 yields,

(2.8) |1− 2t|p‖x‖p
p ≤ ‖(1− t)x1 + tx2‖p + ‖(1− t)x2 + tx1‖p.
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Integrating this from t = 0 to t = 1 and using the fact that ‖(x1, x2)‖p−HH =
‖(x2, x1)‖p−HH gives

1
p + 1

‖x‖p
p ≤ 2‖x‖p

p−HH .

Dividing by 2 and taking pth roots gives the desired inequality.
If x1 = −x2, then all the inequalities in the above argument reduce to equations.

Conversely, if (2.7) holds with equality, then (2.8) is equality for almost every t. By
continuity, (2.8) is also equality when t = 1/2, which implies that ‖x1 + x2‖ = 0.
Thus, equality holds in (2.7) only if x1 = −x2. �

In view of this result it is natural to ask for the best (greatest) constant c in the
inequality

(2.9) c‖x‖p ≤ ‖x‖p−HH

for x ∈ Xn. However, as the next example shows, the constant c may be different
for different spaces X. As Theorem 3 showed, this cannot happen when n = 2.

Example 1. Let n = 3 and p = 2. If X = R, the best constant for which (2.9)
holds is c = 1/

√
12. However, if X = R2

∞ then (2.9) fails with c = 1/
√

12.

Proof. First take X = R. For x = (x1, x2, x3), a straightforward calculation shows
that

‖x‖2
2−HH = 1

6 (x2
1 + x2

2 + x2
3 + x1x2 + x2x3 + x3x1).

Since ‖x‖2
2 = x2

1 + x2
2 + x2

3, we see that

0 ≤ (x1 + x2 + x3)2 = 12‖x‖2
2−HH − ‖x‖2

2,

which proves (2.9) with c = 1/
√

12. Take x = (1,−1, 0) to see that no larger value
of c will do.

Now let X = R2
∞, that is, X = R2 with norm ‖(t1, t2)‖ = max{|t1|, |t2|}. Set

x = (x1, x2, x3), where x1 = (−1, 2), x2 = (−1,−2), and x3 = (2, 0). Calculations
show that

‖x‖2
2 = 12 and ‖x‖2

2−HH = 437/450.

For (2.9) to hold for this vector x we must have 12c2 ≤ 437/450 so (2.9) fails with
c = 1/

√
12. �

Rather than continuing to pursue a lower bound involving the p-norm directly,
we turn our attention to the ∞-norm and get a lower bound for the p−HH norm
in which the same constant is sharp for each normed space X. Since the p-norm
and the ∞-norm are equivalent, this approach gives, indirectly, a lower bound for
the p−HH norm in terms of the p-norm.

Theorem 4. Let (X, ‖ · ‖) be a normed space, n ≥ 2 and integer, and 1 ≤ p < ∞.
The inequality

(2.10) ‖x‖p−HH ≥ c‖x‖∞
holds for all x ∈ Xn, where

cp = inf
1≤s≤2

(n− 1)
∫ 1

0

|1− ts|ptn−2 dt.

The constant c is strictly positive and best possible.

Proof. Let x = (x1, . . . , xn) ∈ Xn. The identity (2.1) implies that the p−HH norm
is invariant under permutations of x1, . . . , xn so we may permute x1, . . . , xn without
changing either side of the inequality above. Therefore we may suppose without
loss of generality that ‖x1‖ = max{‖x1‖, . . . , ‖xn‖}. Set x̄ = (x2 + · · ·+xn)/(n−1)
and note that ‖x̄‖ ≤ ‖x1‖.
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Let σ be the (n− 1)-cycle (2 . . . n) and apply σ to x1, . . . , xn repeatedly to get

‖(x1, x2, . . . , xn)‖p−HH = 1
n−1 (‖(x1, x2, . . . , xn)‖p−HH

+ ‖(x1, x3, . . . , xn, x2)‖p−HH

+ · · ·+ ‖(x1, xn, x2 . . . , xn−1)‖p−HH)
≥ ‖(x1, x̄, . . . , x̄)‖p

p−HH .

The last inequality above is the triangle inequality in the p−HH norm.
If n ≥ 3, (2.3) implies that

‖(x1, x̄, . . . , x̄)‖p
p−HH =

1
|En|

∫
En

‖w1x1 + (1− w1)x̄‖p dw′

=
1

|En|

∫ 1

0

∫
En−1

‖tx1 + (1− t)x̄‖p du′(1− t)n−2 dt

= (n− 1)
∫ 1

0

‖(1− t)x1 + tx̄‖ptn−2 dt.

It is straightforward to check that this equation also holds when n = 2. Putting
these together and applying the triangle inequality in X shows that

‖(x1, x2, . . . , xn)‖p
p−HH ≥ (n− 1)

∫ 1

0

|(1− t)‖x1‖ − t‖x̄‖|ptn−2 dt

= (n− 1)
∫ 1

0

|1− t(1 + ‖x̄‖/‖x1‖)|ptn−2 dt‖x1‖p

≥ cp‖x1‖p.

Observe that
∫ 1

0
|1 − ts|ptn−2 dt is a strictly positive, continuous function of s on

[1, 2]. The infimum of such a function is strictly positive so c is strictly positive.
To complete the proof we show that c is the best possible constant in (2.10). If

1 ≤ s ≤ 2 and x 6= 0, set

x = (x, (1− s)x, . . . , (1− s)x) ∈ Xn

and note that ‖x‖∞ = ‖x‖. On the other hand, if n ≥ 3 then (2.3) implies

‖x‖p
p−HH =

1
|En|

∫
En

‖w1x + (1− w1)(1− s)x‖p dw′

=
‖x‖p

|En|

∫ 1

0

∫
En−1

|t + (1− t)(1− s)|p du′(1− t)n−2 dt

= (n− 1)‖x‖p

∫ 1

0

|1− ts|ptn−2 dt.

It is straightforward to check that this equation also holds when n = 2.
If follows that (2.10) fails for any constant larger than c so c is best possible. �

Corollary 2. Let (X, ‖·‖) be a normed space, n a positive integer, and 1 ≤ p < ∞.
Then the p−HH norm is equivalent to the p-norm on Xn. If X is a Banach space
then (Xn, ‖ · ‖p−HH) is a Banach space. If X is reflexive then (Xn, ‖ · ‖p−HH) is
also reflexive.

Proof. The Hermite-Hadamard inequality gives an upper bound for the p − HH
norm in terms of the the p-norm and the previous theorem gives a lower bound for
the p−HH norm in terms of the ∞-norm. Since the ∞-norm is equivalent to the
p-norm there is a lower bound for the p−HH norm in terms of the p-norm and so
the two norms are equivalent.

It is well known that if X is complete then (Xn, ‖ · ‖p) is also complete. Since
the p−HH norm is equivalent to the p-norm, (Xn, ‖ · ‖p−HH) is complete as well.
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It is an exercise to show that

(Xn, ‖ · ‖p)∗ = ((X∗)n, ‖ · ‖p′),

or, strictly speaking, to exhibit a natural isometric isomorphism between the two
normed spaces. It follows that if X is reflexive then (Xn, ‖ · ‖p) is also reflexive.
The equivalence of the p-norm and the p−HH norm implies that (Xn, ‖ · ‖p−HH)
is reflexive whenever X is. �

To end this section we point out that if the norm in X is induced by a (real) inner
product then both the 2−norm and the 2 −HH norm in Xn are also induced by
inner products. It is easy to verify that the inner product that induces the 2-norm
is

〈x,y〉2 = 〈x1, y1〉+ · · ·+ 〈xn, yn〉

where x = (x1, . . . , xn), and y = (y1, . . . , yn) are in Xn; and 〈·, ·〉 denotes the inner
product in X. For convenience in expressing the formula for the inner product that
induces the 2−HH norm we define s(x) = x1+· · ·+xn for all x = (x1, . . . , xn) ∈ Xn.

Theorem 5. Suppose (X, 〈·, ·〉) is an inner product space and n ≥ 2 is an integer.
Then Xn is an inner product space with respect to the inner product

〈x,y〉2−HH =
1

n(n + 1)

(
〈x,y〉2 + 〈s(x), s(y)〉

)
and ‖x‖2

2−HH = 〈x,x〉2−HH for all x ∈ Xn.

Proof. It is a simple matter to check that the formula for 〈·, ·〉2−HH given above
does define an inner product. To verify that it induces the 2−HH norm suppose
x = (x1, . . . , xn) ∈ Xn. Then

‖x‖2
2−HH =

1
|En|

∫
En

|u1x1 + · · ·+ unxn|2 du′

= (n− 1)!
∫

En

〈u1x1 + · · ·+ unxn, u1x1 + · · ·+ unxn〉 du′

=
n∑

j=1

n∑
k=1

(n− 1)!
∫

En

ujuk du′〈xj , xk〉 and

〈x,x〉2−HH =
1

n(n + 1)

(
〈x,x〉2 + 〈s(x), s(x)〉

)
=

n∑
j=1

n∑
k=1

δj k + 1
n(n + 1)

〈xj , xk〉

where δj k is 1 when j = k and 0 otherwise.
It remains to show that

(n + 1)!
∫

En

ujuk du′ = δj k + 1

for all j, k. By (2.1) it is enough to show that

(n + 1)!
∫

En

u1u2 du′ = 1 and (n + 1)!
∫

En

u2
1 du′ = 2.

A pair of straightforward calculations using (2.2) and (2.3) completes the proof. �
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3. Convexity and smoothness

Although the p−HH norm on Xn is equivalent to the p-norm, it is not identical.
Geometrical properties such as convexity and smoothness are not preserved under
equivalence of norms. In this section we investigate the extent to which geometrical
properties of X are inherited by Xn when it is given the p−HH norm. In addition,
we give simple formulas for the semi-inner products on (Xn, ‖ · ‖p−HH) in terms of
the semi-inner products on X.

Our approach follows the method of [11], giving an isometric embedding of
(Xn, ‖ · ‖p−HH) into a much larger space, the Lebesgue-Bochner space Lp(En,X),
which is known to inherit geometric properties of X. Before introducing this space
we recall the definitions of smoothness, Fréchet smoothness, strict convexity, and
uniform convexity.

A normed space (X, ‖ · ‖) is called smooth provided its norm is Gâteaux differ-
entiable away from zero. That is, the limit

lim
t→0

1
t (‖y + tx‖ − ‖y‖)

exists for all x, y ∈ X with y 6= 0. The space is called Fréchet smooth provided
its norm is Fréchet differentiable away from zero. This means that for each y ∈ X
with y 6= 0 there exists a continuous linear functional Gy such that

lim
‖h‖→0

|‖y + h‖ − ‖y‖ −Gy(h)|
‖h‖

= 0.

For any x, y ∈ X the functions t 7→ ‖y + tx‖ and t 7→ 1
2‖y + tx‖2 are convex and

therefore have one-sided derivatives. We denote the right- and left-hand derivatives
of the norm by

(∇+‖·‖(y))(x) = lim
t→0+

1
t (‖y+tx‖−‖y‖) and (∇−‖·‖(y))(x) = lim

t→0−

1
t (‖y+tx‖−‖y‖)

and the superior and inferior semi-inner products of the norm by

〈x, y〉s = lim
t→0+

1
2t (‖y + tx‖2 − ‖y‖2) and 〈x, y〉i = lim

t→0−

1
2t (‖y + tx‖2 − ‖y‖2).

The chain rule gives the relationships

(3.1) 〈x, y〉s = ‖y‖(∇+‖ · ‖(y))(x) and 〈x, y〉i = ‖y‖(∇−‖ · ‖(y))(x)

from which it is evident that X is smooth if and only if the superior and inferior
semi-inner products are equal for all x, y ∈ X. See [6], [7], [8] and [9] for further
properties of the semi-inner products.

Let SX = {x ∈ X : ‖x‖ = 1} be the unit sphere in a normed space (X, ‖ · ‖).
The space X is strictly convex provided

‖λx + (1− λ)y‖ < 1

whenever 0 < λ < 1 and x, y ∈ SX with x 6= y. The space X is uniformly convex
provided for any ε > 0, there exists a δ > 0 such that

‖ 1
2 (x + y)‖ ≤ 1− δ

whenever x, y ∈ SX satisfy ‖x− y‖ > ε.
Let (X, ‖ · ‖) be a normed space, n ≥ 2 an integer, and 1 ≤ p < ∞. Recall that

En = {(u1, . . . , xn−1) ∈ (0, 1)n−1 : u1 + · · ·+ un−1 < 1},

du′ = dun−1 . . . du1 and un = 1 − u1 − · · · − un−1. The Lebesgue-Bochner space
Lp(En,X) is the vector space of all f : En → X such that the function

(u1, . . . , un−1) 7→ ‖f(u1, . . . , un−1)‖p
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is integrable on En. The norm is given by

‖f‖Lp(En,X) =
(

1
|En|

∫
En

‖f(u1, . . . , un−1)‖p du′
)1/p

and, as usual, functions that agree almost everywhere are taken to be equal. For
properties of the Lebesgue-Bochner spaces see III.3 of [10] and for applications to
the geometry of Banach spaces, see [16].

For each x = (x1, . . . , xn) ∈ Xn we define the function f : En → X by
fx(u1, . . . , un−1) = u1x1 + · · · + unxn. Evidently, the map x 7→ fx is an isom-
etry from (Xn, ‖ · ‖p−HH) into Lp(En,X).

Using this embedding we show that both types of convexity are preserved as we
pass from X to (Xn, ‖ · ‖p−HH), although we must exclude the case p = 1.

Theorem 6. Let (X, ‖ · ‖) be a normed space, n ≥ 2 an integer, and 1 < p < ∞.
If X is uniformly convex then so is (Xn, ‖ · ‖p−HH). If X is strictly convex then so
is (Xn, ‖ · ‖p−HH).

Proof. Suppose first that X is uniformly convex. By Theorem 2 (and the remark
on page 507) of [4], Lp(En,X) is also uniformly convex. See also [13] and [17]. It
is clear from the definition that any subspace of a uniformly convex space is also
uniformly convex. The above embedding shows that (Xn, ‖·‖p−HH) is isometrically
isomorphic to a subspace of Lp(En,X) and therefore (Xn, ‖ · ‖p−HH) is uniformly
convex.

The uniform convexity of R is trivial, and it follows that Lp(En, R) is uniformly
convex and hence strictly convex. (See Theorem 5.2.6 in [14].)

Now suppose that X is strictly convex. The strict convexity of Lp(En, R) and
Theorem 6 of [5] together imply that Lp(En,X) is strictly convex. The definition of
strict convexity shows that any subspace of a strictly convex space is strictly convex.
Since (Xn, ‖ · ‖p−HH) is isometrically isomorphic to a subspace of Lp(En,X), it is
also strictly convex. �

For Fréchet smoothness we exclude the case p = 1 and also require that X be
complete.

Theorem 7. Let (X, ‖ · ‖) be a Banach space, n ≥ 2 an integer, and 1 < p < ∞.
If X is Fréchet smooth then so is (Xn, ‖ · ‖p−HH).

Proof. The norm in the Banach space X is Fréchet differentiable away from zero so,
according to Theorem 2.5 of [12], the norm in Lp(En,X) is also Fréchet differen-
tiable away from zero. In particular, the norm in Lp(En,X) is Fréchet differentiable
at each non-zero point of the isometric image of (Xn, ‖ · ‖p−HH) in Lp(En,X). It
follows that (Xn, ‖ · ‖p−HH) is Fréchet smooth. �

The next result gives formulas for the one-sided derivatives and the semi-inner
products for the p−HH norm. In a slight abuse of notation we let

u · x = u1x1 + · · ·+ unxn

where x = (x1, . . . , xn) ∈ Xn and (u1, . . . , un−1) ∈ En, with un = 1−u1−· · ·−un−1

as usual.

Theorem 8. Let (X, ‖ · ‖) be a normed space, n ≥ 2 an integer, and 1 ≤ p < ∞.
For any x,y ∈ Xn with y 6= 0,

(∇+‖ · ‖p−HH(y))(x) = ‖y‖1−p
p−HH

1
|En|

∫
En

‖u · y‖p−1(∇+‖ · ‖(u · y))(u · x) du′

and
〈x,y〉p−HH,s = ‖y‖2−p

p−HH

1
|En|

∫
En

‖u · y‖p−2〈u · x,u · y〉s du′.
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Corresponding formulas hold for the left-hand derivative and the inferior semi-inner
product.

Proof. First, observe that if y 6= 0 then the set

{(u1, . . . , un−1) ∈ En : u · y = 0}

is a section of an affine set of dimension n − 2 and is therefore of measure zero in
the (n − 1)-dimensional set En. This ensures that the expressions ‖u · y‖p−1 and
‖u · y‖p−2 apearing above are well-defined and finite almost everywhere.

Fix x,y ∈ Xn with y 6= 0 and define

ft = ft(u1, . . . , un−1) = ‖u · (y + tx)‖

for all t ∈ (0, 1) and for all (u1, . . . , un−1) ∈ En satisfying u · y 6= 0. The triangle
inequality shows that |ft| ≤ ‖y‖1 + ‖x‖1 for all t and that

1
t (ft − f0) ≤ ‖u · x‖ ≤ ‖x‖1 ≤ ‖y‖1 + ‖x‖1.

By the mean value theorem,

| 1t (f
p
t − fp

0 )| ≤ p(‖y‖1 + ‖x‖1)p−1| 1t (ft − f0)| ≤ p(‖y‖1 + ‖x‖1)p.

Thus, 1
t (f

p
t − fp

0 ) is dominated by a constant independent of t and (u1, . . . , un−1).
For almost every (u1, . . . , un−1) ∈ En, f0 = ‖u · y‖ 6= 0 so the chain rule implies

lim
t→0+

1
t (f

p
t − fp

0 ) = pfp−1
0 (∇+‖ · ‖(u · y))(u · x)

and by Lebesgue’s dominated convergence theorem,

lim
t→0+

1
t

(∫
En

fp
t du′ −

∫
En

fp
0 du′

)
=
∫

En

pfp−1
0 (∇+‖ · ‖(u · y))(u · x) du′.

Applying the chain rule again gives

lim
t→0+

1
t (‖y+tx‖p−HH−‖y‖p−HH) = ‖y‖1−p

p−HH

∫
En

‖u·y‖p−1(∇+‖·‖(u·y))(u·x) du′,

the first formula of the theorem.
The second formula follows from the first by applying (3.1). With obvious minor

modifications the proof will apply to the left-hand derivative and the inferior semi-
inner product. �

These formulas imply that if the superior and inferior semi-inner products of X
agree then the superior and inferior semi-inner products of (Xn, ‖ · ‖p−HH) agree,
giving the following corollary.

Corollary 3. Let (X, ‖ · ‖) be a normed space, n ≥ 2 an integer, and 1 ≤ p < ∞.
If X is smooth then so is (Xn, ‖ · ‖p−HH).

Proof. Since X is smooth, 〈x, y〉s = 〈x, y〉i for all x, y ∈ X. It follows that for all
x,y ∈ Xn with y 6= 0, and for almost all (u1, . . . , un−1) ∈ En,

‖u · y‖2−p〈u · x,u · y〉s = ‖u · y‖2−p〈u · x,u · y〉i.

Theorem 8 implies that 〈x,y〉p−HH,s = 〈x,y〉p−HH,i for all y 6= 0. It also holds
when y = 0, from the definition of the semi-inner products. Equality of these two
semi-inner products for the p−HH norm implies that (Xn, ‖·‖p−HH) is smooth. �
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4. The hp spaces

In this section we introduce a space of sequences of elements of the normed
space X. The norm in this sequence space will be based on the p − HH norm in
Xn. To do this we first renormalize the p − HH norms so that the embedding
(x1, . . . , xn) 7→ (x1, . . . , xn, 0) of Xn into Xn+1 is an isometry. For 1 ≤ p < ∞ and
n ≥ 2 we define the space hp

n = hp
n[X] to be Xn with norm

‖(x1, . . . , xn)‖hp
n

=
(

Γ(p + n)
Γ(p + 1)Γ(n)

)1/p

‖(x1, . . . , xn)‖p−HH .

For convenience we let hp
1[X] = X, with identical norms.

Define

hp = hp[X] =
{
(x1, x2, . . . ) : lim

N→∞
sup

n>m≥N
‖(xm+1, . . . , xn)‖hp

n−m
= 0
}

and, for (x1, x2, . . . ) ∈ hp, define

(4.1) ‖(x1, x2, . . . )‖hp = lim
n→∞

‖(x1, x2, . . . , xn)‖hp
n
.

Some work is required before we can show that hp is a normed space.

Theorem 9. The embedding (x1, . . . , xn) 7→ (x1, . . . , xn, 0) of hp
n into hp

n+1 is an
isometry for n ≥ 1.

Proof. If n = 1 and x1 ∈ X we have

‖(x1, 0)‖p
hp
2

=
Γ(p + 2)
Γ(p + 1)

∫
E2

‖w1x1 + (1− w1)0‖p dw′

= ‖x1‖p(p + 1)
∫ 1

0

wp
1 dw1 = ‖x1‖p = ‖x1‖p

hp
1
.

Suppose n > 1 and x1, . . . xn ∈ X. Applying (2.4) with m replaced by n yields

‖(x1, . . . , xn, 0)‖p
hp

n+1
=

Γ(p + n + 1)
Γ(p + 1)

∫
En+1

‖w1x1 + · · ·+ wnxn + wn+10‖p dw′

=
Γ(p + n + 1)

Γ(p + 1)

∫ 1

0

∫
En

‖tv1x1 + · · ·+ tvnxn‖p dv′tn−1 dt

=
Γ(p + n + 1)

Γ(p + 1)

∫ 1

0

tp+n−1 dt

∫
En

‖v1x1 + · · ·+ vnxn‖p dv′

=
Γ(p + n + 1)

Γ(p + n)
1

p + n
‖(x1, . . . , xn)‖p

hp
n

= ‖(x1, . . . , xn)‖p
hp

n
.

This completes the proof. �

The change of variable (2.1) shows that the norm in hp
n is invariant under permu-

tations of x1, . . . , xn. This observation, together with the embedding lemma just
given, enables us to show that the limit in (4.1) exists for every (x1, x2, . . . ) ∈ hp:
It is enough to show that the sequence ‖(x1, . . . , xn)‖hp

n
is Cauchy. If m < n, then

‖(x1, . . . , xn)‖hp
n

≤ ‖(x1, . . . , xm, 0 . . . , 0)‖hp
n

+ ‖(0, . . . , 0, xm+1, . . . , xn)‖hp
n

= ‖(x1, . . . , xm)‖hp
m

+ ‖(xm+1, . . . , xn)‖hp
n−m

so
‖(x1, . . . , xn)‖hp

n
− ‖(x1, . . . , xm)‖hp

m
≤ ‖(xm+1, . . . , xn)‖hp

n−m
.

The definition of hp shows that the last term goes to zero as m and n go to infinity.
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Theorem 10. If X is a normed space then hp = hp[X] is a normed space. More-
over, if 1 ≤ p ≤ q < ∞ then

`1(X) ⊂ hq[X] ⊂ hp[X] ⊂ `∞(X)

with continuous inclusions.

Proof. It is easy to verify that hp is a vector space of sequences of elements of X
and that (4.1) defines a non-negative function that is positive homogeneous and
satisfies the triangle inequality. Theorem 4 may be used to show that the limit in
(4.1) is zero only when (x1, x2, . . . ) = (0, 0, . . . ) but first we need an estimate of
the constant c for n ≥ 2. Set

ϕ(s) = (n− 1)
∫ 1

0

|1− ts|tn−2 dt

and split the integral at t = 1/s to calculate

ϕ(s) = s− 1− s

n

(
1− 2

sn

)
and ϕ′(s) =

(
1− 1

n

)(
1− 2

sn

)
.

Since ϕ is decreasing on [1, 21/n] and increasing on [21/n, 2] its infimum is ϕ(21/n) =
21/n − 1. By Hölder’s inequality,

c = inf
1≤s≤2

(
(n− 1)

∫ 1

0

|1− ts|ptn−2 dt

)1/p

≥ inf
1≤s≤2

(n− 1)
∫ 1

0

|1− ts|tn−2 dt = 21/n − 1.

By Theorem 4 and the definition of the norm in hp
n

‖(x1, . . . , xn)‖hp
n
≥ (21/n − 1)

(
Γ(p + n)

Γ(p + 1)Γ(n)

)1/p

max{‖x1‖, . . . , ‖xn‖}.

The limit as n → ∞ of max{‖x1‖, . . . , ‖xn‖} is ‖(x1, x2, . . . )‖`∞(X) and Stirling’s
formula shows that

lim
n→∞

(21/n − 1)
(

Γ(p + n)
Γ(p + 1)Γ(n)

)1/p

=
log 2

Γ(p + 1)1/p
.

Thus,
‖(x1, x2 . . . )‖hp ≥ (log 2)Γ(p + 1)−1/p‖(x1, x2, . . . )‖`∞(X).

This finishes the proof that (4.1) defines a norm by showing that only the zero
vector in hp can have zero norm. It also proves that hp is contained in `∞(X) with
continuous inclusion.

Next we show that hp contains `1(X). If 0 ≤ m < n then the permutation
invariance of the hp

n norm, together with the isometry of the embeddings hp
n ↪→ hp

n+1

yields

‖(xm+1, . . . , xn)‖hp
n−m

≤ ‖(xm+1, 0, . . . , 0)‖hp
n−m

+ · · ·+ ‖(0, . . . , 0, xn)‖hp
n−m

= ‖xm+1‖+ · · ·+ ‖xn‖.

If (x1, x2, . . . ) ∈ `1(X) then this sum tends to zero as m,n →∞ so, by definition,
(x1, x2, . . . ) ∈ hp. Moreover, taking m = 0 above gives,

‖(x1, x2, . . . )‖hp = lim
n→∞

‖(x1, . . . , xn)‖hp
n

≤ lim
n→∞

(‖x1‖+ · · ·+ ‖xn‖) = ‖(x1, x2, . . . )‖`1(X).

This shows that the inclusion is continuous.
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As mentioned previously, the p−HH norm is defined as an integral average so
Hölder’s inequality shows that for any x ∈ Xn,

‖x‖p−HH ≤ ‖x‖q−HH

when p ≤ q. In terms of the hp and hq norms this is,

(4.2) ‖x‖hp
n
≤ Γ(q + 1)1/q

Γ(p + 1)1/p

(
Γ(p + n)

Γ(n)

)1/p( Γ(n)
Γ(q + n)

)1/p

‖x‖hq
n
.

By Stirling’s formula,

lim
n→∞

(
Γ(p + n)

Γ(n)

)1/p( Γ(n)
Γ(q + n)

)1/p

= 1.

Therefore, the constant

Cp,q = sup
n

Γ(q + 1)1/q

Γ(p + 1)1/p

(
Γ(p + n)

Γ(n)

)1/p( Γ(n)
Γ(q + n)

)1/p

,

is finite, independent of n, and satisfies

‖x‖hp
n
≤ Cp,q‖x‖hq

n
.

This implies that hq ⊂ hp. In addition, taking the limit in (4.2) yields

‖x‖hp ≤ Γ(q + 1)1/q

Γ(p + 1)1/p
‖x‖hq

for all x ∈ hq, showing that the inclusion is continuous. �

Remark 1. Since hp contains `1 it contains all sequences that are eventually zero.
Theorem 9 shows that for these sequences the norm in hp reduces to the norm in
hp

n for some n. That is,

‖(x1, x2, . . . , xn, 0, 0, . . . )‖hp = ‖(x1, x2, . . . , xn)‖hp
n
.

Remark 2. It is important to distinguish between the spaces hp[X] and hp[R](X).
The latter provides a norm on the space

hp[R](X) = {(x1, x2, . . . ) : (‖x1‖, ‖x2‖, . . . ) ∈ hp[R]}

given by

‖(x1, x2, . . . )‖hp[R](X) = ‖(‖x1‖, ‖x2‖, . . . )‖hp[R].

Even in the case X = R the spaces hp[X] and hp[R](X) are not the same, although
in this special case the two norms do coincide on vectors with non-negative entries.

The next example shows that the spaces hp[X] need not be complete, even if the
underlying space X is complete. In the example, X = R but, since every non-trivial
normed space contains an isometric copy of R, the example is easily adapted to any
X.

Example 2. The normed space h2[R] is not complete.

Proof. Consider the sequence (a, . . . , a, b, . . . , b, 0, 0, . . . ) in which the first m entries
equal a ∈ R, the next n entries equal b ∈ R and the rest of the entries are zero. If
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m,n ≥ 2 we use (2.2) to get

‖(a, . . . , a, b, . . . , b, 0, 0, . . . )‖2
h2

= ‖(a, . . . , a, b, . . . , b)‖2
h2

m+n

=
(m + n + 1)!

2

∫
Em+n

|(w1 + · · ·+ wm)a + (wm+1 + · · ·+ wm+n)b|2 dw′

=
(m + n + 1)!

2

∫ 1

0

∫
Em

∫
En

(ta + (1− t)b)2 dv′ du′ tm−1(1− t)n−1 dt

=
(m + n + 1)!

2(m− 1)!(n− 1)!

∫ 1

0

(ta + (1− t)b)2 tm−1(1− t)n−1 dt

= 1
2m(m + 1)a2 + mnab + 1

2n(n + 1)b2.

Similar arguments using (2.3), (2.4) show that the conclusion remains valid when
m,n ≥ 0.

In particular, if ξn = ( 1
n , . . . 1

n , 0, 0, . . . ) is chosen to have exactly n non-zero
entries then ‖ξn‖2

h2 = (n + 1)/(2n). Since ‖ξn‖h2 → 1/
√

2 as n →∞ the sequence
{ξn} does not converge to 0 in h2. However, ξn does converge to 0 in `∞ so {ξn}
cannot have a limit at all in the smaller space h2.

On the other hand, the above calculation shows that

‖ξm+n − ξm‖2
h2 = 1

2m(m + 1)
(

1
m + n

− 1
m

)2

+ mn

(
1

m + n
− 1

m

)(
1

m + n

)
+ 1

2n(n + 1)
(

1
m + n

)2

=
n

2m(m + n)
≤ 1

2m
.

Since ‖ξm+n− ξm‖h2 → 0 uniformly in n as m →∞ the sequence {ξn} is a Cauchy
sequence in h2. As we have seen, {ξn} does not converge in h2. Thus h2 is not
complete. �

Remark 3. The formula,

‖(a, . . . , a, b, . . . , b, 0, 0, . . . )‖2
h2 = 1

2m(m + 1)a2 + mnab + 1
2n(n + 1)b2

given above, shows that h2[R] does not have the lattice property since replacing a
by −a may affect the norm in h2[R].

When X is an inner product space, h2[X] is too. Also, there is a simple formula
relating their inner products. Recall that s : Xn → X was defined earlier by
s(x1, . . . , xn) = x1 + · · ·+ xn. By identifying (x1, . . . , xn) ∈ Xn with the sequence
(x1, . . . , xn, 0, 0, . . . ) we can extend this definition to

s(x1, x2, . . . ) = x1 + x2 + . . .

for all sequences (x1, x2, . . . ) that are eventually zero.

Theorem 11. If X is a (real) inner product space, then h2 = h2[X] ⊂ `2(X), the
operator s extends uniquely to a bounded linear operator on h2, and h2 is an inner
product space satisfying

(4.3) 〈x,y〉h2 =
1
2

(
〈x,y〉2 + 〈s(x), s(y)〉

)
for all x,y ∈ h2.
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Proof. By Theorem 5, (Xn, ‖ · ‖2−HH) is an inner product space and consequently
so is h2

n. Moreover, for all x,y ∈ Xn,

〈x,y〉h2
n

= 1
2n(n + 1)〈x,y〉2−HH =

1
2

(
〈x,y〉2 + 〈s(x), s(y)〉

)
.

Taking y = x in this equation implies

(4.4) ‖x‖2 ≤
√

2‖x‖h2
n

and

(4.5) ‖s(x)‖ ≤
√

2‖x‖h2
n
.

For x = (x1, x2, . . . ) ∈ h2 set x(n) = (x1, . . . , xn) ∈ Xn. Inequality (4.4) shows
that

‖x‖2 = lim
n→∞

‖x(n)‖2 ≤
√

2 lim
n→∞

‖x(n)‖h2 =
√

2‖x‖h2 .

Thus, x ∈ `2(X) and we have h2 ⊂ `2(X).
Inequality (4.5) shows that if x1, x2, . . . is eventually zero, then

‖s(x)‖ = lim
n→∞

‖s(x(n))‖ ≤
√

2 lim
n→∞

‖x(n)‖h2 =
√

2‖x‖h2 .

The definition of h2 implies that x(n) → x in h2 so the space of sequences that are
eventually zero is dense in h2. We have shown that the linear operator s is densely
defined and bounded on h2. It therefore extends uniquely to a bounded linear map
on h2, which we also denote by s.

The map

(x,y) 7→ 1
2

(
〈x,y〉2 + 〈s(x), s(y)〉

)
is an inner product on h2 and the norm it defines,

x 7→ 1
2

(
‖x‖2

2 + ‖s(x)‖2
)
,

agrees with the norm in h2 on a dense subset. Therefore, h2 is an inner product
space and (4.3) holds for all x,y ∈ h2. �

Remark 4. If X is an inner product space then `2(X) 6= h2[X]. To see this, fix
a unit vector x ∈ X. The sequence (x, x/2, x/3, . . . ) is in `2(X) because the series
12 + (1/2)2 + (1/3)2 + . . . converges. However, for any m,

sup
m<n

‖(x/(m + 1), . . . , x/n)‖2
h2

n−m
= sup

m<n

1
2

 n∑
k=m+1

1
k2

+

(
n∑

k=m+1

1
k

)2
 = ∞.

By definition, (x, x/2, x/3, . . . ) /∈ h2.

In the next example we construct an element of h2 that is not in `1, showing
that the inclusion `1 ⊂ h2 is strict.

Example 3. When X = R, h2 6⊂ `1.

Proof. The sequence (1,− 1
2 , 1

3 ,− 1
4 , . . . ) is not in `1. However, if m < n then

∥∥∥∥( (−1)m

m + 1
, . . . ,

(−1)n−1

n

)∥∥∥∥
h2

n−m

=
1
2

 n∑
j=m+1

1
j2

+

∣∣∣∣∣∣
n∑

j=m+1

(−1)j−1

j

∣∣∣∣∣∣
2


can be made arbitrarily small by taking m sufficiently large. This shows that
(1,− 1

2 , 1
3 ,− 1

4 , . . . ) is in h2. �
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The permutation invariance of the p-norms carries over from finite-dimensional
spaces to sequence spaces. In contrast, the permutation invariance of the norm on
hp

n may be lost in the transition to hp. We have seen that (1,− 1
2 , 1

3 ,− 1
4 , . . . ) ∈ h2

but it is a simple matter to rearrange the terms of the conditionally convergent
series 1 − 1

2 + 1
3 −

1
4 + . . . so that its partial sums are unbounded. The resulting

sequence is not in h2.
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